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Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its
existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet
to be detected. In this paper we study a condensed matter realization of SUSY on the edge of a Read-Rezayi
quantum Hall state, given by filling factors of the form ν = k

k+2 , where k is an integer. As we show explicitly,
this strongly interacting state exhibits an N = 2 SUSY. This allows us to use a topological invariant—the Witten
index—defined specifically for supersymmetric theories, to count the difference between the number of bosonic
and fermionic zero modes in a circular edge. In this system, we argue that the edge hosts k + 1 protected zero
modes. We further discuss the stability of SUSY with respect to generic perturbations and find that much of
the above results remain unchanged. In particular, these results directly apply to the well-established ν = 1/3
Laughlin state, in which case SUSY is a robust property of the edge theory. These results unveil a hidden
topological structure on the long-studied Read-Rezayi states.
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Since its discovery, the quantum Hall effect has led to a
plethora of remarkable new physical phenomena. The integer
quantum Hall (IQH) effect [1], for instance, is a paradigmatic
example of noninteracting topological phases, characterized
by bulk topological invariants and gapless edge modes. The
strongly interacting fractional quantum Hall (FQH) states [2],
on the other hand, present even more striking properties,
such as the existence of fractionally charged anyonic bulk
excitations.

A subset of the fractional states are non-Abelian ones,
whose bulk excitations are non-Abelian anyons, and whose
edges realize nontrivial interacting conformal field theories
(CFTs). While the recent interest in non-Abelian phases
is mostly driven by their exotic bulk excitations and the
possibility of using them as resources in topological quantum
computation, these states are also a natural playground for
experimentally studying one-dimensional (1D) conformal
field theories (CFTs).

In this paper we will study the edge CFTs of Read-
Rezayi (RR) states at filling ν = k

k+2 . The simplest example
is given by the ν = 1/3 Laughlin state, corresponding to
k = 1, which constitutes the most prominent FQH state
[2]. RR states with k > 1, on the other hand, are widely
believed to be energetically unfavorable compared to other
competing states at the same filling factors in the lowest
Landau level. In the first excited Landau level, however,
numerical works indicate that the particle-hole conjugates of
these states may be the ground states in the corresponding
filling factors [3–19]. Indeed, the plateaus observed at ν =
5/2 and ν = 12/5 are strong candidates for realizing the
particle-hole conjugates of the k = 2 and k = 3 states. As we
will show, supersymmetry (SUSY)—a symmetry transforming
bosons to fermions and vice versa—emerges naturally in these
states.

In general, SUSY is a space-time symmetry which con-
stitutes the only possible extension of the Poincaré group
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consistent with the symmetries of the scattering matrix [20].
It has attracted attention given that it solves several open
problems in high-energy physics and cosmology [21–26]. In
particular, its existence implies that the strengths of the three
fundamental forces of the standard model unify at the same
energy scale [27]. Furthermore, if it is in fact a symmetry
of nature, it will provide natural candidates for dark matter
particles.

Despite its many features, the existence of this symmetry
has not been confirmed in high energy experiments so
far. This has recently sparked interest in realizing SUSY
in condensed matter systems. In particular, signatures of
space-time SUSY have been proposed at critical points in
topological superconductors [28–30], topological insulators
[31,32], and topological semimetals [33]. N = 1 SUSY has
been discovered in strongly interacting Majorana chains [34].
Recently [35], N = 2 SUSY was shown to generically exist
in translation invariant lattice systems with an odd number of
Majorana degrees of freedom per unit cell.

In this paper, we demonstrate that the low-energy descrip-
tion of the edge of RR states gives rise to an N = 2 SUSY,
generated by two fermionic charges Q1,Q2. Combining this
with the existence of conformal symmetry, we find that
the edge of our incompressible state realizes an N = 2
superconformal theory in 1+1 spacetime dimensions.

Once we establish the emergence of SUSY in our quantum
Hall system, we will turn to study its implications. To do
so, we will introduce the so-called Witten index, which is
a fundamental topological invariant measuring the number
of bosonic zero modes minus the number of fermionic zero
modes in a theory containing SUSY. While SUSY constrains
this difference to be zero for any finite energy, at exactly zero
energy the constraint is lifted. Being a topological invariant,
this index is highly stable and is in particular completely
independent of temperature.

We note that traditionally in the study of topological
phases, topological indices result from properties of the bulk
insulating phase and dictate the edge physics through the
bulk-boundary correspondence. The topological invariant we
study, on the other hand, is an explicit property of the gapless

2469-9950/2017/95(20)/205144(9) 205144-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.205144


ERAN SAGI AND RAUL A. SANTOS PHYSICAL REVIEW B 95, 205144 (2017)

edge theory itself, revealed by supersymmetry. We discuss
the possibility of understanding it from the point of view of
the bulk topological quantum field theory and highlight its
connection to the entanglement spectrum of a bipartition of
the state in the bulk. Intriguingly, while topological invariants
are generically defined for noninteracting symmetry protected
topological phases, supersymmetry provides us with tools to
define a topological invariant for the strongly interacting RR
states.

Clearly, any perturbation preserving supersymmetry does
not alter the above structure. As we will see, SUSY is a robust
property of the ν = 1/3 Laughlin state. However, in other
experimentally relevant states, given by filling factors of the
form 3 − k

k+2 , intermode interaction terms generally break
SUSY. However, imprints of SUSY may still be observed.
In particular, for weak SUSY breaking terms, the difference
between the number of bosonic and fermionic states near zero
energy is still given by the Witten index. Finally, we briefly
discuss the possibility of measuring the robust zero modes in
a small circular edge configuration.

I. THE SYSTEM

The system we study is made of a two-dimensional electron
gas in the quantum Hall regime. We will be interested in
studying fermionic RR states at filling ν = k

k+2 . However, for
pedagogical reasons, we start from a different system made of
two layers; the first contains bosons while the second contains
fermions.

Both layers are in the quantum Hall regime, and we fix their
densities such that the filling of the fermionic (bosonic) layer
is ν = 1 (ν = k/2). While such a fermion-boson double layer
system is beyond experimental reach, studying it will provide
a clear demonstration of the emergence of a supersymmetric
low-energy sector on the edge. Furthermore, as we will later
argue, the edge theory of realistic fermionic RR states can
be mapped to the supersymmetric theory on the edge of the
fermion-boson double layer. This will prove the existence of
SUSY on the edge of fermionic RR states.

Focusing first on the auxiliary fermion-boson double layer
system, we explicitly write the edge theories of the two layers.
The fermionic layer is made of the trivial ν = 1 IQH state,
whose edge contains a chiral free fermion field described by
the Hamiltonian

Hψ = −iv

∫
dxψ†∂ψ, (1)

with the usual anticommutation relations {ψ†(x),ψ(x ′)} =
δ(x − x ′).

The bosonic layer, on the other hand, is more complicated.
It is assumed to be in a bosonic RR state, whose edge realizes a
strongly interacting SU(2)k CFT with central charge c = 3k

k+2 .
The corresponding Hamiltonian is given by

HSU(2)k = v

4π (k + 2)

∫
dxJ · J , (2)

where the currents J z,J ± satisfy an affine Kac-Moody
algebra at level k [36]. Note that the Hamiltonians above
and throughout the text are assumed to be normal ordered.
A simple representation of these currents is given in terms of k

bosons ϕa , with J m = ∑k
a=1 Jm

a where

J±
a = e±i

√
2ϕa and J 3

a = 1√
2

∂ϕa

2π
, (3)

the bosonic degrees of freedom satisfy the commutation
relations

[ϕa(x),ϕb(x ′)] = iπδabsign(x − x ′). (4)

We emphasize that the above fields are chiral, as they appear
on the edge of a two-dimensional quantum Hall system.

The SU(2)k theory can be further decomposed into two
mutually commuting sectors: a U (1) charge mode with central
charge cU (1) = 1 and a SU(2)k/U (1) theory with cZk

= 2 k−1
k+2 ,

describing Zk parafermions, i.e.,

HSU(2)k = Hb
ρ + HZk

. (5)

This can be done by defining ϕa = 1√
k
ϕb

ρ + �da · �ϕσ , where the

k vectors �da (each of dimension k − 1) satisfy the relations

k∑
a=1

�da = 0,

k∑
a=1

dα
a dβ

a = δαβ, �da · �db = δab − 1

k
. (6)

The Hamiltonian describing the charge sector of the bosonic
RR state is given by

Hb
ρ = v

4π

∫
dx

(
∂xϕ

b
ρ

)2
. (7)

The neutral parafermionic sector is an inherently strongly
interacting CFT. In terms of the neutral bosons, we write the
Hamiltonian

HZk
= v

2π (k + 2)

∫
dx

⎡
⎣(∂x �ϕσ )2 +

∑
a �=b

ei
√

2( �da−�db)· �ϕσ

⎤
⎦. (8)

Indeed, the Hamiltonian HZk
describes a critical system,

whose low-energy sector coincides with the parafermionic
sector of our edge theory [37]. We emphasize that the above
bosonic representation is not unique but simply a useful one
[38]. In terms of the above, we can write the parafermion
operator as � = ∑

a e
√

2i �da · �ϕσ .
We can decompose the Hilbert space of the full fermion-

boson double layer into the following two mutually commuting
sectors: The first sector describes the total charge degrees of
freedom and is given by the Hamiltonian

HU(1) = k

k + 2
Hb

ρ + 2

k + 2
Hψ − Hint, (9)

with

Hint = v

2(k + 2)π

√
k

2

∫
dxψ†ψ∂xϕ

b
ρ. (10)

The remaining sector is governed by the Hamiltonian

HSUSY =HZk
+ k

k + 2
Hψ + 2

k + 2
Hb

ρ + Hint. (11)
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Note that Hdouble = Hψ + Hb
ρ + HZk

= HU(1) + HSUSY, with
[HU(1),HSUSY] = 0.

II. N = 2 SUSY AND THE FERMIONIC
READ-REZAYI EDGE THEORY

As we demonstrate in Appendix C, the Hamiltonian HSUSY

exhibits an N = 2 SUSY. This means that there exist two
independent fermionic currents G1,G2 satisfying the N = 2
superconformal algebra (shown explicitly in Appendix C). The
associated fermionic charges, generating the SUSY transfor-
mations (transforming bosons into fermions and viceversa),
are given by

Q1 = 1√
k + 2

∫
dx(ψJ + + ψ†J −), (12)

Q2 = i√
k + 2

∫
dx(ψ†J − − ψJ +). (13)

Note that Q
†
1 = Q1 and Q

†
2 = Q2. Being conserved charges,

they further satisfy [HSUSY,Qa] = 0, as can be verified
directly by using the (anti)commutation relations of the fields
ψ and J .

In the above analysis we focused on the auxiliary fermion-
boson system. Recall, however, that we are interested in a
fermionic RR state at filling ν = k

k+2 (without an additional
unrealistic bosonic subsystem). The Hamiltonian describing
such a fermionic RR system is similar to the one describing
the bosonic RR state. In particular, the neutral sector, described
by Eq. (8), remains unchanged. However, the charged degrees
of freedom are now described by the Hamiltonian

Hf
ρ = v

4π

k + 2

k

∫
dx

(
∂xϕ

f
ρ

)2
, (14)

where ϕρ is a boson field satisfying

[
ϕf

ρ (x),ϕf
ρ (x ′)

] = iπ
k

k + 2
sign(x − x ′). (15)

In terms of these, the electron operator is given by

ψ
†
el = �ei k

k+2 ϕ
f
ρ . This operator has a scaling dimension of

3/2 and a unit of electric charge. It can therefore be
thought of as a dressed version of the microscopic electron
field, which commutes with the nontrivial bulk Hamiltonian.
Remarkably, the full Hamiltonian describing the fermionic RR
state

HRR = Hf
ρ + HZk

(16)

can be mapped to the supersymmetric Hamiltonian HSUSY

studied in the fermion-boson auxiliary system.
To make a connection with the fermionic RR state, we

start from the fermion-boson auxiliary system and bosonize
the fermion operator by introducing an extra boson φ1,
satisfying ψ† = eiφ1 and [φ1(x),φ1(y)] = iπsign(x − y). In
terms of the bosonized fermion the Hamiltonian HSUSY

becomes

HSUSY = v

2(k + 2)π

∫
dx

⎡
⎣k

2
(∂φ1)2 − 2

√
k

2
∂ϕb

ρ∂φ1

+ (
∂ϕb

ρ

)2 + (∂ �ϕσ )2 +
∑
a �=b

ei
√

2( �da−�db)· �ϕσ

⎤
⎦. (17)

Introducing the new bosonic field

ϕf
ρ = k

k + 2

(
φ1 −

√
2

k
ϕb

ρ

)
, (18)

the Hamiltonian HSUSY reads

HSUSY = v

4π

k + 2

k

∫
dx

(
∂ϕf

ρ

)2

+ v

2(k + 2)π

∫
dx

⎛
⎝(∂ �ϕσ )2 +

∑
a �=b

ei
√

2( �da−�db)· �ϕσ

⎞
⎠

= Hf
ρ + HZk

, (19)

coinciding with the Hamiltonian of the fermionic RR edge
theory. It follows from the definition that [∂ϕ

f
ρ (x),ϕf

ρ (y)] =
2iπk
k+2 δ(x − y) so we identify this field with the charge mode of
the RR state.

We point out that the central charge of the auxiliary fermion-
boson double layer, given by cdouble = 3k

k+2 + 1, is larger than
the central charge of the fermionic RR state, cRR = 3k

k+2 .
Indeed, the auxiliary system consists of an additional total
charge degrees of freedom, given by

ϕtot = 1√
k + 2

(
φ1 +

√
k

2
ϕb

ρ

)
. (20)

However, this mode commutes with the Hamiltonian HSUSY

defined above. We therefore emphasize that the above mapping
is between the fermionic RR system and the neutral sector of
the fermion-boson double layer.

The above line of arguments shows that the well established
fermionic RR state possesses N = 2 supersymmetry. It is
worth noting that the results reported above for the edge of a RR
state are related to previous studies connecting parafermionic
CFTs with N = 2 superconformal theories [39–41].

III. SUSY AND ITS CONSEQUENCES

The presence of SUSY can be demonstrated explicitly
by writing two Hermitian fermionic conserved currents, G1

and G2, satisfying the superconformal algebra shown in
Appendix C. In the fermionic RR edge CFT, these two currents
take the form

G1 = 1√
k + 2

(ψ†
el + ψel),

G2 = i√
k + 2

(ψ†
el − ψel). (21)

Note, in particular, that the above results apply to the ν = 1/3
Laughlin state (see Appendix C for the details of this simple
case).
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By integrating over space, we get two fermionic charges,
Q1 and Q2, satisfying [42]

Q2
1 = Q2

2 = HSUSY, (22)

with {Q1,Q2} = 0, and HSUSY = H
f
ρ + HZk

, as shown ex-
plicitly in Appendix C.

We further define the complex supersymmetric current

operator G± = 1√
2
(G1 ± iG2) =

√
2

k+2 e
∓i k+2

k
ϕ
f
ρ �±. Intriguingly,

this fermionic current is given by the physical (annihila-
tion/creation) electron operator defined above (up to a mul-
tiplicative constant), which indeed has conformal dimension
3/2. The fermionic charge, generating the SUSY transforma-
tions, is given by the spatial integral of G.

The associated complex fermionic charge is given by

Q = Q1+iQ2√
2

=
√

2v
k+2

∫
dxψel . By definition, the complex charge

satisfies Q2 = (Q†)2 = 0 and can be used to write the
Hamiltonian in the convenient form

HSUSY = 1
2 {Q†,Q}. (23)

Applying Q on any bosonic state, consisting solely of density
excitations, generates a fermionic state with the same energy,
as a consequence of SUSY.

This simple structure allows us to study the ground state of
HSUSY. Here we follow the arguments presented in Ref. [43]
to define an appropriate topological invariant. From Eq. (23)
we see that [HSUSY,Q] = 0. This implies that for each bosonic
state |ξ 〉 with energy E > 0 [44], there is a fermionic state with
the same energy, given by |f 〉 ∼ Q|ξ 〉. To be more precise,
assuming a normalized state |ξ 〉, the normalized fermionic
partner of this state is given explicitly by |f 〉 = 1√

E
Q|ξ 〉.

For the zero energy states, on the other hand, the relation
between fermionic and bosonic states is broken, and one
generally has a different number of fermionic and bosonic zero
modes, as depicted schematically in Fig. 1. To characterize this
difference, it is useful to introduce the so-called Witten index
W = tr (−1)F , where F = 0 for a bosonic state and F = 1 for
a fermionic state. We note that a natural realization of W is

FIG. 1. A generic spectrum of a supersymmetric theory. States at
positive energies come in degenerate Fermi-Bose pairs, related by the
action of the SUSY charge Q. At zero energy, no such constraint exists
and the number of fermionic and bosonic zero modes can be different.
The difference between the number of bosonic and fermionic states
is called the Witten index W and constitutes a topological invariant.

given in terms of the angular momentum operator Lz, such that
(−1)F = exp(2πiLz). It is easy to see that the W operator
measures the difference between the number of bosonic and
fermionic states at zero energy, i.e., W = (NB − NF)E=0. For
our system this difference has been calculated in Ref. [45] and
is given by

W = (NB − NF)E=0 =
{

0 k odd
1 k even . (24)

As we argue below, this quantity is a topological invariant
characterizing the RR edge theory [43,45].

In order for the number of zero modes to change, a state
must change its energy from zero to some positive value, or
vice versa. However, since positive energy states come in Bose-
Fermi pairs, the change in the number of bosonic and fermionic
zero modes must be identical, meaning W must remain fixed
as long as SUSY is preserved. This prompts us to regard W as
a topological invariant.

The relation (23) can be used to show that the zero modes of
HSUSY are given by the states that satisfy Q|ξ 〉 = 0 but cannot
be written as |ξ 〉 = Q|χ〉 for some state |χ〉 �= 0 [43]. Clearly,
since Q2 = 0, any state of the form |ρ〉 ≡ Q|χ〉 is annihilated
by Q. Positive energy eigenstates |ξ 〉 of HSUSY which are
annihilated by Q can indeed be written as |ξ 〉 = Q|χ〉, with
|χ〉 = 1

2E
Q†|ξ 〉.

The zero modes |ρ〉 of HSUSY, on the other hand, are annihi-
lated by Q (this follows from 〈ρ|HSUSY|ρ〉 = 1

2 ||Q|ρ〉||2 = 0)
but cannot be written as Q times some other state. This is so
because if |ρ〉 = Q|μ〉, then the states |ρ〉 and |μ〉 have the
same energy E = 0 (as [HSUSY,Q] = 0). However, any state
of zero energy satisfies Q|μ〉 = 0, leading to a contradiction.

We refer to the space of solutions of Q|ξ 〉 = 0 as the Kernel
of the operator Q, or Ker(Q). Additionally, the space of states
which can be written as |ξ 〉 = Q|χ〉 for some state |χ〉 is
referred to as the image of the operator Q, or Im(Q). Using
these definitions, the number of zero modes is given by the
dimension of the space spanned by states belonging to Ker(Q)
but not to Im(Q), also referred to as the cohomology of the
operator Q [43]:

N = (NB + NF )E=0 = dim

(
KerQ

ImQ

)
. (25)

In our case, HSUSY can be obtained by a coset decompo-
sition of the Super-AKM algebra [41,46] of SU(2)k , into its
U (1) subalgebra, and the N = 2 SUSY sector SU(2)k/U (1).
The number of zero modes in this case is given by

N = k + 1, (26)

and is also known as the dimension of the chiral ring of the
SUSY system [45].

The above topological invariant W and the number of
zero modes N are associated with the edge of the quantum
Hall system but can be connected with properties of the
bulk through the bulk-boundary correspondence. In particular,
if we consider a bipartition in the quantum Hall system
(Fig. 2), we will find that the entanglement Hamiltonian
along the boundary of the bipartition is precisely given
by the Hamiltonian of the low-energy chiral edge theory
[47], which exhibits SUSY, and in particular displays W

and N as characteristics of the spectrum. This prompts us
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FIG. 2. Performing a cut in real space in the bulk of the quantum
Hall state, here displayed on the surface of a cylinder, reveals the
entanglement spectrum, given by the thermal density matrix of the
chiral edge theory. This indicates that edge invariants W and N can
be connected to characteristics of the bulk.

to expect that supersymmetry may arise directly from bulk
properties.

IV. PHYSICAL PERTURBATIONS

Being a symmetry which does not occur commonly in
condensed matter systems, it is natural to ask to which extent
SUSY is robust. For ν = 1/3, any perturbation within the
low-energy chiral Luttinger liquid theory merely renormalizes
the Fermi velocity. In this case, SUSY is indeed protected as
long as coupling to other low-energy degrees of freedom can
be neglected.

The particle-hole conjugate of the RR states in the excited
Landau level, given by ν = 3 − k

k+2 are prominent candidates
for describing the plateaus observed at ν = 5/2 and 12/5.
In these cases, the edge is described by three co-propagating
fermionic modes and one counterpropagating RR edge mode.
Density-density interactions between the RR edge mode and
the fermionic channels generally break SUSY. However, we
note that the zero modes associated with the parafermionic
sector remain unchanged, as the latter is charge neutral.
Furthermore, if the SUSY breaking perturbations are weak,
the overall shape of the spectrum should weakly deviate from
the supersymmetric spectrum presented in Fig. 1.

V. DISCUSSION

In this paper, we have shown that quantum Hall states at
filling ν = k

k+2 constitutes a condensed matter realization of an
N = 2 supersymmetric conformal field theory. This allowed
us to use the Witten topological index, defined specifically
for supersymmetric theories, to count the difference between
the bosonic and fermionic zero modes. We further discussed
the stability of the above against perturbations expected to
occur in a physical realization. Remarkably, SUSY was found
to be a particularly robust property of the Laughlin state at
filling ν = 1/3.

General arguments dictate that the bipartite entanglement
properties of the bulk of the system should also display
the SUSY. Given this connection, we expect that SUSY
invariants could be discovered directly from the bulk low-
energy topological field theory. The results presented here,
and in particular the presence of SUSY on the edge, provide
a strong indication that a supersymmetric bulk theory, such as
the one presented in Ref. [48], is indeed adequate to study the
low-energy physics of such quantum Hall states.

One can in principle measure the predicted zero modes
by creating a small circular edge, in which case the positive
energy states acquire an energy E ∝ 1/L, where L is the
circumference of the edge. Thus, the zero modes become
effectively isolated from the rest of the spectrum. If, in
addition, coupling to the external edge is taken into account,
the zero modes are generally expected to slightly deviate from
zero energy and can therefore be distinguished. Such coupling
terms decay exponentially as a function of the width of the
system and are therefore much smaller than the intraedge
separation of states. By measuring the energy spectrum in this
case, one can in principle observe the k + 1 zero modes.

It is interesting to consider if any of the ideas discussed
here can be generalized to other Abelian states. Given that the
electron field in a ν = 1/m theory has conformal dimension
m/2, the trivial generalization of taking those fields to be the
generators of supersymmetry clearly does not work. On the
other hand, the mathematical structure of such Abelian states
is similar, making it natural to expect the ideas presented here
extend to those states as well.
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APPENDIX A: FROM THE HAMILTONIAN
TO THE ENERGY-MOMENTUM TENSOR

In this section, we demonstrate how the Hamiltonian can be
obtained from the corresponding energy-momentum tensor. As
we will use the CFT formulation to demonstrate the existence
of N = 2 SUSY, the energy-momentum tensor will play a
central role in our discussion.

If we impose periodic boundary conditions in the x

direction (i.e., we take a circular edge), the coordinates τ and
x define a cylinder. As is well known, one can then apply
a conformal transformation that goes from the cylinder to a
plane:

z = e2π(vτ+ix)/L,

where L is the circumference of the edge. Time ordering on
the physical cylinder corresponds to radial ordering on the
transformed plane. While the resulting plane has no immediate
physical significance, working on it greatly simplifies the
analysis of conformal field theories.

Defining the stress-energy tensor T (z) on the plane, one
can extract the Hamiltonian according to

H = 2πv

L
L0 with L0 = 1

2πi

∫
C

dzzT (z),

where C is a circular contour going around the origin. The
connection to the physical cylinder is seen by performing the
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transformation from z to x (working in fixed time τ ) and
recalling that conformal fields transform according to

φ(z) → φ(x)

(
∂x

∂z

)h

.

For example, using the above, we will find that the
supersymmetric Hamiltonian HSUSY (11) obtained from the
auxiliary fermion-boson system corresponds to the zero mode
of the energy-momentum tensor (see also Sec. C)

TSUSY(z)= 1

k + 2

[
−k

2
(: ψ†∂ψ :− : ∂ψ†ψ :) − 2J 3 : ψ†ψ :

+ 1

2
(: J +J − : + : J −J + :)

]
(z), (A1)

where J 3,J ± are the SU(2)k currents defined in the next
section. As we will show in the next sections, this theory
exhibits an N = 2 superconformal algebra.

APPENDIX B: OPERATOR PRODUCT EXPANSION (OPE)

In this section we list the OPEs necessary to derive the
N = 2 SUSY algebra. Using the OPEs of a free complex
fermion and boson fields as building blocks, other relations
can be obtained. In particular, we explicitly show how the
OPEs of the SU(2) Affine Kac-Moody (AKM) algebra can be
represented in terms of bosonic vertex operators.

1. Complex Fermion

The OPE of a complex fermion is given by

ψ†(z)ψ(w) = 1

z − w
+ : ψ†ψ(w) :

+ (z − w) : ∂ψ†ψ(w) : + · · · , (B1)

where the ellipsis represent higher powers of (z − w). The
normal ordering of the field O is represented as usual by
the symbol : O : and corresponds to the substraction of all
the singular terms in the limit where the arguments coincide.
For future reference, we also include here the OPE of
Majorana fields, obtained from the complex fermion field by
ψ1 = (ψ† + ψ)/

√
2 and ψ2 = (ψ† − ψ)/

√
2i. The OPE of a

pair of Majorana fields takes the form

ψa(z)ψb(w) ∼ δab

z − w
+ : ψaψb(w) : +(z − w) : ∂ψaψb(w) :

(B2)

here the symbol ∼ means that both sides are equal up to higher
(positive) powers of (z − w).

An additional useful relation is

− : ψa∂ψa(z) : ψa(w) ∼ ψa(w)

(z − w)2
+ 2∂ψa(w)

z − w
+ · · · .

(B3)

2. Free Boson

The OPE between bosonic fields φa is given by
∂φa(z)∂φb(w) ∼ −δab/(z − w)2 + · · · . This corresponds to
the familiar commutation relation of bosonic fields in the
Luttinger liquid theory, expressed in the language of CFT [36].

Using this OPE and the Baker-Hausdorff-Campbell rela-
tion, the OPE between two vertex operators reads

eiαφa (z)eiβφb(ω) = 1

(z − w)−αβ
e(i(αφa (z)+βφa (w)))δab. (B4)

Using the Wick theorem and the OPE between bosonic fields,
it is also straightforward to show that

∂φa(z)eiαφb(w) ∼ −iα
eiαφa (w)

z − w
δab + · · · (B5)

and

− (∂φa(z))2eiαφb(w) ∼
(
α2 eiαφa (w)

(z − w)2
+ ∂(eiαφa (w))

z − w

)
δab + · · ·

(B6)

3. SU(2)k currents

The previous relations allow us to construct a representation
of the SU(2) Affine Kac-Moody (AKM) algebra at level
one. Defining J±

a = ei±√
2φa and J 3

a = i√
2
∂φa and using the

relations between vertex operators of bosonic fields discussed
above, we find

J 3
a (z)J 3

b (w) ∼ 1/2δab

(z − w)2
+ · · · , (B7)

J+
a (z)J−

b (w) ∼ δab

(z − w)2
+ 2J 3

a (w)δab

z − w
+ · · · , (B8)

J 3
a (z)J±

b (w) ∼ ±δabJ
±
a (w)

z − w
+ · · · . (B9)

Defining J 1 = (J+ + J−)/2 and J 2 = (J+ − J−)/2i, the
previous relations can be brought into the compact form

Jm
a (z)J n

b (w) ∼
(

1/2

(z − w)2
δmn + iεmnlJ l

a(w)

z − w

)
δab + · · · ,

(B10)

where the sum over repeated indices is assumed. The SU(2)
indices (m,n,l) run from 1 to 3 and εmnl is the Levi-Civita
antisymmetric tensor, which parametrizes the structure con-
stants of SU(2).

Adding k different mutually commuting currents, we obtain
a representation of the SU(2) AKM algebra at level k. To be
specific, defining J m = ∑k

a=1 Jm
a , we find

J m(z)J n(w) ∼ k/2

(z − w)2
δmn + iεmnlJ l(w)

z − w
+ : J mJ n(w) :

+ i

2
εmnl∂J l(w) + · · · (B11)

where we have included the first nonsingular term. In this
representation of the SU(2)k currents, the normal ordered
product appearing above is : J +J −(w) :≡ ∑

a �=b J+
a J−

b −∑
a(∂φa)2, and similarly for the other combinations.
For future use, it is useful to work in a basis of charge

and neutral degrees of freedom. This can be done by defining
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φa = 1√
k
ϕρ + �da · �ϕσ , with the �d vectors defined in Eq. (6) of

the main text. In terms of these, the currents take the form

J ± =
k∑

a=1

e±i(
√

2
k
ϕρ+√

2 �da · �ϕσ ) and J 3 = i

√
k

2
∂ϕρ. (B12)

When computing OPEs of a product of fields, it is generally
important to keep terms that, although are nonsingular within
a single OPE, multiplied by singular terms coming from other
fields could still give a nontrivial (i.e., singular) contribution.
An example of this occurs in the computation of the following
OPE

− (: ψ†ψ : J 3(z))([ψJ + + ψ†J −](w))

∼ ψ(z)J +(w) + ψ†(z)J −(w)

(z − w)2
+ ψ(z)

2
∂J +(w)

+ ψ†(z)

2
∂J −(w) + · · · (B13)

∼ [ψJ + + ψ†J −](w)

(z − w)2
+ [(∂ψ)J + + (∂ψ†)J −](w)

z − w

+ 1

2

[ψ∂J + + ψ†∂J −](w)

z − w
+ · · · , (B14)

where the top equation is obtained by using (B1) and (B11).
The bottom result is obtained expanding the fields at z in
Taylor series, i.e., ψ(z) = ψ(w) + (z − w)∂ψ(w) + · · · .

APPENDIX C: N = 2 SUPERCONFORMAL ALGEBRA

As we discussed in the main text, to explicitly show
the supersymmetric structure of the RR theory, we first
study an auxiliary fermion-boson double layer, whose edge
consists of a chiral fermion coupled to an SU(2)k CFT (which
corresponds to a bosonic Read-Rezayi state). Using the OPEs
introduced previously, we show that the neutral sector of this
fermionic + bosonic theory satisfies an N = 2 superconfor-
mal algebra. Finally, by bosonizing the fermion field, we
show that the neutral part can be mapped to the fermionic
RR edge CFT.

First, we identify the U (1) current associated with the total
charge in the boson-fermion double layer:

JU (1)(z) = 1√
k + 2

(J (z)+ : ψ†ψ : (z)). (C1)

The energy-momentum tensor associated with the total charge
degrees of freedom, TU (1), is given by the OPE of JU (1) with
itself. Clearly, the remaining part, TSUSY, of the total energy-
momentum tensor describes neutral degrees of freedom. It is
defined such that

Tf b = Tψ + T b
ρ + TZk

= TU (1) + TSUSY. (C2)

We therefore find that the energy-momentum tensor corre-
sponding to the neutral sector of the auxiliary theory is given

by

TSUSY(z)= 1

k + 2

[
−k

2
(: ψ†∂ψ :− : ∂ψ†ψ :) − 2J 3 : ψ†ψ :

+ 1

2
(: J +J − : + : J −J + :)

]
(z). (C3)

We will find below that the OPE between TU (1) and TSUSY is
nonsingular.

Using the OPEs outlined in the previous section, it is
possible to show that the energy-momentum tensor TSUSY

satisfies the full N = 2 superconformal algebra [41], which
reads

T (z)T (w) ∼ c/2

(z − w)4
+ 2T (w)

(z − w)2
+ ∂T (w)

z − w
, (C4)

T (z)Gα(w) ∼
3
2Gα(w)

(z − w)2
+ ∂Gα(w)

z − w
, (C5)

T (z)J (w) ∼ J (w)

(z − w)2
+ ∂J (w)

z − w
, (C6)

J (z)Gα(w) ∼ iεαβ Gβ(w)

z − w
, (C7)

J (z)J (w) ∼ c/3

(z − w)2
, (C8)

together with the OPE between the fermionic currents

Gα(z)Gβ(w) ∼
[

2
3c

(z − w)3
+ 2T (w)

z − w

]
δαβ

+ i

[
2J (w)

(z − w)2
+ ∂J (w)

z − w

]
εαβ, (C9)

where

G1(z) = 1√
k + 2

(ψ(z)J +(z) + ψ†(z)J −(z)),

G2(z) = i√
k + 2

(ψ†(z)J −(z) − ψ(z)J +(z))

are the two fermionic currents and J (z)= 2
k+2 [J 3(z)−

k
2ψ†ψ] is a U (1) current. The central charge here is
c = 3k/(k + 2). The tensor εαβ (α,β = 1,2) is antisymmetric
with ε12 = 1. In terms of the complex fermionic currents
G± = 1√

2
(G1 ± iG2), the relation (C9) reads

G−(z)G+(w) ∼
2
3c

(z − w)3
+ 2T (w)

z − w
− 2J (w)

(z − w)2
− ∂J (w)

z − w
,

(C10)

and G+(z)G+(w) ∼ G−(z)G−(w) ∼ 0. To illustrate the re-
sults above, we compute explicitly an example of the OPE
between two fermionic currents (here we use the shorthand
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notation A(z) ≡ Az)

G1
zG

1
w ∼ 1

k + 2
[ψzψ

†
wJ +

z J −
w + ψ†

zψwJ −
z J +

w ] ∼ 1

k + 2

(
1

z − w
+ : (ψψ†)w : +(z − w) : (∂ψψ†)w :

)

×
(

k

(z − w)2
+ 2J 3

w

z − w
+ : (J +J −)w : +i∂J 3

w

)
(C11)

+ 1

k + 2

(
1

z − w
+ : ψ†ψw : +(z − w) : ∂ψ†ψw :

)(
k

(z − w)2
− 2J 3

w

z − w
+ : J −J +

w : −i∂J 3
w

)
. (C12)

Here we have used the OPE of ψ†(z)ψ(w) given in (B1) and the one analogous for ψ(z)ψ†(w). The OPE between two SU(2)k
currents is given by (B11). Rearranging and keeping the singular terms, we find

G1(z)G1(w) ∼
2k

k+2

(z − w)3
+

2
k+2

z − w

[
−k

2
(: ψ†∂ψ : − : ∂ψ†ψ :) − 2J 3 : ψ†ψ : +1

2
(: J +J − : + : J −J + :)

]
(w),

where we recognize the first term on the right hand side of
(C6) with T = TSUSY (C3). All the other relations (C4)–(C8)
follow in a similar way.

1. An explicit analysis of the Laughlin state k = 1, ν = 1/3

The simplest and most prominent example of a FQH edge
theory endowed with N = 2 SUSY is the ν = 1/3 Laughlin
state. This filling fraction is realized in the RR series by
taking k = 1. In this case, the parafermion sector vanishes and
the theory becomes Abelian. To illustrate the general results
described above, we now explicitly demonstrate how they arise
this simple case. In particular, we show that the SUSY algebra
appears naturally in this case by making use of the vertex OPE.

The electron operator is given by ψ
†
el = e3iϕρ and the

fermionic current operator is given by G+ =
√

2
3 ψel. The OPE

of two supercurrent operators is then

G−(z)G+(w) = 2

3
ψ

†
el(z)ψel(w) = 2/3

(z − w)3
e3i(ϕρ (z)−ϕρ (w)),

where in the last equality we have used that ϕρ(z)ϕρ(w) ∼
1/3 ln(z − w). Expanding the difference in the exponent in
Taylor series around w, we have

G−(z)G+(w) = 2/3

(z − w)3
exp

⎛
⎝3i

∑
n�1

(z − w)n

n!
∂nϕρ

⎞
⎠

= 2/3

(z − w)3

(
1 + 3i(z − w)∂ϕρ

− 9

2
(z − w)2(∂ϕρ)2+ 3i

2
(z − w)2∂2ϕρ+ · · ·

)
(C13)

= 2/3

(z − w)3
+ 2(i∂ϕρ)

(z − w)2
+ 2(− 3

2 (∂ϕρ)2)

(z − w)

+ ∂(i∂ϕρ)

(z − w)
+ · · · (C14)

which corresponds to the expression (C10) for c = 1,
T (z) = − 3

2 (∂ϕρ)2, and J (z) = −i∂ϕρ . The different OPEs
that give rise to the full superconformal algebra (C4)–(C8)
can be obtained in a similar way.

2. Mode expansion

Using the previous OPEs, it is possible to find the
(anti)commutation relations between the different modes of
the fields. These modes are given in the Laurent expansion of
the fields, i.e.,

T (z) =
∑
n∈Z

Ln

zn+2
, Lm =

∮
0

dz

2πi
zm+1T (z)

G(z) =
∑
n∈Z

Gn

zn+ 3
2

, Gm =
∮

0

dz

2πi
zm+ 1

2 G(z)

J (z) =
∑
n∈Z

Jn

zn+1
, Jm =

∮
0

dz

2πi
zmJ (z). (C15)

The (anti)commutation relations between the different modes
are (in the Ramond sector)

[Ln,Lm] = (n − m)Ln+m + c

12
n(n2 − 1)δn+m

[Ln,Gm] =
(

n

2
− m

)
Gn+m

[Ln,Jm] = −mJn+m,
[
Jn,G

α
m

] = iεαβG
β
n+m,

[Jn,Jm] = c

3
nδm+n, (C16)

together with the commutation of the fermionic modes

{
Gα

n,Gβ
m

} = δαβ

(
c

3

(
n2 − 1

4

)
δn+m + 2Ln+m

)

+ iεαβ (n − m)Jn+m. (C17)

The combinations G±
n = 1√

2
(G1

n ± iG2
n) correspond to the

electron operator, which is also the fermionic current, with
anticommutation relations

{G+
n ,G−

m} = c

3

(
n2 − 1

4

)
δn+m + 2Ln+m + (n − m)Jn+m,

(C18)
and {G+

n ,G+
m} = {G−

n ,G−
m} = 0. The SUSY charge Q, defined

in the main text, corresponds to
√

2πv
L
G+

0 . Plugging this in, we
find that

1
2 {Q,Q†} = HSUSY. (C19)
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