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Tomonaga-Luttinger liquid and localization in Weyl semimetals
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We study both noncentrosymmetric and time-reversal breaking Weyl semimetal systems under a strong
magnetic field with the Coulomb interaction. The three-dimensional bulk system is reduced to many mutually
interacting quasi-one-dimensional wires. Each strongly correlated wire can be approached within the Tomonaga-
Luttinger liquid formalism. Including impurity scatterings, we inspect the localization effect and the temperature
dependence of the electrical resistivity. The effect of a large number of Weyl points in real materials is also
discussed.
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I. INTRODUCTION

The realization of linear band crossings in three dimensions
(3D) in the Weyl semimetals are sparking keen interest [1].
This lends credence to the concept of a Weyl fermion [2]
in the context of various condensed matter systems [3,4].
In principle, any solid-state realization should bear time-
reversal symmetry breaking (TRB) and/or inversion symmetry
breaking (IB) [5–9] so as to lift the Kramers degeneracy
and to generate nonzero Berry curvatures. The Weyl point
is interesting as a 3D counterpart of the two-dimensional (2D)
Dirac physics [10], which is also a topologically protected
monopole of the momentum-space Berry phase [11]. Among
others, the chiral magnetic effect [12] as a result of the chiral
anomaly [13–16] is observed as negative magnetoresistance
in Dirac/Weyl semimetals [17,18] once the chiral imbalance
of chemical potential is generated by parallel electric and
magnetic fields.

Some of the intriguing facets of Dirac/Weyl semimetals
mainly come from the unique Landau level formation, dissim-
ilar to that of quadratic electronic bands. The lowest Landau
level, a linearly dispersed chiral mode along the direction of the
magnetic field, is well separated from the higher levels by a cy-
clotron gap ∝ √

B, whose 2D variant has been vastly explored
in graphene [19]. A further stage is when the (ultra)quantum
limit is achieved [20], enabling the lowest Landau level to play
a major role in shaping the low-energy physics. In this limit,
the magnetic length lB = 1/

√
eB (setting h̄ = 1) becomes

shorter than the Fermi wavelength since the quantized orbit of
electrons shrinks with an increasing B and the lowest Landau
level possesses the majority of population [21]. Remarkably,
it implies a field-induced dimensional reduction [22,23] that
will strongly enhance correlations, hence the advent of the
(quasi-)1D system without electron quasiparticle excitations.
This connects to the long-lasting search for application of
the Tomonaga-Luttinger liquid (TLL) physics [24], including
semiconductor quantum wires [25,26], single-walled carbon
nanotubes [27–29], edge states in fractional quantum Hall
states [30,31], and 2D topological insulators [32,33], and
so on.

Because of the large cyclotron gap, it is expected and
confirmed that the Dirac/Weyl semimetals can be driven to the
quantum limit at lower magnetic fields than semiconductors
[20]. Due to the instability from electron correlations, one

possibility is the gap-opening or dynamical mass generation
[34] in the nominally massless semimetal as density waves are
formed [35]. Instead, in this study we will explore a different
scenario for Weyl semimetals at the magnetic quantum limit.

Two minimal models are considered and shown to be
closely related, corresponding to the predicted TRB py-
rochlore iridates [4] and the realized nonmagnetic and IB
transition metal monoarsenides/monophosphides [1,36–41].
We incorporate long-range Coulomb interactions and show
how the TLL state naturally emerges as a result of singling
out the chiral 1D channels by applying a magnetic field.
Adopting the coherent state basis of Landau levels, the 3D
system is transformed into a lattice of parallel quasi-1D wires
interacting with each other. Focusing on the on-wire effective
model, we investigate the localization effect due to impurity
scatterings. To facilitate experimental investigations, we derive
the temperature dependence of resistivity and show how the
relatively large number of Weyl points in materials affects the
properties.

II. WEYL SEMIMETALS UNDER STRONG MAGNETIC
FIELD

We start from two minimal lattice models of the form
h(�k) = ∑

i diσi with psuedospin σi , realizing the one-pair
TRB and the two-pair IB cases with dx = sin kx sin kz, dy =
sin ky sin kz, dz = (cos kz − cos k0) − 2(2 − cos kx − cos ky)
and dx = sin kx sin kz, dy = sin ky , dz = −(cos kz −
cos kL)(cos kz − cos kR) − 2(2 − cos kx − cos ky), respect-
ively. Based on the Landau quantization solution of a Weyl
Hamiltonian under magnetic field �B = Bẑ (see Appendix
A 1), one can obtain the 1D linear modes in Fig. 1, wherein
any two modes of the same value of velocity are related
by inversion or time-reversal symmetry in the TRB and IB
cases, respectively. As mentioned below, the TRB case can
be directly mapped to part of the more complex IB case; we
henceforth focus on the latter unless otherwise stated and use
the shorthand channel index κ = (j,r).

The Weyl points are not necessary to reside along a single
line for a IB material realization. Nonetheless, the model is
adequate to illustrate the key features. The situation in Fig. 1 is
general for a Weyl semimetal up to some reversal of chiralities
and pseudospins. Our theory does not directly rely on this
because, in the Landau level solutions, positions of Weyl points
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FIG. 1. 1D linear dispersions along kz. There are two [four] Weyl
points at ±k0 [±kR, ± kL] with topological charges denoted by ± for
the (a) TRB [(b) IB] case. We label 1D channels with chirality index
r = R/L, written as r = ±1 in the calculation, in both cases and
side index j = ±1 only in (b). |↑ / ↓〉 are pseudospin states. Two
modes at each side in (b) have unequal Fermi velocities vR �= vL > 0
in general.

in kx−ky plane do not enter the 1D dispersions but do enter
the spatial-part wave functions, reflecting the large degeneracy.
For the 1D modes, it is the momentum parallel to the quantizing
field that matters.

III. COULOMB INTERACTION

We then need to find the scattering processes. Except
for excluding pseudospin-flip scatterings, the merit of the
long-range Coulomb interaction mainly consists in the fact
that the scatterings accompanied by large momentum transfer
are negligibly small compared to those with nearly zero
transfer. Therefore, we can take into account four types
of forward scatterings without momentum transfer directly
connecting distinct 1D modes, viz., the Coulombic scatterings
〈κ,κi |Û |κ,κi〉ψ†

κψ
†
κi
ψκi

ψκ for a generic κ = (j,r) with κi

running over (j,r), (j, − r), (−j,r), (−j, − r) for i = 1,2,3,4.
This, however, overlooks the Landau level degeneracy, which
also plays an important role since the interaction depends on
both the energy dispersions and the wave functions.

In other words, each Weyl point, under a magnetic field
B, yields not one but many more linear modes of the number
of degeneracy proportional to B, which are identical to the
ones shown in Fig. 1. The degenerate subspace hereof can
be expanded using the over-complete set of coherent state
basis [42,43], which is constructed from the spatially localized
ground state wave function χ �R=0(�r⊥) = 1√

2πlB
e−�r2

⊥/4lB
2

by

displacing its center of orbit (guiding center) �R along a 2D
square lattice with spacing

√
2πlB , where �r⊥ is the coordinate

in the x-y plane.
As detailed in Appendix A 2, this approach to formulating

electron-electron correlations defined in real space provides
us an intuitive and transparent picture. Now electrons at these
coherent states are localized around the guiding centers in the
x-y plane but are relatively unconstrained to move along the
magnetic field (z axis), giving rise to many mutually parallel
quasi-1D wires of the number of degeneracy threading the 2D

lattice of �R. Each wire inherits four 1D modes in Fig. 1(b). The
salient point is that the scattering processes mentioned above,
which remain intact though, can now have both interwire and
intrawire ones.

One can then express the electron field �(�r) =∑
�Rκ χ �R(�r⊥)ψκ �R(z)βκ , where βκ is the pseudospin wave

function. The noninteracting Hamiltonian for all the 1D modes
is therefore given by H0 = ∑

κkz
�R εκ (kz)ψ

†
κ �R(kz)ψκ �R(kz)

with εκ (kz) = rvr (kz − jkr ). In the limit of strong mag-
netic fields lB → 0, using the asymptotic orthogonal-
ity of the coherent states [43], the interaction part
takes the form HI = 1

2

∑
�R �R′κκ ′

∫
dz dz′ kee

2/εrel√
(z−z′)2+( �R− �R′)2

×
ψ

†
κ �R(z)ψκ �R(z)ψ†

κ ′ �R′ (z
′)ψκ ′ �R′ (z′), wherein Coulomb’s constant

ke = 1
4πε0

, the vacuum (relative) permittivity is ε0 (εrel), and
�R replaces �r⊥ in the potential because of the transverse

confinement at strong fields.

IV. CHARGE-CHIRALITY SEPARATED BOSONIZATION

Next we bosonize this system of many interacting quasi-1D
wires [44,45]. As shown in Fig. 1(b), the opposite-chirality
modes do not share the same velocity, which is a bit unorthodox
for conventional bosonized fields combining two chiralities.
The physically transparent way out is to start from the chiral
boson field ϕκ that bosonizes a single Weyl fermion in (1 +
1) dimensions, i.e., any on-wire linear mode in Fig. 1(b) is
expressed as ψκ �R(z) = ϒκ

1√
2πα

eijkr ze
irϕκ

�R (z) in which α is the
lattice cutoff and ϒ is the Klein factor (omitted henceforth).
The details are documented in Appendixes A 3 and B 1.

Resembling the standard spin-charge separation, it is conve-
nient to separate the charge and chirality degrees of freedom
�ζ = (θρ,θχ ,φρ,φχ )T = 1

2 [ H −H

−H −H](ϕκ1 , . . . ,ϕκ4 )T, where H

is the Hadamard matrix. This block-diagonalizes the ac-
tion matrix in S = 1

2πβA⊥V

∑
p

�ζ †
pMp

�ζp such that Mp =
q2

4 diag(Mθ,p,Mφ,p) with Mθ,p = [
v+ v− − 2iω

q

v− − 2iω
q

v+ ], Mφ,p =
[
8Vg + v+ v− − 2iω

q

v− − 2iω
q

v+ ], wherein v± = vR ± vL, Vg = 2kee
2

εrelA⊥k2 ,

A⊥ = 2πlB
2 is the area of a unit cell of the guiding cen-

ter lattice, and x = (z, �R,τ ) = (�r,τ ) in real space with the
corresponding p = (q, �Q,ω) = (�k,ω) in energy-momentum
space. We assume the total volume of the system V = ��⊥
with the volumes of the ẑ direction and x-y plane being
� and �⊥, respectively. Note that the Coulomb interaction
enters the φρ-quadratic term since φρ is directly related to
the total particle density ρ = − 1

π
∇φρ . Following a similar

flow of construction, one observes that the TRB case with
two degrees of freedom, using the standard (φ,θ ) fields with
ϕr = −(φ − rθ ), has an action exactly mapped from the
previous Mφ,p with (Vg,v

+,v−,ω) → (Vg,4v,0, − 2ω).
We calculate in Appendix A 4 the electron Green’s function

Gκ (z,τ ) = −〈Tτψκ (x)ψ†
κ (0)〉 of an on-wire 1D mode κ for x =

(z,�0,τ > 0). At the noninteracting limit, it reduces to the free

Green’s function Gκ (z,τ ) = − eijkr z

2πα
[ α+vr τ−irz

α
]
−1

. For the long-
distance asymptotic behavior of the equal-time correlation,
Gκ (z,0) ∼ z−γ , where, as shown in Fig. 2(a), γ increases from
unity with vg = kee

2

2πεrel
characterizing the material-dependent
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FIG. 2. Exponents (a) γ and (b) η depend on vg and the number
N of opposite-chirality Weyl-point pairs. Left: TRB case (v = 1).
Right: IB case (vR = 3,vL = 1). Fermi velocities and the interaction
strength measured in vg are in units of kee

2

h
. γ = 1 and η = 2 for the

noninteracting case.

(via εrel) strength of the Coulomb interaction. Therefore, the
correlation decays faster than a free one, as expected for a TLL
since single-particle excitations are suppressed.

V. LOCALIZATION IN AN EFFECTIVE 1D WIRE

From now on, in order to take a direct look at the
1D physics emerged as a result of the strong magnetic
field, we derive an effective model for a particular wire.
In the path-integral formalism, aided by auxiliary Lagrange
multiplier fields [46], one can integrate out all the other
fields except the ones on the wire of interest, and thus arrive
at the 1D effective action S1D = 1

2πβ�

∑
�q �ζ †

�qM�q �ζ�q where
�q = (q,ω), M�q = diag(Mθ,�q,Mφ,�q), with Mφ,�q gaining
a complicated form shown in Appendix B 1. Because of
integrating out �Q up to the Brillouin zone boundary such
that Q∗2A⊥ = 4π , Vg in a way becomes a renormalized
vg′ = vg ln [1 − (iω−qv1)(iω+qv−1)

2q2v+vg
], appearing especially in the

estimation of the exponents. Certainly, these complexities
result from the Coulomb interaction between the wire of
interest and all the others.

For a purely 1D system with a long-range interaction, the
dimensionless Luttinger parameter Kρ , which includes the
interaction effects for the charge sector, would effectively
tend to zero due to the long-range divergence, leading to a
slower decay than power law in the correlation functions.
However, the presence of many 1D wires resultant from
the large degeneracy screens the Coulomb interaction, and
our system will not suffer from a similar divergence [47].
Indeed, denser packing of the wires gives rise to a larger
screening effect, as will be seen when we discuss the multipair
case.

In 1D, the effects of disorder and interaction are
both enhanced, and the resultant localization of electrons
should be much pronounced and manifest in observable
quantities. Therefore, it would be necessary and helpful
to see how the system is affected by the impurities. We

consider backward scatterings without reversing the side
index since the impurity potential is not to alter the
pseudospin state, i.e., one has the scattering term Himp =∫

dz Ṽ(z)
∑

j ψ
†
jR(z)ψjL(z) + ψ

†
jL(z)ψjR(z). After boson-

ization, this becomes Himp = ∫
dzV(z) cos φρ(z) cos

[θρ(z) + �kz] where �k = kR − kL, V(z) = Ṽ(z) 2
πα

, and a
Gaussian disorder with impurity density nimp and potential
Ṽ(z) = ∑

i V0δ(z − zi) is considered. The 1D localization
effect can be approached via the perturbative renormalization
group analysis, e.g., for spinless [48] and more complicated
spinful [49] cases. This starts from the delocalized phase
and cannot go deep into the localized phase above the scale
of the localization length L since it will flow to strong
coupling.

On the other hand, directly inspecting the massive localized
phase, the variational method should prevail. Indeed, based on
a charge-density wave picture [50], the phase field pinned
to the impurities competes with its quantum fluctuations
due to the “elastic term” of that field in the bosonized
Hamiltonian. A compromise is achieved when the phase
field adjusts to the random potential over L, which is much
longer than the average distance between impurities. Along
this line of thought, we adopt the self-consistent harmonic
approximation method [51] that is similar to the more general
variational theorem in the path-integral formalism [52]. Each
field variable is decomposed to a classical part responsible
for the compromised pinning and a quantum fluctuating
part. The impurity effects enter via introducing variational
mass terms dependent on L. This approach is good for very
repulsive fermion interactions [45], which is just suitable for
our situation.

Although, due to the influence from other wires, the effec-
tive 1D model becomes involved and lacks a straightforward
Hamiltonian form, it is still possible to evaluate the system’s
energy from the path integral, as shown in Appendix B 2.

Variationally, we find the localization length L ∝ Dimp
1

η−3

where, as one would expect, only Dimp = nimpV2
0 , which fully

characterizes the Gaussian disorder, appears. In the localized
regime η < 3, L remains finite. If η could go beyond 3,
there would be a delocalization transition. However, this is
not possible for our system with only Coulomb interactions
where η(v±,vg) decreases from 2 upon increasing vg from 0
to ∞ as shown in Fig. 2(b).

As pointed out by previous studies [48,49,53], the insulator-
to-metal transition happens when there is increasingly attrac-
tive interaction where superconducting fluctuations predom-
inate over disorder effects. In our Coulombic system, we
therefore can only observe the enhanced localization effect, in
agreement with another diagrammatic study [54] discussing
a tendency to localization led by interaction and disorder. It
is worth addressing that, although the TLL is induced by the
field, the exponent γ or η does not depend on B, dissimilar
to the quadratic band case where the Fermi velocity gains a
B dependence in the first place [43]. On one hand, in the
low-energy regime, we end up with an effective 1D model with
only the B-independent combination Q∗2A⊥ present. This is
not surprising because the guiding center representation we
introduced is in fact used at its continuum limit (lB → 0) . On
the other hand, this means that, up to the leading order effect at
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the strong-field limit, the system behaves in a way independent
of the field.

VI. TEMPERATURE DEPENDENCE OF RESISTIVITY

In order to relate the system to the most common mea-
surement technique, we study the temperature dependence
of transport. Instead of calculating the conductivity that is
inversely dependent on the scattering, a beneficial way is
to use the memory function method [55,56] and to directly
look at the resistivity, which corresponds to the diagramatic
expansion taking into account both the vertex correction
and the self-energy. Within the lowest order of coupling,
a particular merit in practice is that one can evaluate the
correlation function over the Hamiltonian free of disorder. By
calculating an imaginary-time force-force correlation function
G(τ ) = −〈TτF (z,τ )F (z,0)〉 wherein the force operator F =
[j,Himp] with the current operator j , we find out in Appendix C
that G(τ ) ∝ τ−η, whose Fourier transform G(ω) ∝ τ 1−η. Then
when the typical energy scale is set by the temperature ω ∼ T ,
the memory function M(ω) ∝ G(ω)−G(0)

ω
∝ β1−η

T
∝ β2−η and

hence we arrive at a temperature dependence of the resistivity,
ρ(T ) ∝ T η−2.

There exists two energy (temperature) scales in this system
[49,57], the localization temperature kBTloc = vF /L and the
discretization temperature kBTdis = vF nimp, where we use vF

to denote a typical Fermi velocity. Tdis is the borderline
of the correlation effect between impurities, above which
the single-impurity behavior prevails as a limiting resistivity
ρ(T � Tdis) ∝ nimp. For our TRB (0 < η < 2) or IB (1 <

η < 2) system residing in the localized regime, as the temper-
ature decreases, the resistivity will monotonically increase,
in contrast to the η > 2 case where nonmonotonic ρ(T )
could take place. Once the temperature traverses below Tdis,
the resistivity follows ρ(T ) ∝ T η−2 for the dense Gaussian
disorder situation, until the quantum interference from the
disorder becomes more and more important when T < Tloc,
i.e., divergent ρ(T ) ∝ T η−3 dominates at sufficiently low
temperatures [57]. Note that η < 2 due to the Coulomb
interaction as shown in Fig. 2(b).

VII. LARGE-N BEHAVIOR

Because of the point group symmetry in solids, exper-
imentally realized Weyl semimetals usually possess many
Weyl points. To bridge the gap between models and more
realistic scenarios, we consider the situation comprising copies
of our previous model. We use N to count the pairs of
opposite-chirality Weyl points in the first Brillouin zone. In
the same spirit, we consider a similar bosonization problem
of many quasi-1D wires with both intracopy and intercopy
Coulomb interactions included, followed by deriving the 1D
model of a single wire.

For the impurity effects, following the previous formalism,
we can take all the intracopy impurity scatterings into account.
By minimizing the total energy excess, we accordingly
obtain an N -dependent exponent ηN (v±,vg) that enters the
temperature dependence of resistivity (see Appendix D). On
the other hand, from the action expressed using the replica
method [58], we can make a Wilsonian analysis to develop the

first-order renormalization group equation for the impurity
strength Dimp. Both the intracopy and intercopy impurity

scatterings lead to the same form d Dimp(l)
dl

= (3 − ηN )Dimp(l).
This means, taking all the impurity scatterings into account,
the exponent will just be given by ηN .

It is important to note that all the previous conclusions
on Green’s function, localization, and resistivity also hold for
the TRB case with any N , while an even N is for the IB
case. Furthermore, as calculation shows, when v± = v and
N is the same, the two cases share the same γ or η. As
shown in Fig. 2, the multipair γN (ηN ) decreases (increases)
with N . γN increases from 1 and diverges asymptotically
proportional to

√
vg/N , while ηN ranges from 2 to 2 − 2/N

upon increasing vg from 0 to ∞. This can be understood
with the many-wire picture we rely on. When there are N

pairs, one has the freedom to place the corresponding guiding
center lattices in the x-y plane as uniformly as possible to
form sublattices of the original sparsest one. As previously
mentioned, the Coulomb interaction will be screened by
the wires resultant from any copy. Therefore, the denser
packing of the wires entails stronger screening and weaker
interaction effects. Hence, the exponent ηN , although it cannot
exceed its noninteracting value 2, approaches 2 more quickly
when N increases. And when the Coulomb interaction is
extremely strong, i.e., vg → ∞, the deviation, 2 − ηN , is
exactly inversely proportional to N .

VIII. DISCUSSION AND ESTIMATION FOR
EXPERIMENTS

We comment on the difference between the TLL in
Weyl semimetals and in other systems. One is the unique
dispersion structure in Fig. 1 for the noncentrosymmetric
Weyl semimetal associated with particular pseudospins and
unequal Fermi velocities for opposite chiralities. It leads to the
charge-chirality separated bosonization in Sec. IV. The second
remarkable feature is that the Green’s function exponent γ

is not directly related to the exponent η for localization and
resistivity, in contrast to the simple formula (Kρ + K−1

ρ )/2
in the standard case. This is because in the effective 1D
theory, due to the Coulomb interactions with other chiral wires,
the action S1D contains rather complex momentum-frequency
dependence [Eq. (B9) of Appendix B 1]. Furthermore, the
presence of many Weyl points has its unique role in the
exponent functions.

It is argued that the contribution from possibly present small
Fermi pockets can be disguised as the characteristic negative
magnetoresistance of Weyl semimetals [59]. Alongside, one
possible concern might arise for the reality of our system
when one considers linearizing around Fermi pockets in
normal metals. First, we emphasize that, compared with
normal metals, the dominance of the lowest Landau level
herein provides a natural realization of 1D linear dispersions
rather than the linearizing approximation. Consequently, we
mentioned that Fermi velocities and hence the exponents
no longer depend on the magnetic field. Second, the unique
structure of the linear modes and presence of multiple copies
of Weyl points are general for noncentrosymmetric Weyl
semimetals. They affect the form of the bosonized Hamiltonian
and hence the 1D effective model and accompanying exponent
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functions, which are the focus of our work. On the other
hand, arbitrary normal metals are in general hardly expected
to imitate the same situation with linearized small Fermi
pockets. In summary, we would regard the properties reported
here as predictions to be experimentally confirmed in known
Weyl semimetal materials, rather than decisive evidence for
identifying Weyl semimetals.

Finally, let us estimate the exponent of the Weyl semimetal
TaP, which, as known to date, might have the simplest stucture
of Weyl points and is beneficial to revealing the physics of
interest [38,41]. Among all the 12 pairs of Weyl points therein,
8 pairs well separated in momentum space off the kz = 0 plane
are found to locate at the chemical potential, while others lie
rather lower, possibly leading to only 8 pairs determining the
low-energy physics. We thus set N = 8 and take the typical
values of Fermi velocities and relative permittivity [41,60],
vR = 2 × 105 m/s, vL = 1 × 105 m/s, εrel = 10, and hence
vg = 0.35 × 105 m/s, and get ηN = 1.83. Experimentally, to
observe this, one should keep the temperature or frequency
lower than the cyclotron gap to assure the dominance of the
1D channels.
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APPENDIX A: WEYL SEMIMETAL WITH COULOMB
INTERACTION

1. A model Weyl semimetal under magnetic field

As a preliminary, let us first turn on an external magnetic
field �B = Bẑ for a general Weyl Hamiltonian

∑
i εi h̄kiσi ,

in which εi = ±1 and we assume a velocity equal to unity
for simplicity. To solve this, we resort to the commuta-
tion relation between gauge invariant mechanical momenta
[px,py] = −ih̄eB derived from Peierls substitution, h̄ki →
pi = −ih̄∂i + eAi , i = x,y. Resembling a harmonic oscil-
lator, one can define b = (px − ipy)/EB and b† = (px +
ipy)/EB satisfying [b,b†] = 1 where EB = √

2h̄eB. Then the
two-by-two Hamiltonian can be easily solved, giving rise to
eigenenergy En = ±

√
nEB

2 + Ez
2, n � 1 with Ez = h̄kz. In

addition to this, we get one more intriguing zero mode that
is essential to the chiral anomaly, E0 = −χEz, which does
not shift with respect to the external magnetic field. The
charge of the Weyl point is given by [11] χ = sgn[ε1ε2ε3] and
the pseudospin part of wave function reads |↓〉 = (0,1)T or
|↑〉 = (1,0)T for ε1ε2 = ±1, respectively. Also, the separation
between eigenenergies scales as

√
B instead of linear in B for

the quadractically dispersed electrons. The major consequence
is that, in the presence of an external magnetic field, a 1D
linearly dispersed mode along the ẑ direction is created, whose

separation from other higher-energy eigenstates is larger than
that of quadratic electrons. This suggests that, by turning on
an adequate magnetic field, one can drive the Weyl fermion
system to the quantum limit and the low-energy physical
properties will depend mainly on the 1D mode singled out.

Let us exemplify with the noncentrosymmetric Weyl
semimetal model presented in the main text, which has the
mimimum of Weyl points according to the Nielson-Ninomiya
theorem. It is straightforward to get the low-energy Weyl
Hamiltonians of the form ��k · �σ around the four Weyl points
(0,0, − kR), (0,0, − kL), (0,0,kL), (0,0,kR) from left to right
along the kz axis, whose �d vectors read

(− sin kR�kx,�ky, cos kRL sin kR�kz),

(− sin kL�kx,�ky, − cos kRL sin kL�kz),

(sin kL�kx,�ky, cos kRL sin kL�kz),

(sin kR�kx,�ky, − cos kRL sin kR�kz),

respectively, wherein cos kRL is a shorthand for cos kL −
cos kR and these momenta are the deviations from the
corresponding Weyl points. For any corresponding Weyl
Hamiltonians hκ (�k), the zero-mode eigenenergy and wave
function under the magnetic field are

εκ (kz) = rvr (kz − jkr ) (A1)

and

ϕ̃kz

κ (z) = 1√
�

ei(kz−jkr )zβj (A2)

wherein βj=∓1 = |↑ / ↓〉 and � is the system length along ẑ

direction.

2. Coulomb interaction between quasi-1D wires

For the 1D linear modes singled out by an external magnetic
field, we classify the possible scattering processes due to
the Coulomb interaction. Consider a Coulombic two-body
scattering 〈1,2|Û |4,3〉c†1c†2c3c4 from electron states labeled
as 4,3 to 1,2, one can find all the possible processes, for a
fixed state κ1 = (j1,r1) of electron 1, by listing all the cases
of ε

j/r

i = ±, i = 4,2,3, which are defined by j1 = ε
j

4 j4 =
ε

j

2 j2 = ε
j

3 j3 and r1 = εr
4r4 = εr

2r2 = εr
3r3. This will include

forward scatterings, backward scatterings, and Umklapp scat-
terings at special fillings. It can also be reorganized to meet
the current algebra classification used for Hubbard rung chains
[61] except that we do not need to include spin-dependent
scatterings in the current problem. The four types of forward
scatterings in the main text can be denoted by (εj

4 ,ε
j

2 ,ε
j

3 ) and
(εr

4,ε
r
2,ε

r
3):

(1) (+, + ,+) (+, + ,+),

(2) (+, + ,+) (+, − ,−),

(3) (+, − ,−) (+, + ,+),

(4) (+, − ,−) (+, − ,−).

(A3)

In addition to this, we need to handle the Landau level
degeneracy. By displacing the center of orbit �R, one can get
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other eigenstates of an annihilation operator,

χ �R(�r⊥) = 1√
2πlB

e−[(�r⊥− �R)2+2i�r⊥× �R]/4lB
2

(A4)

where �r⊥ is the coordinate in the x-y plane. These are just the
coherent states localized around �R. We can use this basis to
expand the electron field operator

�(�r) =
∑

�R
χ �R(�r⊥)ψ �R(z), (A5)

in which the on-wire electron field is expressed using four
possible 1D modes,

ψ �R(z) =
∑

κ

ψκ �R(z)βκ. (A6)

Similarly, one can also define �(�r) = ∑
κ �κ (�r), in which the

electron field of mode κ is

�κ (�r) =
∑

�R
χ �R(�r⊥)ψκ �R(z)βκ. (A7)

Conventionally, the on-wire electron field of a particular
mode κ has its Fourier expansion ψκ �R(z) = 1√

�
eikzzψκ �R(kz).

For conciseness, here we stick to κ to distinguish different
1D modes although the pseudospin wave function β only
depends on the side index j . An important aspect of the
coherent states is that they are not orthogonal, albeit over-
complete. Instead, one can attain an asymptotic orthogonality
〈χ �R(�r⊥)|χ �R′(�r⊥)〉 → 2πlB

2δ2( �R − �R′) when lB → 0 while for
a discrete lattice of �R it becomes 〈χ �R(�r⊥)|χ �R′(�r⊥)〉 → δ �R, �R′ .
We will use this relation to arrive at the quasi-1D bosonized
Hamiltonian in the following. This corresponds to the limit
of strong magnetic fields such that the magnetic length lB is
much smaller than the characteristic | �R − �R′|, which should
be valid for the long-range interaction we consider. In terms of
this, the Coulomb potential admits an approximation U (|�r −
�r ′|) = e2

|�r−�r ′| = e2√
(z−z′)2+(�r⊥−�r ′

⊥)2
≈ e2√

(z−z′)2+( �R− �R′)2
, where �r⊥

is replaced by the guiding center �R since the deviation
away from the wire is negligibly small due to the transverse
confinement. We will refer to this as U (z−,R−) wherein
z− = z − z′, �R− = �R − �R′.

From Eq. (A1), the noninteracting Hamiltonian for all the
1D modes is given by

H0 =
∑
κ �R

∫
dz ψ

†
κ �R(z)εκ (−i∂z)ψκ �R(z)

=
∑
κkz

�R
εκ (kz)ψ

†
κ �R(kz)ψκ �R(kz). (A8)

With Eq. (A5) and the asymptotic orthogonality, the Coulomb
interaction part of the Hamiltonian takes the form (up to
unimportant chemical potential terms)

HI = 1

2

∫
d�r d�r ′U (|�r − �r ′|)�†(�r)�(�r)�†(�r ′)�(�r ′)

= 1

2

∑
�R1 �R2 �R3 �R4

∫
dz dz′U (|�r − �r ′|)〈χ �R1

(�r⊥)
∣∣χ �R4

(�r⊥)
〉

× 〈
χ �R2

(�r ′
⊥)
∣∣χ �R3

(�r ′
⊥)
〉
ψ

†
�R1

(z)ψ �R4
(z)ψ†

�R2
(z′)ψ �R3

(z′)

=1

2

∑
�R �R′

∫
dz dz′U (z−,R−)ψ†

�R(z)ψ �R(z)ψ†
�R′(z

′)ψ �R′(z′).

(A9)

Then, using Eq. (A6), one can further reduce it to

HI =1

2

∑
�R �R′

∫
dz dz′U (z−,R−)

∑
κ1κ2κ3κ4

〈
βκ1

∣∣βκ4

〉

× 〈
βκ2

∣∣βκ3

〉
ψ

†
κ1 �R(z)ψκ4 �R(z)ψ†

κ2 �R′ (z
′)ψκ3 �R′(z′)

=1

2

∑
�R �R′

∫
dz dz′U (z−,R−)

×
∑
κκ ′

ψ
†
κ �R(z)ψκ �R(z)ψ†

κ ′ �R′(z
′)ψκ ′ �R′(z′), (A10)

wherein the inner products between pseudospin states are
evaluated for the four types of scatterings [Eq. (A3)] we
mentioned.

3. Bosonization

Now we are ready to study the system of many interacting
quasi-1D wires through the bosonization method. As noted in
the main text, in order to handle the unequal chiral velocities,
we make use of the more original chiral boson field ϕκ = ϕj,r

that bosonizes a Weyl fermion in (1 + 1) dimensions. One has
the commutation relation for the same wire,

[∇ϕκ (z),ϕκ (z′)] = i2πrδ(z − z′), (A11)

and the electron density

ρκ = 1

2π
∇ϕκ, (A12)

in which the wire index �R is omitted.
Henceforth, as suggested by the aforementioned strong-

field limit lB → 0, we will rely on the continuum expressions
for the guiding center lattice �R, i.e.,

∑
�R = 1

A⊥

∫
d �R. Then the

bosonized form of Eq. (A8) becomes

H0 = 1

4π

∑
κ �R

∫
dz vr

(∇ϕκ
�R
)2

= 1

4πA⊥

∑
κ

∫
d�r vr

(∇ϕκ
�R
)2

= 1

4πA⊥V

∑
κ �k

vrq
2ϕκ

�k ϕκ

−�k, (A13)

where the gradient operator only applies to coordinate z

henceforth. On the other hand, the interaction part (Eq. (A10))
can be divided to four parts HI = ∑

i Hi with

Hi = 1

2

∑
κ �R �R′

∫
dz dz′U (z−,R−)ρκ

�R(z)ρκi

�R′(�r ′)

= 1

2

1

(2π )2

∑
κ

1

A2
⊥

∫
d�r d�r ′U (z−,R−)∇ϕκ

�R(z)∇ϕ
κi

�R′(z
′)
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= 1

2

1

(2π )2

∑
κ

1

A2
⊥π

∑
q, �Q

4πe2q2

q2 + Q2
∇ϕκ

�k ∇ϕ
κi

−�k

= g

4πA⊥V

∑
κ �k

q2

k2
∇ϕκ

�k ∇ϕ
κi

−�k, (A14)

in which g = 2e2

A⊥
and Eq. (A12) and the Fourier transform of

the Coulomb potential are used in the second and the third
equalities, respectively. The index i signifies the ith scattering
in Eq. (A3) and accordingly κi = (j,r), (j, − r), (−j,r),
(−j, − r) for i = 1,2,3,4 respectively. Using Eq. (A11), we
are ready to write down the action of this system in Euclidean
spacetime:

S =
∑

κ

∫ β

0
dτ d�r −ir

4π
ϕκ (�r,τ )∂τ∇ϕκ (�r,τ ) +

∫ β

0
dτ H

= 1

4πβA⊥V

∑
κ,p

{
− irqωϕκ

−pϕκ
p

+ q2

[(
vr + g

k2

)
ϕκ

−pϕκ
p + g

k2

∑
i=2,3,4

ϕκ
−pϕκi

p

]}

= 1

4πβA⊥V

∑
p

�ϕ†
pWp �ϕp, (A15)

wherein �ϕ = (ϕκ1 , . . . ,ϕκ4 )T and the Fourier expansion is
defined as ϕ(�r,τ ) = (βV )−

1
2
∑

�k,ω ϕpei(�k·�r−ωτ ). The action
matrix

Wp = q2

⎡
⎢⎢⎣

VR − z
q

Vg Vg Vg

Vg VL + z
q

Vg Vg

Vg Vg VR − z
q

Vg

Vg Vg Vg VL + z
q

⎤
⎥⎥⎦ (A16)

with Vg(k) = g

k2 , Vr = vr + Vg , and z, which can equal iω for
instance, is a generic complex frequency not to be confused
with the coordinate z in real space. Note that we have used
the fact that ϕ(�r,τ ) is real. This can be block-diagonalized by
transforming to new fields,

�ξ = (θR,θL,φR,φL)T = 1

2

[
I −I

−I −I

]
�ϕ, (A17)

upon which the action becomes

S = 1

2πβA⊥V

∑
p

q2

[
[θR,θL]−p

[
vR − z

q
0

0 vL + z
q

][
θR

θL

]
p

+[φR,φL]−p

[
2Vg + vR − z

q
2Vg

2Vg 2Vg + vL + z
q

][
φR

φL

]
p

]
.

(A18)

On the other hand, for the TRB case, working in the standard
(φ,θ ) fields with ϕr = −(φ − rθ ), we have

S = 1

2πβA⊥V

∑
p

q2[φ,θ ]−p

[
2Vg + v z/q
z/q v

][
φ

θ

]
p

.

(A19)

Transformation (A17) is nothing but combining fields of
different side index j ,

θr = 1
2 (ϕ1,r − ϕ−1,r ), φr = − 1

2 (ϕ1,r + ϕ−1,r ), (A20)

which is useful in the current problem since 1D modes with
only different side index j share the same velocity, in much the
same way as chirality index r does in the standard case where
opposite-chirality fields are combined. The new commutation
relations read

[∇θr (z),θ r (z′)] = [∇φr (z),φr (z′)] = iπrδ(z − z′). (A21)

It is worth noting that, compared with the more standard action
of the simplest bosonization case, the Berry phase term in
Eq. (A15) or (A18) appears in the diagonal and is half of
the value expected from the corresponding commutation rule,
Eq. (A11) or (A21). This is because a chiral boson field and
its spatial derivative are not independent.

4. Green’s function

In this subsection, let us calculate the Green’s functions
of the chiral electrons. Feeding the new bosonic fields given
in Eq. (A20), we have the electron Green’s function of 1D
mode κ ,

−Gκ (x) = 〈Tτψκ (x)ψ†
κ (0)〉

= eijkr z

2πα
〈Tτ e

ir(jθr−φr )(x)e−ir(jθr−φr )(0)〉

= eijkr z

2πα
e− 1

2 〈[θr (x)−θr (0)]2+[φr (x)−φr (0)]2〉e±iπ�(−τ ),

(A22)

where we use the Debye-Waller formula for quadratic action
and the fact that θ and φ fields are decoupled. The exponential
with a Heaviside step function �(−τ ) can be dropped since
we will simply focus on the τ > 0 case. In addition, we
only consider the correlation on a particular wire and set
�R = 0 without loss of generality, i.e., x = (z,�0,τ ). After

lengthy calculations presented in Appendix A 4 a, we obtain
the electron Green’s function

−Gκ (z,τ ) = 〈Tτψκ (x)ψ†
κ (0)〉 = eijkr z

2πα

[
α + vrτ − irz

α

] −1
2

×
∏
λ=±

[
α + τ

2 (w∗ + λv−) − irz

α

]− 1
2

4V ∗
g +v++λrw∗

2w∗

,

(A23)

where w∗ =
√

v+(8V ∗
g + v+), V ∗

g = g

Q∗2 . At the

long-distance (z � α) limit, Gκ (z,0) ∼ z−γ where

γ = 1
2 (1 +∑

λ=±
4V ∗

g +v++λrw∗

2w∗ ) = 1
2 (1 + 4V ∗

g +v+

w∗ ) > 1. On
the other hand, if one only wants to extract the correct γ value
instead of some concrete form of the general Green’s function,
one can turn to another approach, sketched in Appendix A 4 b.
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a. General form

We can invert the action Eq. (A18) to get the propagators

〈
θr
−pθr

p

〉 = πβA⊥V
1

−rq(z − z0r )
,
〈
φr

−pφr
p

〉 = πβA⊥V
q(2Vg + v−r ) + zr

−q(z − z+)(z − z−)
, (A24)

where z0r = rqvr and z± = q

2 [v− ±√
v+(8Vg + v+) ] with v± = vR ± vL > 0. Separating the prefactors, residues at the three

poles are Resr
λ = −1

rq
and Resr

λ = 4Vg+v++λr
√

v+(8Vg+v+)

−2λq
√

v+(8Vg+v+)
for λ = 0 and λ = ±, respectively. The correlation functions are

〈[θr (x) − θr (0)]2〉 = 1

(βV )2

∑
�kωn

〈
θr
−pθr

p

〉
A(x · p), (A25a)

〈[φr (x) − φr (0)]2〉 = 1

(βV )2

∑
�kωn

〈
φr

−pφr
p

〉
A(x · p), (A25b)

wherein A = A(x · p) = 2 − 2 cos(qz − ωnτ ) = 2 − 2 cos(qz + izτ ). For Eq. (A25a), we can perform the summation over
bosonic matsubara frequencies as follows:∑

qωn

1

−rq(z − z0r )
eηz = −β

∑
q

Resr
0nB(z0r ) = −β

∑
q>0

Resr
0[1 + 2nB(z0r )],

where z is understood as iωn, nB is the bosonic distribution and we take η → 0+, but the result remains the same for η → 0−.
To control the convergence at Re z < 0 and Re z > 0 we use bosonic weighting functions, 1 + nB(z) and nB(z), respectively.
Then we have∑

qωn

1

−rq(z − z0r )
eiqz−τz = −β

∑
q

Resr
0[1 + nB(z0r )]eiqz−τz0r = −β

∑
q>0

Resr
0{[1 + nB(z0r )]eiqz−τz0r + nB(z0r )e−iqz+τz0r },

∑
qωn

1

−rq(z − z0r )
e−iqz+τz = −β

∑
q

Resr
0nB(z0r )e−iqz+τz0r = −β

∑
q>0

Resr
0{nB(z0r )e−iqz+τz0r + [1 + nB(z0r )]eiqz−τz0r },

and we arrive at∑
qωn

1

−rq(z − z0r )
A(r · p) = −2β

∑
q>0

Resr
0

[
nB(z0r )Az0r

+ 1 − eiqz−τz0r
] β→∞−−−→ −2β

∑
q>0

Resr
0r(1 − er(iqz−τz0r )), (A26)

where Az0r
= 2 − 2 cos(qz + iz0r τ ). Similarly, for Eq. (A25b), we have (summing only over λ = ±)∑

qωn

q(2Vg + v−r ) + zr

−q(z − z+)(z − z−)
eηz = −β

∑
q,λ

Resr
λnB(zλ) = −β

∑
q>0,λ

Resr
λ[1 + 2nB (zλ)],

∑
qωn

q(2Vg + v−r ) + zr

−q(z − z+)(z − z−)
eiqz−τzλ = −β

∑
qλ

Resr
λ[1 + nB(zλ)]eiqz−τzλ

= −β
∑

q>0,λ

Resr
λ{[1 + nB(zλ)]eiqz−τzλ + nB(zλ)e−iqz+τzλ},

∑
qωn

q(2Vg + v−r ) + zr

−q(z − z+)(z − z−)
e−iqz+τzλ = −β

∑
qλ

Resr
λnB(zλ)e−iqz+τzλ = −β

∑
q>0,λ

Resr
λ{nB(zλ)e−iqz+τzλ + [1 + nB(zλ)]eiqz−τzλ},

and we arrive at∑
qωn

q(2Vg + v−r ) + zr

−q(z − z+)(z − z−)
A(r · p) = −2β

∑
q>0,λ

Resr
λ

[
nB(zλ)Azλ

+ 1 − eiqz−τzλ
] β→∞−−−→ −2β

∑
q>0,λ

Resr
λλ(1 − eλ(iqz−τzλ)).

(A27)

Combining Eqs. (A24), (A25a), and (A26), we obtain the correlation function of the θ field

〈[θr (x) − θr (0)]2〉 = −2π

�

∑
q>0

Resr
0

[
nB(z0r )Az0r

+ 1 − eiqz−τz0r
] β→∞−−−→ −2π

�

∑
q>0

Resr
0r(1 − er(iqz−τz0r )), (A28)
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in which summation
∑

�Q 1 = �⊥
A⊥

is used. Combining Eqs. (A24), (A25b), and Eq. (A27), we obtain the correlation function of
the φ field,

〈[φr (x) − φr (0)]2〉 = −2π

V

∑
�Q,q>0,λ

Resr
λ

[
nB(zλ)Azλ

+ 1 − eiqz−τzλ
] β→∞−−−→ −2π

V

∑
�Q,q>0,λ

Resr
λλ(1 − eλ(iqz−τzλ)). (A29)

At the zero temperature limit (β → ∞), it is possible to proceed by turning the momentum summation to an integral with a
lattice cutoff factor e−αq . Thus,

〈[θr (x) − θr (0)]2〉 =
∫ ∞

0
dq e−αq 1 − er(iqz−τz0r )

q
= ln

α + vrτ − irz

α
, (A30)

which is valid since α + vrτ > 0. On the other hand, for the much more complex φ correlation, it is necessary to resort to some
approximations. The �Q integral is not within the reach of analytic solution. Concerning the low-energy property of this system,
the typical value of momentum q should be negligibly small compared to the momentum �Q of the guiding center lattice. Hence
we replace Vg = g

k2 by V ∗
g = g

Q∗2 for the moment so as to relieve us of the �Q integral, where Q∗ is some characteristic value of
the momentum. This enables us to perform the q integration

〈[φr (x) − φr (0)]2〉 = −
∑

λ

∫ ∞

0
dq Resr

λλ(1 − eλ(iqz−τzλ))e−αq =
∑

λ

4V ∗
g + v+ + λrw∗

2w∗ ln
α + τ

2 (w∗ + λv−) − irz

α
, (A31)

which is valid since α + τ
2 (w∗ + λv−) > 0 and we define w∗ =

√
v+(8V ∗

g + v+). Finally, combining Eqs. (A22), (A30), and

(A31), we arrive at the electron Green’s function written in the beginning.

b. Asymptotic form

For the asymptotic behavior at long distance of the on-wire
Green’s functions, it is convenient to rely on the effective 1D
model in Appendix B 1. Combining Eqs. (B1) and (A22), one
has

Gκ (z) ∝ exp
[− 1

2

(
1
4 〈[(θρ + rθχ )(z) − (θρ + rθχ )(0)]2〉

+ 1
4 〈[(φρ + rφχ )(z) − (φρ + rφχ )(0)]2〉)]. (A32)

As shown above, the θ part gives a trivial exponent 1
2 . We thus

simply apply the method in Appendix C to the φ part:

exp
[− 1

2
1
4 〈{[φρ(z) − φρ(0)] + r[φχ (r) − φχ (0)]}2〉]

= exp
[− 1

2
1
4 (〈[φρ(z) − φρ(0)]2 + [φχ (z) − φχ (0)]2〉

+ 2r〈[φρ(z) − φρ(0)][φχ (z) − φχ (0)]〉)]. (A33)

Previewing the notation in Appendix B 2 a, the result is γ =
1
2 + 1

4π

∫ 2π

0 dμ B−C ′
B2 cos μ

or γ = 1
2 + 1

4π

∫ 2π

0 dμ A−C ′
A2 cos μ

for r =
∓1 where C ′ = 2

vg′
v+ cos μ. In fact, γ is independent to κ and

increases with vg from unity. Similarly, for the TRB case, we
have

Gr (z) ∝ 〈e−i(rφ−θ)(z)ei(rφ−θ)(0)〉
= exp

[− 1
2 (〈[φ(z) − φ(0)]2 + [θ (z) − θ (0)]2〉

− 2r〈[φ(z) − φ(0)][θ (z) − θ (0)]〉)], (A34)

which also gives a γ > 1 increasing with vg .

APPENDIX B: IMPURITY EFFECT ON AN EFFECTIVE 1D
WIRE

1. Effective 1D Luttinger liquid system

The charge-chirality separated basis can be attained by
combining the opposite-chirality fields in Eq. (A17) or

Eq. (A20)

�ζ = (θρ,θχ ,φρ,φχ )T =
[
H 0
0 H

]
�ξ = 1

2

[
H −H

−H −H

]
�ϕ,

(B1)

wherein H = [1 1
1 −1] is the order-2 Hadamard matrix. The

new commutation relations read

[∇θρ(z),θχ (z′)] = [∇φρ(z),φχ (z′)] = i2πδ(z − z′). (B2)

The total particle density of all modes is given by

ρ = − 1

π
∇φρ, (B3)

which can be easily seen from Eq. (A12). Upon the new fields
�ζ , the action of the system, Eq. (A15) or (A18), is transformed
into

S = 1

2πβA⊥V

∑
p

�ζ †
pMp

�ζp

= 1

2πβA⊥V

∑
p

q2

4

[
[θρ,θχ ]−p

[
v+ v− − 2z

q

v− − 2z
q

v+

][
θρ

θχ

]
p

+[φρ,φχ ]−p

[
8Vg + v+ v− − 2z

q

v− − 2z
q

v+

][
φρ

φχ

]
p

]
(B4)

as shown in the main text.
Now we are ready to derive the effectice 1D model of

the system. This can be done, without loss of generality, by
integrating out the fields except the ones �ζ0(z,τ ) = �ζ (z, �R,τ )
on a particular wire at �R. We introduce auxiliary fields
�λ(z,τ ) and write the partition function in the path-integral
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formalism as

Z =
∫

D �ζ0D�λD �ζ e−{S+∫ dz dτ i�λ(z,τ )·[�ζ0(z,τ )−�ζ (z, �R,τ )]}

=
∫

D �ζ0D�λD �ζ e
−∑

p{�ζ †
p

Mp

2A⊥πβV
�ζp+i�λ†

�q ·[ −e−i �Q· �R
βV

�ζp+ A⊥
βV

�ζ0�q ]}

(B5)

wherein we introduce a shorthand notation �q = (q,ω) for the
1D energy-momentum space. We then integrate out �ζ to obtain
(omitting the determinant prefactor)

Z =
∫

D �ζ0D�λ e
−∑

�q [− πA⊥
2βV

�λ†
�q
∑

�Q M−1
p

�λ�q+ i
β�

�λ†
�q ·�ζ0�q ]

. (B6)

Finally, by integrating out �λ, we get

Z =
∫

D �ζ0 e
−∑

�q
1

2πβ�

�⊥
A⊥

�ζ †
0�q(
∑

�Q M−1
p )−1�ζ0�q . (B7)

We thus arrive at the 1D effective action,

S1D = 1

2πβ�

∑
�q

�ζ †
�qM�q �ζ�q, (B8)

where M�q = �⊥
A⊥

(
∑

�Q M−1
p )

−1
, Mp is given in Eq. (B4), and

we neglect the subscript 0 of the fields. Fortunately, this �Q
summation can be done analytically in the continuum limit
as an integration. Using polar coordinates, the radial part
of this 2D integral should be cut off at a certain Q∗ of the
size of the 2D first Brillouin zone. In fact, it can be fixed by
requiring that the effective model return to the original model
at the noninteractiong limit since the many 1D wires become
completely decoupled, which simply gives Q∗2 = 4π

A⊥
. The

result is a block-diagonal M = diag(Mθ ,Mφ) with (omitting
the subscript �q)

Mθ = q2

4

[
v+ v− − 2z

q

v− − 2z
q

v+

]
,

Mφ = q2

4

[
v+(qv1−z)(qv−1+z)−2(qv−−2z)2vg′

(qv1−z)(qv−1+z)−2q2v+vg′ v− − 2z
q

v− − 2z
q

v+

]
,

(B9)

wherein

vg′ = vg ln

[
1 − (z − qv1)(qv−1 + z)

2q2v+vg

]
. (B10)

Henceforth, we denote vg = g

Q∗2 = 2e2

Q∗2A⊥
= e2

2π
and thereby

the new vg′ = g′

Q∗2 is understood as the original g getting
renormalized to g′ by the logarithmic factor.

2. Localization length

Now we have obtained an effective TLL model, Eq. (B8),
upon which we would consider the impurity effect. To begin
with, we expand the fields in the impurity Hamiltonian
around their slowly varying classical parts θρ → θ cl

ρ + θρ ,
φρ → φcl

ρ + φρ . Because of the unbounded fluctuation of the
fields, we have to use the normal ordering formula cos ϕ =:
cos ϕ : 〈cos ϕ〉 for a generic field ϕ. For a quadratic theory, the

cosine product in the impurity Hamiltonian is approximated
as

γ
[
1 − 1

2

(
φ2

ρ − 〈
φ2

ρ

〉+ θ2
ρ − 〈

θ2
ρ

〉)]
cos φcl

ρ cos
(
θ cl
ρ + �kz

)
,

(B11)

where γ is defined as

γ = e− 1
2 (〈φ2

ρ 〉+〈θ2
ρ 〉). (B12)

Because of the homogeneity of the 1D spacetime, γ is a
constant, as we will see below. Obviously, it introduces two
mass terms to the action matrices in Eq. (B9) in a self-
consistent manner. For the compromised pinning, as implied
from the impurity Hamiltonian, while φcl

ρ should always
maximize | cos φcl

ρ |, θ cl
ρ directly affected by impurities will

give rise to a coefficient of the energy gain, −
√

nimp

L
, where

nimp is the impurity density. This is to say that the impurity
Hamiltonian, using Eq. (B11), will be replaced by

Himp = −
√

nimp

L
V0γ

∫
dz
[
1 − 1

2

(
φ2

ρ − 〈
φ2

ρ

〉+ θ2
ρ − 〈

θ2
ρ

〉)]
.

(B13)

As a whole, these considerations lead to an impurity action
(the two mass terms) added to Eq. (B8) or (B9),

S ′
1D = S1D + 1

2πβ�
λ
∑

�q
(φρ,−�qφρ,�q + θρ,−�qθρ,�q), (B14)

wherein λ =
√

nimp

L
V0γπ . In Appendix B 2 a, the self-

consistency condition Eq. (B12) is solved to give

γ = (4v+�2)
η

η−4

(
4πV0

√
nimp

L

) −η

η−4

, (B15)

in which � = α−1 is the momentum cutoff, η = ηθ + ηφ ,
with ηθ = 1, ηφ = 1

π
F̃ (v±,vg). These are the most important

exponents discussed in the main text, for which a mathematical
discussion is given in Appendix B 2 c.

Now we are at the stage to look at the energy of this
massive system due to the presence of many impurities. First
of all, the penalty in elastic energy from the distortion of
θ cl
ρ is estimated as [50] Eela = ∫

dz Aθρ
(∇θ cl

ρ )2 = Aθρ

π2

3L2 �,

where Aθρ
= 1

2π
v+
4 . Second, from Eq. (B14), we need to

estimate the difference in ground state energy, �E, between
the impurity system and the original one. This usually turns
out to be straightforward if one maps the bosonic action to
many harmonic oscillators. However, this becomes intractable
for our complex effective model, Eq. (B9), where canonical
commutation relations get distorted. Instead, in Appendix
B 2 b, we directly calculate the free energy from the path
integral of Eq. (B14), which equals the ground state energy
at zero temperature. Combining �E with other constant
parts in Eq. (B13), we arrive at an energy gain �E =
−
√

nimp

L
V0γ�(1 − η

4 ). Last, the total energy excess density due
to the impurities reads ε = (Eela + �E)/�, whose variation
with respect to the localization length, ∂ε

∂L
= 0, gives

L ∝ Dimp
1

η−3 . (B16)
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a. Solving the self-consistency equation

Two positive constants qθ ,qφ are defined through λ =√
nimp

L
V0γπ = 1

4v+q2
θ = 1

4v+q2
φ . For clarity, we use different

subscripts, although qθ = qφ . From this new action, on can
easily obtain the needed correlation functions

〈θρ,−�qθρ,�q〉 = πβ�
−v+

(z − qv1)(qv−1 + z) − 1
4v+2q2

θ

,

〈φρ,−�qφρ,�q〉 = πβ�
4

v+(q2
φ + 4k2 A2B2

AB−C

) , (B17)

where for the more complex φ-field case, we change to the
polar coordinates defined as �k = (q, ω

v+ ) = (k cos μ,k sin μ)
with z = iω and the dimensionless functions A = v1

v+ cos μ −
i sin μ, B = v−1

v+ cos μ + i sin μ, and C = 2
vg′
v+ cos2 μ. For

vg′ , which is originally expressed as vg′ = vg ln [1 +
AB

cos2 μ( 2vg

v+ + k2

Q∗2 AB)
], in the low-energy regime where k2

Q∗2 � 1

we can take vg′ = vg ln [1 + AB
2vg

v+ cos2 μ
] . Hence, vg′ = vg′(μ) no

longer depends on the variable k. In addition, it is convenient
to define f (μ) = A2B2

AB−C
. The space-time correlation functions

appearing in Eqs. (B11) and (B12) can then be calculated as
follows:.

〈θρ(z,τ )2〉 = 1

(β�)2

∑
�q

〈θρ,−�qθρ,�q〉

= π

�

∑
q

∫ ∞

−∞

dω

2π

−v+

(z − qv1)(qv−1 + z) − 1
4v+2q2

θ

= π

�

∑
q

v+√
(qv1 + qv−1)2 + q2

θ v
+2

= 1

2

∫ �

−�

1√
q2 + q2

θ

= ln
� +

√
q2

θ + �2

�
, (B18)

in which we use the zero-temperature limit to perform the
frequency summation. The momentum cutoff � = α−1, in
general, is much larger than qθ ,qφ in the introduced masses.
Therefore, if necessary, Eq. (B18) can be approximated as

〈θρ(z,τ )2〉 = ln
2�

qθ

. (B19)

For the φ field, we similarly have

〈φρ(z,τ )2〉 = 1

(β�)2

∑
�q

〈φρ,−�qφρ,�q〉

= 1

2

∫
dq

dω

2π

4

v+(q2
φ + 4k2 A2B2

AB−C

)
= v+

8π

∫ 2π

0
dμ

∫ �

0
dk2 4

v+(q2
φ + 4k2 A2B2

AB−C

)

= 1

2π

∫ 2π

0
dμ

ln
(
1 + �2

q2
φ

4f (μ)
)

4f (μ)

= 1

2π
F

(
�

qφ

,v±,vg

)
. (B20)

Again, for a very large momentum cutoff � � qφ , it is
approximated as

〈φρ(z,τ )2〉 = 1

π
F̃ (v±,vg) ln

2�

qφ

, (B21)

where F̃ (v±,vg) = ∫ 2π

0 dμ 1
4f (μ) is inspected with care in

Appendix B 2 c. Feeding Eqs. (B19) and (B21) to the self-
consistency equation (B12), we have

γ −2 =
(

2�

qθ

)ηθ
(

2�

qφ

)ηφ

, (B22)

where ηθ = 1, ηφ = 1
π
F̃ , and we also define η = ηθ + ηφ .

Recalling the definition of qθ ,qφ , this is further solved to give
Eq. (B15).

b. Energy gain of the system

Applying the path-integral formula to a generic action
matrix M,

e−βF = Z =
∫

D �ζe
− 1

2πβ�

∑
�q �ζ †

�qM�q �ζ�q , (B23)

at zero temperature, the energy of the system is given by

E = − 1

β
ln

⎡
⎣∏

�q

(
1

(πβ�)4
DetM�q

)− 1
2

Jq

⎤
⎦

= 1

2

∑
q

∫
dω

2π
ln

[
1

(πβ�)4
DetM�q J−2

q

]
, (B24)

where Jq = q2 is a Jacobian since the current field variables �ζ
do not directly lead to energy, dissimilar to what momentum
and position do for a harmonic oscillator action. In fact, all the
factors except the determinant inside the logarithmic function
will cancel out when calculating energy difference.

From the full action, Eq. (B14), now expressed as

S ′
1D = 1

2πβ�

∑
�q

�ζ †
�q

[
M′

θ 0
0 M′

φ

]
�q
�ζ�q, (B25)

we can calculate the determinants

DetM′
θ,�q = q2

16

[
4(qv1 − z)(qv−1 + z) + v+2

q2
θ

]
,

DetM′
φ,�q = v+2

k2 cos2 μ

16

(
4k2A2B2

AB − C
+ q2

φ

)
. (B26)

Similarly, for the original pure system, Eq. (B8), we have
DetMθ,�q , DetMφ,�q by setting qθ = qρ = 0 in Eq. (B26).
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Then, using Eq. (B24), we have the difference in energy

�Eθ = 1

2

∑
q

∫
dω

2π
(ln[DetM′

θ,�q] − ln[DetMθ,�q])

= 1

2

∑
q

∫
dω

2π
ln

4(qv1 − z)(qv−1 + z) + v+2
q2

θ

4(qv1 − z)(qv−1 + z)

= 1

2

�

2π

∫ �

−�

dq
v+

2

(√
q2 + q2

θ − |q|)

= �

8π
v+
[
q2

θ ln
�+

√
q2+�2

qθ

+ �
(√

q2
θ +�2−�

)]
.

(B27)

And for the more complex φ part, we have

�Eφ = 1

2

�

2π

∫
dq

∫
dω

2π
(ln[DetM′

ρ,�q] − ln[DetMρ,�q])

= �

(4π )2
v+
∫ 2π

0
dμ

∫ �

0
dk2 ln

4k2f (μ) + q2
φ

4k2f (μ)

= �

(4π )2
v+
∫ 2π

0
dμ

[
q2

φF

(
�

qφ

,v±,vg

)
+ Y

]
(B28)

in which Y = ∫ 2π

0 dμ�2 ln [1 + (�2

q2
φ

4f (μ))−1]. Similar to

Eqs. (B19) and (B21), for a large momentum cutoff �, we
easily have Y = q2

φF̃ . Now, combining �E = �Eθ + �Eφ

with other constant parts in Eq. (B13), i.e., using Eqs. (B19)
and (B21), we can write down the system’s energy gain,

�E = −
√

nimp

L
V0γ�

[
1 + 1

2

(〈
φ2

ρ

〉+ 〈
θ2
ρ

〉)]+ �E

= −
√

nimp

L
V0γ� + �v+

8π
�
(√

q2
θ + �2 − �

)+ �v+

(4π )2
Y

= −
√

nimp

L
V0γ� + �v+

8π

q2
θ

2
+ �v+

(4π )2
q2

φF̃

= −
√

nimp

L
V0γ�

(
1 − η

4

)
, (B29)

where the approximation of large � is only used in the third
line.

c. F̃ function

Let us briefly summarize the properties of the function
F̃ (v±,vg) = ∫ 2π

0 dμ 1
4f (μ) introduced in Eq. (B21). Recalling

the definitions after Eq. (B17) in Appendix B 2 a, f (μ) =
A2B2

AB−C
and A = v1

v+ cos μ − i sin μ, B = v−1

v+ cos μ + i sin μ,

C = 2
vg′
v+ sin2 μ, and vg′ = −vg ln [1 + AB

2vg

v+ cos2 μ
], we see it is

a complex integral. Nonetheless, noticing Im AB ∝ sin 2μ,
we are ready to prove f (mπ

2 − μ) = f ∗(mπ
2 + μ), wherein

m ∈ Z, which immediately shows the reality of F̃ as one
would expect for the physical exponent ηφ = 1

π
F̃ . Further-

more, F̃ as a bounded function of vg (v±) is monotonically
decreasing (increasing). Specifically, F̃ ( vg

v+ → 0) = π and
F̃ ( vg

v+ → ∞) = 0.

For the multipair situation, the definition of vg′ is altered
to Eq. (D1). All the above considerations still apply except
that the lower bound gets augmented to F̃N ( vg

v+ → ∞) =
N−2
N

π . Certainly, for any particular values of the arguments,
F̃N (v±,vg) is larger than the single-copy one, F̃ (v±,vg).

APPENDIX C: TEMPERATURE DEPENDENCE OF
RESISTIVITY

First of all, we need to derive the force operator
used in the memory function method. Feeding the par-
ticle density Eq. (B3) to the continuity equation ∇ ·
j + ∂ρ

∂t
, we can express the current as j = 1

π
∂tφρ . Start-

ing from the φ part of the noninteracting Hamilto-
nian H

φ

0 = ∫
dz
8π

{v+[(∇φρ)2 + (∇φχ )2] + 2v−(∇φρ)(∇φχ )}
obtained from Eq. (B4) or (B8) by setting vg = 0, one
can apply the Heisenberg equation to get j = i

π
[Hφ

0 ,φρ].
Recalling the commutation relation (B2), we get the current
operator j = − 1

2π
[v+∇φχ + v−∇φρ]. Thus, using the impu-

rity Hamiltonian, the force operator is given by

F = [j,Himp] = iv+V(z) sin φρ(z) cos[θρ(z) + �kz]. (C1)

To calculate the memory function M, we need the
imaginary-time force-force correlation function

G(τ ) = − 〈TτF (z,τ )F (z,0)〉
= v+2〈VV〉〈Tτ sin φρ sin φρ〉

× 〈Tτ cos (θρ + �kz) cos (θρ + �kz)〉, (C2)

wherein we suppress the arguments for simplicity. First, the
Gaussian disorder correlator 〈V(z)V(z)〉 = 1

2 ( 2
πα

)3Dimp. For
the other parts, applying the Debye-Waller formula, we have

〈sin φρ(z,τ ) sin φρ(z,0)〉
= 1

2e− 1
2 〈(φρ (z,τ )−φρ (z,0))2〉 = 1

2 (v+�τ )−ηφ ,

〈cos [θρ(z,τ ) + �kz] cos [θρ(z,0) + �kz]〉
= 1

2e− 1
2 〈[θρ (z,τ )−θρ (z,0)]2〉 = 1

2 (v+�τ )−ηθ , (C3)

wherein we suppress the time-ordering operator for simplic-
ity. The complete force-force correlation function and the
concomitant analytic continuation are formidable to obtain,
especially for the complicated φρ part. Nevertheless, as shown
below, if one restricts the goal to only extracting the power law
dependence on temperature, one can calculate the correlation
functions on the exponents approximately to directly find the
τ dependence as shown in Eq. (C3).

By setting qθ = qφ = 0 in Eq. (B17), it is straightforward
to obtain the needed correlation functions in momentum space
for the action (B8). Then we can calculate in the following
way

〈[θρ(z,τ ) − θρ(z,0)]2〉

= 1

(βV )2

∑
�q

〈θρ,−�qθρ,�q〉(2 − 2 cos ωτ )

= π

(2π )2

∫
dq dω

v+

v+2k2AB
(2 − cos ωτ )
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= v+

4π

∫
d2�k 1

v+k2AB
[2 − 2 cos (kv+τ sin μ)]

= 1

2π

∫ 2π

0
dμ

∫ �

0
dk

1 − cos (kv+τ sin μ)

kAB

= 1

2π

∫ 2π

0
dμ

1

AB
Cin(�v+τ sin μ)

= 1

2π

∫ 2π

0
dμ

1

AB
ln(�v+τ sin μ)

= 2

π
F̃ (v±,vg = 0) ln(�v+τ ) (C4)

and

〈[φρ(z,τ ) − φρ(z,0)]2〉

= 1

(βV )2

∑
�q

〈φρ,−�qφρ,�q〉(2 − 2 cos ωτ )

= v+

4π

∫
d2�k 1

v+k2f (μ)
[2 − 2 cos (kv+τ sin μ)]

= 1

2π

∫ 2π

0
dμ

∫ �

0
dk

1 − cos (kv+τ sin μ)

kf (μ)

= 1

2π

∫ 2π

0
dμ

1

f (μ)
Cin(�v+τ sin μ)

= 1

2π

∫ 2π

0
dμ

1

f (μ)
ln(�v+τ sin μ)

= 2

π
F̃ (v±,vg) ln(�v+τ ). (C5)

For both of the above cases, we perform the �q summation as
a 2D integral in a similar manner to Eq. (B20). We introduce
the special cosine integral [62] Cin(x) = ∫ x

0
1−cos t

t
dt , whose

asymptotic form is ln x. In the next-to-last line we use this
asymptotic form for the large cutoff �. We also drop the
sin μ inside the logarithm to get the last line since it does not
contribute to the exponent of τ that relates to the temperature.

APPENDIX D: CALCULATION FOR THE MULTIPAIR
CASE

For each copy, we will have a corresponding set of �ζ
fields as defined by Eq. (B1). For the whole N

2 -copy IB
system (N is even), we can think about the 4N

2 × 4N
2 action

matrix equally divided as N
2 × N

2 blocks indexed by two
copy indices. It comprises N

2 parts of single-copy action (B4)
along the block diagonal. In addition, due to the intercopy
Coulomb interaction, we get off-diagonal coupling 2q2vg

between each pair of φρ,ν , φρ,ν ′ where ν,ν ′ are copy indices.
Then, by integrating out the wires in the same manner as in
Appendix B 1, we arrive at the effective 1D model. Taking
all the intracopy impurity scatterings into account amounts
to self-consistently introducing mass terms to each diagonal
block.

To relieve the burden of notation, we will, when nec-
essary, denote ε = (qv1 − z)(qv−1 + z) = k2v+2

A(μ)B(μ),
a = A(μ)B(μ), and b = cos2 μ

vg′
v+ in this section. First of

all, upon obtaining the effective 1D model, the off-diagonal
interaction between different copies will renormalize the
quantity vg in a different manner compared with Eq. (B10):

vg′ = vg ln

[
1 + ε

2N
2 q2v+vg

]
, (D1)

where N appears in the denominator inside the logarithm.
Accordingly, the F̃ function will be altered to F̃N as stated
in the main text or Appendix B 2 c. Note that it is not the
same as the substitution vg → Nvg with F̃ (v±,vg) becoming
F̃ (v±,Nvg). Then we need to solve the self-consistency
equation as previously done in Appendix B 2 a. Because
the various copies are on the same footing, the mass terms
introduced can be taken to be the same in the first place.
Therefore, it is unnecessary to keep track of the copy index
unless otherwise stated. The 〈θρθρ〉 correlation functions take
the same form as Eqs. (B17) and (B18) while the 〈φρφρ〉
correlation functions turn out to be rather different from
Eqs. (B17) and (B20):

〈φρ,−�qφρ,�q〉

= πβ�
4v+[ε(4ε + v+2

q2
φ

)− q2v+vg′
(
8ε + Nv+2

q2
φ

)]
(
4ε + v+2q2

φ

)[
ε
(
4ε + v+2q2

φ

)− Nq2v+3q2
φvg′

]

= πβ�

4
(
1 − 8k2b

q2
φ (a−Nb)+4k2a

)
v+(4k2a + q2

φ

) . (D2)

Then we can calculate

〈φρ(z,τ )2〉 = 1

(β�)2

∑
�q

〈φρ,−�qφρ,�q〉

= v+

8π

∫ 2π

0
dμ

∫ �

0
dk2

4
(
1 − 8k2b

q2
φ (a−Nb)+4k2a

)
v+(4k2a + q2

φ

)
= 1

2π

∫ 2π

0
dμ

1

4a2

((
a + 2b

a − Nb − 1

)

× ln

[
1 + 4a�2

q2
φ

]
− 2b(a − Nb)

a − Nb − 1

× ln

[
1 + 4a�2

q2
φ(a − Nb)

])
. (D3)

For a very large momentum cutoff � � qφ , it is approximated
just as

〈φρ(z,τ )2〉 = 1

2π

∫ 2π

0
dμ

a − 2b

4a2
ln

[
4�2

q2
φ

]

= 1

π
F̃N (v±,vg) ln

2�

qφ

. (D4)

Now we turn to estimate the total energy excess of the
system. Similar to what has been done in Appendix B 2 b,
we need the determinants of the action matrices of the whole
system, M′

�q and M�q , for the massive one and the original one,
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respectively:

DetM′
�q =

(q

4

)N(
4ε + v+2

q2
θ

) N
2

(q

4

)N(
4ε + v+2

q2
φ

) N
2 −1

(
4ε2

ε − Nq2v+vg′
+ v+2

q2
φ

)
, DetM�q =

(
q

2

)2N
εN+1

ε − Nq2v+vg′
. (D5)

The difference in ground state energy is

�E =
∑

�q
ln

DetM′
�q

DetM�q
= v+�

(4π )2

[
N

2

(
q2

θ F
0 + Y 0)+

(
N

2
− 1

)(
q2

φF 0 + Y 0)+ [
q2

φF (Nvg) + Y (Nvg)
]]

, (D6)

and the other part from the constant terms reads

E′ = −N

2

√
nimp

L
V0γ�

[
1 + 1

2

(〈
φ2

ρ

〉+ 〈
θ2
ρ

〉)] = −N

2

(√
nimp

L
V0γ� + v+�

(4π )2

[
q2

θ F
0 + q2

φFN (vg)
])

. (D7)

Here, F and Y follow the definitions in Eqs. (B20) and (B28) and we omit the first slot of arguments v±. F 0 or Y 0 simply means
setting the second argument vg to zero. The subscript of FN means it uses the multipair vg′ in Eq. (D1), the same as F̃N introduced
in Appendix B 2 c. Similar to the spirit of Appendix B 2, if we approximate these functions at a very large cutoff �, after some
lengthy manipulations, we arrive at the concise expression

�E = �E + E′ = −N

2

√
nimp

L
V0γ�

(
1 − ηN

4

)
, (D8)

which shares the same form as Eq. (B29) and hence guarantees the same conclusion as Eq. (B16) with a new exponent
ηN = 1 + 1

π
F̃N (v±,vg).
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Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D.
Gu, and T. Valla, Nat. Phys. 12, 550 (2016).

[18] X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H.
Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys.
Rev. X 5, 031023 (2015); C. Shekhar, A. K. Nayak, Y. Sun, M.
Schmidt, M. Nicklas, I. Leermakers, U. Zeitler, Y. Skourski, J.
Wosnitza, Z. Liu, Y. Chen, W. Schnelle, H. Borrmann, Y. Grin,
C. Felser, and B. Yan, Nat. Phys. 11, 645 (2015).

[19] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002); V. P.
Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801 (2005);
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005); A. H. Castro Neto, F. Guinea,
N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod.
Phys. 81, 109 (2009).

[20] Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, C. Luo, Z. Chen,
L. Yang, J. Zou, X. Wu, S. Sanvito, Z. Xia, L. Li, Z. Wang,
and F. Xiu, Nat. Commun. 7, 12516 (2016); X. Yuan, P. Cheng,
L. Zhang, C. Zhang, J. Wang, Y. Liu, Q. Sun, P. Zhou, D. W.
Zhang, Z. Hu, X. Wan, H. Yan, Z. Li, and F. Xiu, Nano. Lett.
17, 2211 (2017).

[21] K. Behnia, L. Balicas, and Y. Kopelevich, Science 317, 1729
(2007).

205143-14

https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1007/BF01339504
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1088/1367-2630/9/9/356
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevB.85.035103
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevB.89.081106
https://doi.org/10.1103/PhysRevB.89.081106
https://doi.org/10.1103/PhysRevB.89.081106
https://doi.org/10.1103/PhysRevB.89.081106
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1146/annurev-conmatphys-031113-133841
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1016/j.ppnp.2014.01.002
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0550-3213(81)90361-8
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1103/PhysRevB.87.235306
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1016/j.crhy.2013.10.010
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1103/PhysRevB.86.115133
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1088/0953-8984/27/11/113201
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1038/nphys3648
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1103/PhysRevX.5.031023
https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nphys3372
https://doi.org/10.1038/nphys3372
https://doi.org/10.1103/PhysRevB.65.245420
https://doi.org/10.1103/PhysRevB.65.245420
https://doi.org/10.1103/PhysRevB.65.245420
https://doi.org/10.1103/PhysRevB.65.245420
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1038/ncomms12516
https://doi.org/10.1038/ncomms12516
https://doi.org/10.1038/ncomms12516
https://doi.org/10.1038/ncomms12516
https://doi.org/10.1021/acs.nanolett.6b04778
https://doi.org/10.1021/acs.nanolett.6b04778
https://doi.org/10.1021/acs.nanolett.6b04778
https://doi.org/10.1021/acs.nanolett.6b04778
https://doi.org/10.1126/science.1146509
https://doi.org/10.1126/science.1146509
https://doi.org/10.1126/science.1146509
https://doi.org/10.1126/science.1146509


TOMONAGA-LUTTINGER LIQUID AND LOCALIZATION IN . . . PHYSICAL REVIEW B 95, 205143 (2017)

[22] V. Gusynin, V. Miransky, and I. Shovkovy, Nucl. Phys. B 462,
249 (1996); V. A. Miransky and I. A. Shovkovy, Phys. Rep. 576,
1 (2015).

[23] T. Meng, A. G. Grushin, K. Shtengel, and J. H. Bardarson, Phys.
Rev. B 94, 155136 (2016).

[24] J. Sólyom, Adv. Phys. 28, 201 (1979); M. P. A. Fisher and L.
I. Glazman, in Mesoscopic Electron Transport, edited by L. L.
Sohn, L. P. Kouwenhoven, and G. Schön (Springer Netherlands,
Dordrecht, 1997), pp. 331–373; A. Imambekov, T. L. Schmidt,
and L. I. Glazman, Rev. Mod. Phys. 84, 1253 (2012); T.
Giamarchi, C. R. Phys. 17, 322 (2016), Physique de la Matière
Condensée au {XXIe} Siècle: L’héritage de Jacques Friedel.

[25] S. Tarucha, T. Honda, and T. Saku, Solid State Commun. 94,
413 (1995); O. M. Auslaender, A. Yacoby, R. de Picciotto, K.
W. Baldwin, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 84,
1764 (2000).

[26] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220 (1992).
[27] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley,

L. Balents, and P. L. McEuen, Nature (London) 397, 598 (1999);
H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y.
Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T.
Narimura, M. Higashiguchi, K. Shimada, H. Namatame, and M.
Taniguchi, ibid. 426, 540 (2003).

[28] R. Egger and A. O. Gogolin, Phys. Rev. Lett. 79, 5082 (1997);
C. Kane, L. Balents, and M. P. A. Fisher, ibid. 79, 5086 (1997).

[29] M. P. Gochan and K. S. Bedell, arXiv:1606.08915.
[30] F. Milliken, C. Umbach, and R. Webb, Solid State Commun.

97, 309 (1996); A. M. Chang, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 77, 2538 (1996); M. Grayson, D. C. Tsui, L. N.
Pfeiffer, K. W. West, and A. M. Chang, ibid. 80, 1062 (1998).

[31] X.-G. Wen, Int. J. Mod. Phys. B 06, 1711 (1992); K. Moon, H.
Yi, C. L. Kane, S. M. Girvin, and M. P. A. Fisher, Phys. Rev.
Lett. 71, 4381 (1993).

[32] C. Wu, B. A. Bernevig, and S.-C. Zhang, Phys. Rev. Lett. 96,
106401 (2006).

[33] H. Isobe and L. Fu, Phys. Rev. B 92, 081304 (2015).
[34] D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001); E.

V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,
Phys. Rev. B 66, 045108 (2002).

[35] K.-Y. Yang, Y.-M. Lu, and Y. Ran, Phys. Rev. B 84, 075129
(2011); X.-Q. Sun, S.-C. Zhang, and Z. Wang, Phys. Rev. Lett.
115, 076802 (2015); H. Wei, S.-P. Chao, and V. Aji, ibid. 109,
196403 (2012); B. Roy and J. D. Sau, Phys. Rev. B 92, 125141
(2015).

[36] L. X. Yang, Z. K. Liu, Y. Sun, H. Peng, H. F. Yang, T. Zhang,
B. Zhou, Y. Zhang, Y. F. Guo, M. Rahn, D. Prabhakaran, Z.
Hussain, S.-K. Mo, C. Felser, B. Yan, and Y. L. Chen, Nat.
Phys. 11, 728 (2015); B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma,
P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F.
Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi,
and H. Ding, ibid. 11, 724 (2015).

[37] S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R.
Chang, H. Zheng, V. N. Strocov, D. S. Sanchez, G. Chang, C.
Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B.
Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin,
S. Jia, and M. Z. Hasan, Nat. Phys. 11, 748 (2015).

[38] S.-Y. Xu, I. Belopolski, D. S. Sanchez, C. Zhang, G. Chang,
C. Guo, G. Bian, Z. Yuan, H. Lu, T.-R. Chang, P. P. Shibayev,
M. L. Prokopovych, N. Alidoust, H. Zheng, C.-C. Lee, S.-M.
Huang, R. Sankar, F. Chou, C.-H. Hsu, H.-T. Jeng, A. Bansil,

T. Neupert, V. N. Strocov, H. Lin, S. Jia, and M. Z. Hasan,
Sci. Adv. 1, e1501092 (2015); N. Xu, H. M. Weng, B. Q. Lv,
C. E. Matt, J. Park, F. Bisti, V. N. Strocov, D. Gawryluk, E.
Pomjakushina, K. Conder, N. C. Plumb, M. Radovic, G. Autès,
O. V. Yazyev, Z. Fang, X. Dai, T. Qian, J. Mesot, H. Ding, and
M. Shi, Nat. Commun. 7, 11006 (2016).

[39] X. Di-Fei, D. Yong-Ping, W. Zhen, L. Yu-Peng, N. Xiao-Hai,
Y. Qi, D. Pavel, X. Zhu-An, W. Xian-Gang, and F. Dong-Lai,
Chin. Phys. Lett. 32, 107101 (2015); Z. K. Liu, L. X. Yang, Y.
Sun, T. Zhang, H. Peng, H. F. Yang, C. Chen, Y. Zhang, Y. F.
Guo, D. Prabhakaran, M. Schmidt, Z. Hussain, S.-K. Mo, C.
Felser, B. Yan, and Y. L. Chen, Nat. Mater. 15, 27 (2015); S.
Souma, Z. Wang, H. Kotaka, T. Sato, K. Nakayama, Y. Tanaka,
H. Kimizuka, T. Takahashi, K. Yamauchi, T. Oguchi, K. Segawa,
and Y. Ando, Phys. Rev. B 93, 161112 (2016); J. Klotz, S.-C.
Wu, C. Shekhar, Y. Sun, M. Schmidt, M. Nicklas, M. Baenitz,
M. Uhlarz, J. Wosnitza, C. Felser, and B. Yan, ibid. 93, 121105
(2016).

[40] S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.
Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A.
Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015);
H. Weng, C. Fang, Z. Fang, B. A. Bernevig, and X. Dai, Phys.
Rev. X 5, 011029 (2015).

[41] Y. Sun, S.-C. Wu, and B. Yan, Phys. Rev. B 92, 115428 (2015);
C.-C. Lee, S.-Y. Xu, S.-M. Huang, D. S. Sanchez, I. Belopolski,
G. Chang, G. Bian, N. Alidoust, H. Zheng, M. Neupane, B.
Wang, A. Bansil, M. Z. Hasan, and H. Lin, ibid. 92, 235104
(2015).

[42] D. Tong, arXiv:1606.06687; H. Murayama, U.C. Berkeley
Lecture Notes, 2006 (unpublished).

[43] I. L. Aleiner and L. I. Glazman, Phys. Rev. B 52, 11296 (1995);
C. Biagini, D. L. Maslov, M. Y. Reizer, and L. I. Glazman,
Europhys. Lett. 55, 383 (2001).

[44] J. von Delft and H. Schoeller, Ann. Phys. (N.Y.) 7, 225
(1998).

[45] T. Giamarchi, Quantum Physics in One Dimension, International
Series of Monographs on Physics, 1st ed. (Clarendon, Oxford,
2004).

[46] N. Nagaosa, Quantum Field Theory in Strongly Correlated
Electronic Systems, Theoretical and Mathematical Physics, 1st
ed. (Springer, Berlin, 1999).

[47] H. J. Schulz, J. Phys. C: Solid State Phys. 16, 6769 (1983); S.
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