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We present a theoretical investigation of the single-electron electronic structure of polyatomic phosphorus
donor molecular planar structures embedded in silicon. Using an effective mass theory and multivalley envelope
function representation, the effect of the valley-orbit coupling is systematically analyzed in such systems. The
valley composition of the single-electron states strongly depends on the geometry of the dopant molecule and on
its orientation relative to the crystallographic axes. The electron binding energy of a triatomic linear molecule is
larger than that of a diatomic one oriented along the same crystallographic axis, but the energy gap between the
ground state and the first excited state is not significantly different for internuclear distances from 1.5 to 6.6 nm.
Three donor atoms arranged in a triangle geometry have larger binding energies than a triatomic linear chain of
dopants with the same internuclear distance. Planar donor molecules are characterized by a strong polarization
in favor of the valleys oriented perpendicular to the molecular plane, an effect that increases with the number of
atoms in the molecule and is not present in diatomics. As a result, the amplitude of the in-plane wave function
oscillations caused by the valley interference decreases which reduces the sensitivity of the electronic states to
random displacements of dopants. The effect of weak spatial disorder and of the molecular orientation relative to
the crystallographic axes are studied in detail for a hexagonal structure. The valley properties that we characterize
are fundamental for the implementation of robust multiqubits systems on many-body states of interacting dopants.
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I. INTRODUCTION

Embedded individual dopants in silicon are systems of
choice for realizing single-atom transistors as well as spin
and charge qubits [1–3]. The fabrication of such devices
has been made possible by the recent progress in deter-
ministic positioning of dopants in crystalline silicon [4].
Coupled individual dopants in silicon represent one of the
most promising architectures proposed for the large-scale
universal quantum computer in solid state [5]. In order
to develop that potential into real-world applications, one
needs to provide a high-precision monitoring and control
over the physical parameters of the system. For the single
donor atom, combining scanning tunneling microscopy (STM)
measurements [6] with the tight-binding or effective-mass
modeling approaches has given rise to a spatial metrology
tool that allows determining the positions of dopants with
exact lattice site precision [6,7]. An alternative technique for
the noninvasive spatial metrology without a STM tip is based
on the microscopic modeling of three electrical measurements
on a single atom: hyperfine coupling, ground state energy,
and capacitive coupling to nearby gates [8]. Rich information
about the electronic structure of the donor atom coupled to
an electron reservoir may be also obtained using microwave
spectroscopy [9]. Detailed studies have also been carried out on
diatomic systems. In particular, the Stark effect and exchange
coupling have been studied in Refs. [10–12], respectively. In
Ref. [13] a method has been proposed to extract the tunnel
coupling between two clusters of a small number of donors
utilizing their different tunnel rates to a reservoir.
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Small dopant arrangements such as quantum dots, clusters,
and chains [13–15] have recently received a lot of interest.
More complex qubits can be encoded on systems of several
coupled impurities than on a single impurity and one can
potentially design more efficient coupling schemes between
them. Moreover, these qubits are more resilient to perturba-
tions from the environment. Until now multiqubit systems have
only been studied in the Heisenberg limit [16]. The valley
properties that we characterize here are fundamental for the
design of multiqubits systems implemented on many-body
states of interacting dopants.

Simulating the electronic structure of several interacting
dopants represents a computationally demanding multiscale
problem. The wave functions and energy spectra exhibit fea-
tures both related to nonuniform electron density distribution
within the unit cell and features extending up to 10 nm.
Therefore accurate modeling needs to cover lengths from
atomistic to mesoscopic scales. The problem is usually tackled
either by the tight-binding methodology [17] or by means
of the effective mass theory [18,19]. The first one is more
rigorous in treating atomistic details of wave functions, while
the effective mass theory requires less computational time and
has better scaling with the size of the system.

In silicon, the fast varying impurity potential gives rise
to valley-orbit coupling [20,21], which results in a spe-
cific valley composition for each bound state. The valley
composition of the ground state has practical implications
for valleytronics [22]. This new technology exploits the
valley composition of quantum states that can be read as
a momentum composition, as a new degree of freedom in
addition to spin and charge to control electric current. As
has been recently demonstrated, the information on the valley
composition of a single and of several coupled donors is
experimentally accessible by STM measurements [6,23]. An
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accurate interpretation of STM images of dopants usually starts
with computing their single-electron wave functions which
are employed in further analysis based on the quasiparticle
picture [24]. Also, these functions may serve as a basis set for
the configuration interaction method allowing us to compute
the many-electron wave function [25,26] or for the Hubbard
model that takes into account strong correlation phenomena in
coupled donor atoms [27].

The goal of this paper is to compute the single-electron
electronic structure and wave functions for several coupled
phosphorus donors. We focus on the effects of valley-orbit
coupling and valley composition of donor bound states as
well as on engineering such structures for classical and
quantum computations. The novelty of the work resides in
analyzing larger donor molecules, consisting of more than
two coupled donors, in different geometrical arrangements.
This is achieved by combining numerical techniques applied
at different scales: the finite-element method for large-scale
smooth envelope function computations, the density functional
theory with the projector augmented wave method (DFT-PAW)
for the atomistic-scale computations, and the linear variational
method for the fast-varying part of the impurity potential
leading to the valley-orbit coupling.

In Sec. II we start with the quasiparticle picture and extend
our formalism, based on the multivalley envelope function
representation [28], to a system of several coupled impurities.
In Sec. III A we describe the general properties of the
valley-orbit coupling in linear and planar dopant molecules.
As illustrative examples, we consider the electronic structure
of three coupled phosphorus donors, arranged in a linear
chain and in a triangular structure (Sec. III B), and of six
donors arranged in a hexagonal structure (Sec. III C). All
these structures are representatives of either linear or planar
molecules. For the triatomic structures, we focus on the
dependence of energy spectra on geometrical parameters and
compare results with the single-electron spectra of two coupled
phosphorus donors [29]. For the hexagonal structure we study
in detail the effect of molecular orientation relative to the
crystallographic axes of silicon and the effect of weak disorder
on the electronic structure. The results are summarized in
Sec. IV.

II. MODEL

Computing the electronic structure of the impurity atom
in crystal represents a many-body large-scale problem. The
computational complexity of the problem can be reduced using
the concept of a reference system [30]. A Green’s function of
the actual system is expressed in terms of Green’s functions
of a reference system via the Dyson equation (a good example
of an application of this concept is the Korringa-Kohn-
Rostoker method [30,31]). Thereby, one avoids repetitive com-
putations exploiting a set of precomputed Green’s functions
and considering the periodic potential of the silicon crystal
lattice as a reference potential.

We are interested only in stationary bound states of
impurity atoms and assume that their potential produce a
weak perturbation on the crystal lattice potential. In this case,
instead of computing nonlocal Greens’ functions explicitly
for a wide range of energies, we exploit the quasiparticle

concept, assuming that an impurity does not distort the
crystal lattice significantly, but only affects the low-energy
electron excitations. In this approach we seek only electron
quasiparticle energies and wave functions, information that
corresponds only to the local part of Green’s functions
computed using DFT theory with GW approximation [32].
Let us denote the quasiparticle state vectors for the conduction
band as |n,k0,k〉, where n is the band index, k0 determines
the valley occupied by the electron, and k is the wave vector
in the k space with origin in the point pointed by the vector
k0. The wave vector k is defined in a domain representing one
of six sectors of the Brillouin zone, each contains one of six
equivalent conduction band valleys. The Hamiltonian of the
electron quasiparticles in the presence of an impurity potential
reads

H =
∑

n,k0,k

εn,k0,ka
†
n,k0,kan,k0,k

+
∑

n,n′,k′
0,k

′,k0,k

〈n′,k′
0,k

′|V |n,k0,k〉a†
n′,k′

0,k
′an,k0,k, (1)

where a
†
n,k0,k and an,k0,k are the electron creation and

annihilation operators, εn,k0,k is the band structure, and
〈n′,k′

0,k
′|V |n,k0,k〉 is the matrix element of the potential

energy V = ∑
α V (r − rα) representing a sum over all impu-

rity potentials. The impurity potential V (r − rα) characterizes
a dopant atom placed at the position rα , and the index α

runs over all dopants. Since all quasiparticle properties are
obtained in the GW approximation, we will keep this level
of approximations and use the screened impurity potential
instead of computing high-order correlations explicitly. The
dielectric function responsible for the static screening is taken
from Ref. [33] where its analytical model has been derived
by Pantelides and Sah basing on numerical computations of
Nara [34].

The Hamiltonian (1) may be written in a matrix form com-
puting averages over all possible single-particle excitations
a
†
n,k′

0,k
′ |0〉. Its matrix elements reads

[H ]n′,n,k′
0,k0,k′,k = εn,k0,kδn′,nδk′

0,k0δk,k0

+
∑
k′

0,k
′
〈n′,k′

0,k
′|V |n,k0,k〉. (2)

The eigenvectors of matrix (2) are expansion coeffi-
cients in a linear combination of the bulk silicon quantum
states. It is convenient for further analysis to move from
the linear combination of bulk bands [35] to the enve-
lope function representation by the unitary transformation
U †(k0)U (k)HU †(k)U (k0) [28], where U (k) is the unitary ma-
trix with elements uG,n(k) representing the Fourier transform
of the periodic Bloch function un,k(r). The eigenvectors of
the Hamiltonian are the Fourier transform of the envelope
functions [F ]j = fj (k0,k). In this representation the real-
space quasiparticle wave function reads

ψ(r) =
∑
n,k0

fn(k0,r)un,k0 (r)eik0r, (3)

where fn(k0,r) is a slow varying Burt-Foreman envelope
function [36,37] of the impurity atom, defined for an energy
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band with the band index n and a region of the Brillouin
zone specified by the wave vector k0 (which is also the valley
index), un,k0 (r) is a periodic Bloch function. Each of six
valleys specified by the vector k0 can be also designated as
{−X,X,−Y,Y,−Z,Z} where the letters correspond to the
axes along which the isoenergetical ellipsoids of the valleys
are oriented.

Expression (3), called the envelope function representation,
is quite general and allows for both band mixing and valley
mixing [37]. The Hamiltonian (2) can be written in real-space
representation resulting in a system of infinitely many-coupled
Schrödinger equations. At this stage the problem is simplified
using the single-band approximation and k · p method that
eliminates the interband coupling. The resulting system of six
coupled differential equations reads [28][

Hkp(k0,k → i∇) +
∑

α

Vk0,k0 (r − rα)

]
f (k0,r)

+
∑

α,k′
0 �=k0

Vk′
0,k0 (r − rα)f (k′

0,r) = Ef (k0,r). (4)

The k·p procedure affects only the kinetic energy term
and does not affect the potential energy term. In Eq. (4) the
potential energy is expanded into two terms: one is diagonal
in terms of valley indices and the other is nondiagonal. The
equations for different valleys are coupled by the nondiagonal
potential energy term [28]

Vk0,k′
0
(r − rα) =

∫
dr′′u∗

n(k0,r′′)V (r′′ − rα)

× un(k′
0,r

′′)�k0 (r − r′′)ei(k′
0−k0)r′′

, (5)

where �k0 (r − r′′) is a low-pass filter function that results from
the inherent constraints imposed on the envelope function (see
Ref. [28] for the detailed derivation).

For the case k0 �= k′
0, the effective potentials are very

localized in the so-called central cell region. The central cell is
small enough that variations of the envelope functions within
that region can be neglected. Assuming that central cells
of neighboring dopants do not overlap, the integral may be
rewritten in the coordinate system where the origin is at the
nucleus of the dopant:

Vk0,k′
0
(r − rα) = ei(k′

0−k0)rα

∫
dr′′u∗

n(k0,r′′)V (r′′ − rα)

× un(k′
0,r

′′)�k0 (r − r′′)ei(k′
0−k0)(r′′−rα ). (6)

The periodic Bloch functions of bulk silicon in Eq. (6)
have been computed using DFT-PAW method implemented
in ABINIT software [38].

Unlike for the case of a single impurity (see discussion in
Ref. [28]), in a polyatomic system the phase factor ei(k′

0−k0)rα

in Eq. (6) plays a crucial role determining the oscillatory
dependence of the electronic structure on the internuclear
distances.

The integral (6) has been numerically computed using the
convolution theorem and fast-Fourier transform. The resulting
potentials are called the effective potentials [28]. They have
several properties which allow simplifying the problem. First,
at k0 = k′

0 they are similar to the Coulomb potential at dis-

tances far from the impurity nucleus, but, unlike the Coulomb
potential, they do not have a singularity point and they are
smooth at the nucleus. Thus, the effective potentials can be
computed once and stored for other computations, similarly to
the pseudopotentials in electronic structure computations for
crystalline solids.

Equation (4) with the effective potentials (6) has been
solved in two steps. First, we neglect coupling terms that lead
to a system of six independent single-valley envelope-function
equations. Details on the numerical method, applied for the
single-valley envelope function equation, are provided in
Appendix A. The solutions ϕj,k0 (r) form a full basis set for
each valley. We use these solutions as a basis set for the
linear variational method representing the unknown envelope
functions f (k0,r) as follows:

f (k0,r) =
∑

j

aj,k0ϕj,k0 (r). (7)

At the second step, substituting the expression (7) into
Eq. (4), we get a linear eigenvalue problem

BC = EC, (8)

where C is the vector of unknown expansion coefficients.
Strictly speaking, the sum in expression (7) should be

performed also over the valley index k′
0 which implies using a

nonorthogonal basis set for each envelope function equation. In
this case, Eq. (8) should be rewritten as BC = ESC, where S is
the overlap matrix. Although this is a more general formalism,
using such a nonorthogonal basis set does not improve the
accuracy significantly because the coupling potential is very
localized. The elements of the matrix B in Eq. (8) reads

B
i,j

k0,k′
0
=

{
Es

j,k0
δi,j , if k0 = k′

0,

M
i,j

k0,k′
0
, if k0 �= k′

0,
(9)

where Es
j,k0

is the eigenvalue of the single-valley envelope-
function equation

M
i,j

k0,k′
0
=

√
6

∑
α

ei(k′
0−k0)rα

×
∫

drϕi,k0 (r)Vk′
0,k0 (r − rα)ϕj,k′

0
(r). (10)

Since the effective potential for k′
0 �= k0 is localized within the

central cell and variations of the envelope functions within the
central cell can be neglected, Eq. (10) reduces to

M
i,j

k0,k′
0
=

√
6

∫
drVk′

0,k0 (r)

×
∑

α

ei(k′
0−k0)rαϕi,k0 (rα)ϕj,k′

0
(rα). (11)

This approximation is known as a contact-potential approx-
imation, and it has been proposed and successfully justified
by Friesen et al. for the silicon quantum wells [39] and
quantum dots [40]. The integral in expression (11) may either
be computed numerically from the first principles [28] or be
fitted to the experimental data for the single P donor in bulk
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silicon with two fitting parameters:

√
6

∫
drVk′

0,k0 (r) ≈ αδk0=−k′
0
+ βδk0⊥k′

0
, (12)

with α = −0.99 meV and β = −1.72 meV.

III. RESULTS

A. General properties of linear and planar P molecules in silicon

We begin by providing a general analysis based on
symmetry considerations that provide physical insights on
the numerical results. As was shown in Refs. [28,41], the
envelope function representation can be thought of as a linear
combination of states taken from energy bands of bulk silicon
combined with the k·p perturbation technique. For shallow
donors, the dominating terms in such a linear combination
are the quantum states of silicon taken from the vicinity of
six equivalent conduction band minima. For a single donor
atom, the valley population of each quantum state can be
explained using group theory analysis applied to the tetrahedral
symmetry of the central cell potential. Such a qualitative
analysis is confirmed by numerical computations based on
diagonalizing matrix B defined by Eq. (8).

In the case of several coupled donors, the symmetry of the
central cell is superimposed on the symmetry of the dopant
molecule which is reflected in envelope functions and the phase
factors in Eq. (11). Let us analyze Eq. (11) for two coupled
donors placed at the coordinates −x and x at the internuclear
axis oriented along the crystallographic axis [100] with the
internuclear distance l = 2x. To make the qualitative analysis
simpler, we consider the valley-orbit coupling only for the
orbits with indices j = i = 1 with an even envelope function
ϕ1,k0 (−x) = ϕ1,k0 (x).

It follows from Eq. (11) that, compared to the case of a
single donor, all matrix elements M

1,1
k0,k′

0
remain unchanged

except those involving valleys −X and X oriented along the
axes [100]. For those valleys, the coefficients read

M
1,1
k0={±X},k′

0 �={±X} = 2 cos(|k0|x)ϕ1,X(x)ϕ1,Y (x)

×
∫

drVk′
0,k0 (r) (13)

and

M
1,1
k0={±X},k′

0||k0
= 2 cos(|k0|l)|ϕ1,X(x)|2

∫
drVk′

0,k0 (r). (14)

The splitting of energy states that have components on
the valleys −X and X is characterized by an oscillatory
dependence on the internuclear distance. On the other hand,
states whose valley composition exclude these valleys have a
smooth dependence on the internuclear distance. This makes
the states composed from the valleys −X and X sensitive to
small variations in positioning of donor atoms relative to each
other. Also, by choosing the proper distance between donor
atoms, one may reduce the contribution of the valleys −X

and X to the ground state. This effect can be considered as a
resonance phenomenon when electron waves interfere at the
dopants in the molecules. It can be exploited to engineer the
valley composition of donor molecule quantum states. Let us
place a third P atom at the coordinate 0 to form a chain of three

dopants oriented along the axis [100] that has a symmetrical
envelope function relative to the center atom. In this case
Eqs. (13) and (14) are modified as follows:

M
1,1
k0={±X},k′

0 �={±X} = [ϕ1,X(0)ϕ1,Y (0)

+ 2 cos(|k0|x)ϕ1,X(x)ϕ1,Y (x)]

×
∫

drVk′
0,k0 (r) (15)

and

M
1,1
k0={±X},k′

0||k0
= [|ϕ1,X(0)|2 + 2 cos(2|k0|x)|ϕ1,X(x)|2]

×
∫

drVk′
0,k0 (r). (16)

In Eqs. (15) and (16) there is a large contribution in the
valley-orbit coupling from the constant term proportional
to the electron density at the nucleus of the central atom
|ϕ1,X(0)|2. The amplitude of the oscillations is proportional
to the electron densities at the leftmost and rightmost atoms
|ϕ1,X(±x)|2 of the triatomic chain. The value of |ϕ1,X(±x)|2
is smaller in the three-atomic chain than in the two coupled
atoms due to the normalization of the overall envelope function
which leads to a redistribution of electron density over all three
atoms. Thus, the dopant molecule may be engineered in a way
to reduce its sensitivity with respect to spatial disorder.

For a single donor atom, all six valleys contribute
equally into the ground state. Since the cosine factors in
Eqs. (13)–(16) take values from zero to one, the contribution
of ±X valleys into the ground state of two coupled donors
can only be reduced or remain unchanged compared to the
case of a single dopant. The contributions from several valleys
can be decreased simultaneously in planar molecules. For
instance, a rectangular dopant molecule formed by P donor
atoms with coordinates (−x,−y), (−x,y), (x,−y), and (x,y)
has the following valley-orbit coupling coefficients:

M
1,1
k0={±X,±Y },k′

0 �={±X,±Y } = 4
cos(|k0|x) + cos(|k0|y)

2

×ϕ1,X(x)ϕ1,Y (x)
∫

drVk′
0,k0 (r)

(17)

and

M
1,1
k0={±X,±Y },k′

0||k0
= 4

cos(2|k0|x) + cos(2|k0|y)

2

× |ϕ1,X(x)|2
∫

drVk′
0,k0 (r). (18)

In Eqs. (17) and (18) we have assumed that the ground
state envelope function has equal values at all four donor atom
nuclei placed in the plane perpendicular to the crystallographic
axis [001]. The fractions in Eqs. (17) and (18) can take values
in the interval from zero to one. Thus, by choosing a proper
positioning of donor atoms, we may totally filter out the valleys
±X and ±Y . In planar molecules with larger number of atoms,
it is nearly impossible to find such a configuration of atoms
that all phase factors equal one. Therefore, we may generally
conclude that the planar donor molecules are characterized
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FIG. 1. Electronic energy spectra for (a) and (d) three phosphorus donors arranged in a linear chain, (b) and (e) two phosphorus donors, and
(c) and (f) three phosphorus donors arranged in a triangular structure. (a)–(c) Solutions of single-valley problems neglecting the valley-orbit
coupling, while (d)–(f) are for results with the valley-orbit coupling taken into account. Both diatomic and triatomic linear molecules are
oriented along the crystallographic axis [100]. Numbers above curves indicate the degrees of degeneracy of corresponding energy levels. The
dotted line in (d) corresponds to the energy spectrum in (f) at b = 0. The red filled triangle in (f) designates the ground state energy that
corresponds to the wave function shown in Fig. 3.

by a strong polarization in favor of the valleys oriented
perpendicular to the plane of the molecule.

B. Three coupled donors

We begin by investigating the role of the VO coupling on
the electronic spectrum of triatomic dopant molecules (both
in linear and in triangular geometry) and compare it to the
diatomic case. We focus first on the energy spectra as a function
of the distance between the dopant atoms.

All panels in the upper row of Fig. 1 correspond to
computations where the valley-orbit coupling is neglected,
while it is taken into account in the results presented in the
lower row. Electronic energy spectra for three equally spaced
donor atoms aligned along crystallographic axis [100] are
shown in Figs. 1(a) and 1(d) as a function of the internuclear
distance. For comparison, we also show in Figs. 1(b) and 1(e)

the computed electronic spectra for a diatomic donor molecular
ion aligned along the same axis. Detailed information specific
to the diatomic donor molecular ion can be found in Ref. [29].
To analyze the electronic spectra of three donors arranged in
several triangle configurations we start with a linear structure
having an internuclear distance of nine lattice constants [this
point is marked as a dotted line in Fig. 1(d)] and move the
central atom perpendicular to the internuclear axis in the plane
(001) as is illustrated in Figs. 1(c) and 1(f). The dot markers
on all curves correspond to physical positions of the donors at
sites of the silicon crystal lattice. The small distortion of the
lattice caused by the impurities has been neglected. Placing the
impurities between sites of the crystal lattice has no physical
meaning, the lines connecting the dots are a guide to the eye
along a given energy level.

In Figs. 1(a) and 1(d) and in Figs. 1(b) and 1(e) the energy
spectra asymptotically tend to the spectrum of three and two
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independent donors, respectively. In both cases at a distance of
about 12 nm, the energy levels have not reached yet asymptotic
values and their energies continue increasing, although the
electronic coupling is small. This weak coupling is due to
long-range electrostatic coupling between impurities. For the
triatomic structures, the long-range electrostatic interaction is
more pronounced. It causes the splitting between the ground
state and the first excited state at large internuclear distances;
in the single-electron spectra, in the limit of uncoupled donors
the ground state is degenerate with a degeneracy equal to the
number of impurities.

In the triangle structures [Figs. 1(c) and 1(f)], the spectra
exhibit two asymptotes: one is for the single phosphorus donor
(upper manifold of states) while the lower states correspond
to the energy spectrum of the diatomic donor molecular ion
with the internuclear distance of 18 lattice constants. The upper
asymptotic manifold of states corresponds to the wave function
localized on a single donor. The splitting of this asymptote into
three bands instead of three exactly degenerate states, as is the
case for a single dopant, is due to the electrostatic coupling of
the dopant atom with the other two.

Comparing the energy spectra of Figs. 1(a)–1(c) and
Figs. 1(d)–1(f), we note that even when the valley-orbit
coupling is neglected, one observes a lifting of the sixfold
degeneracy that is due to the effective mass anisotropy (see
Fig. 1, the upper row). Since the diatomic and triatomic
linear structures have the same orientation relative to the
crystallographic axes, their spectra are quite similar. The
valley-orbit coupling partially removes the degeneracy of
the energy levels and leads to an oscillatory dependence of
some energy levels as a function of the internuclear distance
(see the discussion in the previous section). Which state
has an oscillatory dependence is determined by the orbital
symmetry of its envelope functions, valley composition, and
by the molecule alignment relative to the crystallographic axes.
The ground state is nondegenerate for all cases due to the
valley-orbit coupling at small internuclear distances and due to
the electronic coupling between impurities at large internuclear
distances.

The computed ground state electron densities and cor-
responding valley populations of three donors arranged in
linear and triangular geometries are shown in Figs. 2 and 3.
According to Eq. (11), the valley composition of each state
depends on the overlap of the corresponding single-valley
envelope function with the central-cell potential. Analyzing
the single-valley envelope functions shown in the lower panels
in Figs. 2 and 3, we conclude that due to the effective mass
anisotropy some envelope functions, associated with specific
valleys, are characterized by a better overlap with the Coulomb
potential of the donors and their central-cell potentials that
enhances the contribution from the corresponding valleys. As
a result, the ground state wave functions are characterized
by larger contribution from the valleys ±Y and ±Z for the
linear molecule (see Fig. 2), while in the case of the triangular
geometry the ground state is polarized in favor of the ±Z

valleys (see Fig. 3). In the linear molecule, the valleys ±X

have the smallest contribution because the electron effective
mass along the molecular axis for that valley is large and the
wave function is strongly localized with its maximum at the
central atom, while for all other valleys the effective mass

FIG. 2. (a) The ground state electron density for the linear
triatomic structure and (b) corresponding single-valley envelope
functions and valley compositions. The energy spectra of the linear
chain is marked by the dashed line in Fig. 1(d).

in that direction is small that leads to better overlap of the
single-valley envelope function with all three central cells.
In the triangle structure, there are only ±Z valleys, oriented
perpendicular to the plane of the triangle, whose envelope
functions have relatively large magnitudes at all three impurity
nuclei simultaneously.

In Fig. 4 we report on ionization energies and energy gaps
between the ground state and the first excited state, data that are
relevant for engineering physical implementations of qubits or
classical computations on phosphorus donors. The computed
ionization energy is larger for the triatomic linear structure
than for the diatomic donor ion since the latter corresponds to
a shallower potential well for the electron. However, the energy
gap between the ground state and the first excited state is about
the same for the two structures at internuclear distances from
1.5 to 6.6 nm. For distances up to 6.6 nm, the splitting between
energy levels is dominated by the valley-orbit coupling
implying that it depends on the overlap of the envelope
functions and the central cell potentials for all impurities
according to Eq. (11). Adding a new impurity in the system
brings a new central cell potential, however the magnitude of
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FIG. 3. (a) The ground state electron density for the triangular
structure and (b) corresponding single-valley envelope functions and
valley compositions. The energy spectra of the triangular molecule is
marked by the red triangle in Fig. 1(f).

the envelope function is redistributed over all impurities due
to its normalization. As a result, the total overlap integral is
almost unchanged. The situation is different at distances below
1.5 nm, where the value of envelope function at the central
cell is dramatically affected by an additional impurity placed
nearby in a nonlinear way. For distances larger than 6.6 nm, the
energy gap between the ground state and the first excited state
is also very sensitive to adding an additional impurity and is de-
termined by the weak electronic coupling [12] and long-range
electrostatic coupling of the positively charged phosphorus
nuclei.

The binding energy of three donors arranged in a triangle
structure is larger than the binding energy of the triatomic
linear chain at equal internuclear distances. For instance,
the ground state energy for the molecule whose shape is
close to an equilateral triangle with an edge length of 18
lattice constants (the base of the triangle is equal 9.77 nm and
b = 7.1 nm) equals −75.91 meV, while the ground state energy
of the triatomic linear molecule at an internuclear distance of
9.77 nm equals −70.01 meV.

FIG. 4. (a) Ionization energies and (b) energy gaps between
the ground state and the first excited state for the triatomic linear
structure of donors (red line with round markers) and the diatomic
structure (black line with rectangular markers).

C. Six coupled donors in hexagonal structures
and effect of disorder

We now turn to the case of six interacting dopants in a
hexagonal geometry. Since there are several ways to arrange
them with respect to the silicon crystal lattice, we use
a nomenclature that uniquely specifies the arrangement of
any number of impurities in a regular polygon structure in
the silicon crystal lattice. The nomenclature, for instance,
reads P613{100}: here the letter P stands for phosphorus, the
first index specifies number of impurities forming a regular
polygon, the next number indicates the total number of
atoms along one of edges, and the last index indicates a
crystallographic axis along which this edge is aligned. More
information on possible ways to arrange six atoms into a
regular hexagonal structure is given in Appendix B. Here we
focus on two particular hexagonal structures P613{100} and
P617{110}, which have almost equivalent edge lengths (6.52
and 6.14 nm, respectively), but different orientations relative
to the crystallographic axes of silicon.

205301-7



M. V. KLYMENKO, S. ROGGE, AND F. REMACLE PHYSICAL REVIEW B 95, 205301 (2017)

FIG. 5. (a) The ground state electron density for the hexagonal
structure formed by six donor atoms with an edge of the hexagon
aligned long [100] crystallographic axis and (b) corresponding single-
valley envelope functions and valley compositions.

As is shown in Figs. 5 and 6, in both hexagonal structures,
the population of Z valley (perpendicular to the plane) is more
pronounced than in the triatomic structure (see Fig. 3). The
polarization of Z valley is even larger in P617{110}. Comparing
to the triangle molecule, these examples show that the polariza-
tion in the favor of the valleys ±Z is growing with the number
of donors arranged in the plane perpendicular to the main
axis of the isoenergetic ellipsoid of the corresponding valley.
The limit of large number of coupled donors corresponds to
the case of Si:P δ-doped layers. For these structures, a strong
Z-valley polarization of lowest states (1	 and 2	 states in
the supercell 2D states classification) has been also reported
and elucidated by means of the planar Wannier orbitals with

FIG. 6. (a) The ground state electron density for the hexagonal
structure formed by six donor atoms with an edge of the hexagon
aligned long [110] crystallographic axis and (b) corresponding single-
valley envelope functions and valley compositions.

empirical pseudopotentials [42], supercell density functional
theory [43], and supercell tight-binding method [44].

The symmetry of six phosphorus donors arranged in
a hexagonal geometry exhibits richer valley interference
patterns than in the triatomic geometries discussed above. This
is due to a complex superposition of the six phase factors in
Eq. (11). As a result there is almost no degeneracies in the
energy spectra plotted in Fig. 7. The rotation of the hexagonal
structure relative to the crystallographic axes changes the
energy spectrum within a 5 meV range. The structure P617{110}
has a more pronounced band structure (groups of states of a
specific symmetry are separated by larger energy gaps). The
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FIG. 7. The energy spectrum six phosphorus donors arranged in
the hexagonal structures.

binding energies are larger in P617{110} than in P613{100} almost
for all energy states.

For all technological approaches, a deterministic position-
ing of impurities in silicon crystal lattice is always character-
ized by a spatial disorder. In the case of the hydrogen-resist
lithography, the position of impurities fluctuates within a single
lattice constant. To estimate the effect of spatial disorder
on single-electron energy spectra of hexagonal impurity
molecules we implement the following numerical experiment:
(1) first we arrange atoms in a regular structure, (2) then we
assign an integer number to all neighboring sites around an
impurity, zero is assigned to the impurity site itself, (3) at
the next step, the position of each impurity atom remains
unchanged or is randomly shifted to one of its neighboring sites
in the xy plane as defined by the random number generator,
(4) having a new arrangement of impurities we compute the
energy spectrum, and (5) starting from step one the whole
procedure is repeated 1000 times. Each one of the 1000 energy
spectra is plotted in Fig. 7 as a red thin line for P613{100} and
a blue thin line for P617{110}. The collections of lines form a
band whose width indicates the maximum absolute deviation
for each energy state.

The maximum deviation caused by an amount of spatial
disorder within a single lattice constant is 3 meV. Such
fluctuations of the positions of impurity atoms do not affect
significantly the envelope function, so the energies change
mostly because of changes in the valley-orbit coupling which
is more sensitive to relative positions of donors. Indeed, the
results of the simulation evidence that not all energy levels
have the same sensitivity to spatial disorder and the sensitivity
is determined by the valley composition. For instance, the two
lowest states are almost insensitive to small shifts of dopant
atoms in the xy plane, because they are formed mainly from
Z valleys.

IV. SUMMARY

We have theoretically investigated the single-electron elec-
tronic structure of polyatomic phosphorus donor molecular

structures embedded in silicon. The effects of the effective-
mass anisotropy and of the valley-orbit coupling lead to
the lifting of the sixfold degeneracy of the conduction band
minima observed in the bulk silicon. In a system of several
coupled phosphorus donors, the binding energy is increasing
with the number of donors and with shorter internuclear
distances. In the linear molecules, the energy splitting between
the ground state and the first exited state is almost independent
of the number of impurities for the range of internuclear
distances from 1.5 to 6.6 nm. As has been discussed above, at
the distances less than 6.6 nm the energy splitting is determined
by the effect of the valley-orbit coupling, while at the distances
larger than 6.6 nm the splitting is determined by the electronic
coupling and long-range electrostatic interaction.

The analysis of the planar molecules made of three and
six coupled donors indicates that the valley composition of
the ground state is polarized in favor of the valleys oriented
perpendicular to the plane of the molecule. The polarization
is enhanced with increasing the number of atoms forming the
planar molecule. Such a polarization decreases amplitudes of
the in-plane wave function oscillations caused by the valley
interference that, in turn, leads to reducing of the system
sensitivity to random displacements of dopants.

Changing the orientation of six donors arranged in the
hexagonal structure relative to the crystallographic axes results
in changes of the energy spectra within 5 meV.

For the hexagonal donor arrangements, we have investi-
gated the effect of in-plane random displacement of a phospho-
rus atom within a single unit cell. Such small displacements
lead to changes in the electronic energy spectra because in
donor molecules the valley-orbit coupling is very sensitive to
the relative position of the constituent dopants in the silicon
lattice. How much the energy of a given state is affected
therefore depends on its valley composition. Our simulation
shows that the change in energy of the states that are affected
most is less than 3 meV, which is smaller than the spacing
between the energy levels. The effect of spatial disorder is
significantly reduced for the states whose valley population
is polarized in favor of the valley whose isoenergetic ellipsoids
are aligned along the axis perpendicular to the plane of the
molecule.

FIG. 8. (a) An example of a generated mesh used in the
finite-element-method-based computations for six phosphorus donors
arranged in a hexagonal structure, and (b) orientations of the bulk
silicon isoenergetic ellipsoids relative to the molecular orientation.
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FIG. 9. Possible alignments of six donor atoms in a regular
hexagon structure in the crystallographic plane (001) of silicon (the
small gray spheres designate silicon atoms, the large color spheres
represent phosphorus impurities). Edge lengths equal 2a.
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APPENDIX A: SOLVING SINGLE-VALLEY ENVELOPE
FUNCTION EQUATIONS

The single-valley envelope-function equations, represent-
ing 3D partial differential equations, have been solved nu-
merically using the finite element method implemented in
FreeFem++ [45]. The partial differential equation is subject
to Dirichlet boundary conditions: we put the impurities in
the middle of a silicon box of cubic shape, and impose
ϕj,k0 (r)|
 = 0, where 
 is the boundary surface of the cube.
The size of the box has been chosen to ensure an exponential
decay of the envelope functions to zero before approaching the
box edges.

TABLE I. P6 hexagonal structures.

Deviation from
Edge a regular hexagon

Structure a b length (nm) (b/a − √
3)

P64{100} 1.5 2.5 1.629 −0.0654
P66{100} 2.5 4.5 2.715 +0.0679
P67{100}/P67{110} 3 5 3.258/2.30 −0.0654
P69{100}/P69{110} 4 7 4.344/3.07 +0.0179
P610{100} 4.5 7.5 4.887 −0.0654
P611{100}/P611{110} 5 9 5.43/3.84 +0.0679
P612{100} 5.5 9.5 5.973 −0.0048
P613{100}/P613{110} 6 10 6.516/4.61 −0.0654

The mesh has been generated using a 3D tetrahedral
mesh generator with a 3D Delaunay triangulator, called
TetGen [46], with about 80 000 elements. Since the effective
potential varies very fast around phosphorus nuclei we have
made the adaptation of the mesh density to the function
f (r) = ∏

j A exp(−α|r − rj |β), where A, α, and β are mesh
parameters. An example of the grid used in computations is
shown in Fig. 8 together with the orientations of the silicon
conduction-band isoenergetic ellipsoids relative to the edges
of the cube.

APPENDIX B: ALIGNMENT OF SUBSTITUTIONAL
IMPURITY ATOMS TO FORM A REGULAR

HEXAGON STRUCTURE

Since silicon has a face-centered diamond-cubic crystal
lattice, the exact arrangement of six substitutional impurities
into a regular hexagonal structure by substituting Si host
atoms is impossible. However, there are many approximate
arrangements close to that shape. As a measure of the
inaccuracy of each arrangement, we have chosen the ratio
between the line segments b and a shown in Fig. 9. For a regular
hexagon this ratio is equal to tan (60◦) = √

3. We consider two
possible orientations of the hexagonal structure in the plane
(001): one has an edge aligned along the axis [100], and other
has an edge oriented along the axis [110]. By minimizing b/a,
we have found a sequence of possible structures collected in
Table I. For each structure we use a nomenclature described
in Sec. III B. The table contains the first 12 possible structures
only.

In Sec. III B we consider in detail two hexagonal structures
P613{100} and P617{110} with approximately equal edge lengths.
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