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We propose a generic construction of exactly soluble local bosonic models that realize various topological
orders with gappable boundaries. In particular, we construct an exactly soluble bosonic model that realizes a
(3+1)-dimensional [(3+1)D] Z2-gauge theory with emergent fermionic Kramers doublet. We show that the
emergence of such a fermion will cause the nucleation of certain topological excitations in space-time without
pin+ structure. The exactly soluble model also leads to a statistical transmutation in (3+1)D. In addition, we
construct exactly soluble bosonic models that realize 2 types of time-reversal symmetry-enriched Z2 topological
orders in 2+1 dimensions, and 20 types of simplest time-reversal symmetry-enriched topological (SET) orders
which have only one nontrivial pointlike and stringlike topological excitation. Many physical properties of those
topological states are calculated using the exactly soluble models. We find that some time-reversal SET orders
have pointlike excitations that carry Kramers doublet, a fractionalized time-reversal symmetry. We also find that
some Z2 SET orders have stringlike excitations that carry anomalous (nononsite) Z2 symmetry, which can be
viewed as a fractionalization of Z2 symmetry on strings. Our construction is based on cochains and cocycles
in algebraic topology, which is very versatile. In principle, it can also realize emergent topological field theory
beyond the twisted gauge theory.

DOI: 10.1103/PhysRevB.95.205142

I. INTRODUCTION

A sign of a comprehensive understanding of a type of phases
of matter is being able to classify all of them. We understand
that the crystal orders are due to spontaneous symmetry
breaking [1] of the translation and the rotation symmetry.
This leads to the classification of all 230 crystal orders
in three dimensions using group theory. Now, we realized
that the phases of matter beyond symmetry-breaking theory
are due to long-range entanglement [2–4] for topologically
ordered phases [5–7], and due to symmetry-protected short-
range entanglement [8,9] for symmetry-protected trivial (SPT)
phases [8,10,11]. This leads to complete classification of many
topological phases. Using projective representations [9], we
can classify all (1+1)-dimensional [(1+1)D] gapped phases
for bosonic and fermionic systems with any symmetry [12–15].
We can also classify all (2+1)-dimensional [(2+1)D] gapped
liquid [16,17] phases for bosonic and fermionic systems with
any finite unitary symmetry using unitary modular tensor cat-
egories [18,19], G-crossed unitary modular tensor categories
[20], and/or unitary braided fusion categories over Rep(G)
or sRep(Gf ) [21,22]. Those phases are symmetry-breaking
phases, topologically ordered phases, SPT phases (such as odd-
integer-spin Haldane phase [23,24] and topological insulators
[25–30]), symmetry-enriched topological (SET) orders, etc. So
far, we still do not have a classification of (3+1)-dimensional
[(3+1)D] gapped liquid phases, although we know that it is
closely related to unitary four-category theory with one object
[31,32].

With those powerful classification results, we would like
to have a systematic construction of those topological phases.
Ideally, we would like to have a universal construction that can
realize any given topological phases. There are very systematic
ways to construct exactly soluble models [32–41] based on
tensor network [31]. Using unitary fusion categories as input,
Turaev-Viro state-sum [34] and Levin-Wen string-net models

allow us to realize all (2+1)D bosonic topological orders
with gappable boundary. Using finite group G and group
4-cohomoly classes ω4 ∈ H4(G; /R/Z) as input, Dijkgraaf-
Witten models allow us to realize all (3+1)D bosonic topolog-
ical orders whose pointlike excitations are all bosons [42]. Us-
ing premodular categories as input, Walker-Wang models can
also realize a large class of (3+1)D bosonic topological orders.
But Walker-Wang models cannot realize all Dijkgraaf-Witten
models. A further generalization of Walker-Wang models in
Refs. [32,39] allow us to include all Dijkgraaf-Witten models
as well. Such systematic constructions were also generalized
to fermion systems [37,40,41,43,44].

The above constructions are very systematic, but also very
complicated and hard to use. Despite their complexity, it is
still not clear if they can realize all (3+1)D topological orders
or not. [We already know that they cannot realize all (2+1)D
topological orders.] In this paper, we are going to develop a
simpler systematic construction. Our constructed models are
not a subset of any one of the above-mentioned tensor network
constructions. But, our construction also does include any one
of the above-mentioned tensor network constructions, as a
subset.

We will start with topological invariants for topological
orders. Then, we will use cochain theory and cohomology
theory [33,45,46] to construct exactly soluble local bosonic
models whose ground states have topological orders described
by the corresponding topological invariants. In other words, the
low-energy effective field theory of those local bosonic models
is the desired topological field theory. (Here, a local bosonic
model is defined as a quantum model whose total Hilbert
space has a tensor product decompositionHtot =⊗i Hi where
Hi is a finite-dimensional local Hilbert space for site i, and
the Hamiltonian is local respect to such a tensor product
decomposition.) Many mathematical techniques developed for
cohomology theory and algebraic topology will help us to do
concrete calculations with our models.
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One class of topological invariants is given by volume-
independent partition function Ztop(Md ) on manifolds with
vanishing Euler number and Pontryagin number [31] χ (Md ) =
P (Md ) = 0. For invertible topological orders [31,47] and for
SPT orders [11,48] (which have no nontrivial bulk topological
excitations), such topological invariants are pure phases
[31,47,49–52]

Ztop(Md,asym) = ei2π
∫
Md W (wi ,a

G)+kωd , (1)

where wi is the ith Stiefel-Whitney class, aG the flat con-
nection that describes symmetry G twist [53–56], and ωd the
gravitational Chern-Simons term. For example, a (2+1)D Zn

SPT state labeled by k ∈ H3(Zn,R/Z) = Zn is characterized
by its SPT invariant [49–51,54,55] (see Sec. V B)

Ztop(M2+1,aZn ) = eik 2π
n

∫
M2+1 aZn∪Bna

Zn

, (2)

where aZ2 becomes a 1-cochain and Bn is Bockstein homo-
morphism equation (43).

For other noninvertible topological orders (which have
nontrivial bulk topological excitations), their topological in-
variants can be sums of phases

Ztop(Md,asym) =
∑

c∈H ∗(Md ;M)

ei2π
∫
Md W (c,wi ,a

sym)+kωd ,

where c are cohomology classes. Our constructed local bosonic
model is designed to produce such form of topological
invariants. The construction is very versatile and many exactly
soluble local bosonic models can be constructed systematically
to produce all the topological invariants of the above form (with
k = 0). Some of those models have emergent gauge theories or
emergent Dijkgraaf-Witten theories [33]. Other models have
emergent “twisted” gauge theories beyond Dijkgraaf-Witten
type.

In this paper, we will discuss many different types of
gauge theories. To avoid confusion, here we will explain
the terminology that will be used in this paper. We will use
untwisted (UT) gauge theory to refer to the usual lattice gauge
theories (without any twist) [57]. We will use all-boson (AB)
gauge theory to refer to the lattice gauge theories (may be
twisted) where all the pure gauge charges are bosons. We
will use emergent-fermion (EF) gauge theory to refer to the
lattice gauge theory (may be twisted) where some pure gauge
charges are fermions. We will use the term G gauge theory to
refer gauge theory with G gauge group. The Dijkgraaf-Witten
theories [33] are AB gauge theories. This is because the
Dijkgraaf-Witten theories can be viewed as the G-SPT states
with the gauged symmetry G [53], all the gauge charges are
bosonic in Dijkgraaf-Witten theories.

We will also discuss (3+1)D topological theories beyond
Dijkgraaf-Witten theories. Many of those theories do not
contain gauge fields, and it is hard to call them gauge theories.
However, the pointlike topological excitations in those theories
have the same fusion rule as (3+1)D gauge theories, i.e., fuse
like the irreducible representations of a group G. So, we will
still call those (3+1)D topological theories as gauge theory,
which include EF gauge theories. Certainly, the EF gauge
theories are not Dijkgraaf-Witten theories in (3+1)D.

We would like to mention that there are many related
constructions of topological field theories using 1-form, 2-

form gauge fields, etc. [46,58–64]. In contrast to those works,
the cocycle models constructed in this paper are defined
on lattice instead of continuous manifold. Also, cocycle
models are not gauge theories. They are local bosonic models
without any gauge redundancy. In other words, the emergent
topological field theories studied in this paper are free of all
anomalies. In comparison, some 1-form, 2-form gauge field
theories defined on continuous manifold can be anomalous
since they may not be mergeable from local lattice theories
[31,50,65].

In this paper, we will use
n= to mean equal up to a multiple of

n, and use
d= to mean equal up to df (i.e., up to a coboundary).

We will use [f ]n to mean mod(f,n) and 〈l,m〉 to mean the
greatest common divisor of l and m (〈0,m〉 ≡ m). We also
introduce some modified δ functions

δn(x) =
{

1, if x
n= 0

0, otherwise
δ̄(x) =

{
1, if x

d= 0
0, otherwise

δ̄n(x) =
{

1, if x
n,d= 0

0, otherwise.

II. A SUMMARY OF RESULTS

The cocycle models introduced in this paper not only can
realize many types of topological orders, SPT orders, and SET
orders, they are exactly soluble in the sense that that their
partition function can be calculated exactly on any space-time
manifold [34]. Those models are realizable by commuting
projectors. Because the models are exactly soluble, we can use
them to compute many physical properties of those topological
phases, such as ground-state degeneracies, fractional quantum
numbers on pointlike and stringlike topological excitations,
braiding statistics, topological partition functions, dimension
reduction, etc.

A. Symmetry fractionalization on stringlike
defects in SPT states

One way to probe SPT order is to measure fractional
quantum number carried by symmetry twist defect (see Fig. 1).
For example, consider a (2+1)D Zn SPT state which is labeled
by k. In [55] it was shown that a symmetry-twist defect can
carry a Zn quantum number 2k (i.e., each defect will carry a

FIG. 1. Three identical Z3 symmetry twist defects (blue triangles)
on a torus. The red line is the symmetry twist line. A symmetry twist
defect is an end of symmetry twist line.
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fractional Zn quantum number 2k
n

). We can use this property
to measure the (2+1)D Zn SPT order.

Similar results also appear in higher dimensions. Consider
a (3+1)D Zn × Z̃n SPT state which is labeled by k1 =
0, . . . ,n − 1 and k2 = 0, . . . ,n − 1. A Zn symmetry-twist
defect will be a line defect in (3+1)D. We show that such a line
defect must be gapless or symmetry breaking, which behaves
just like the edge state of some (2+1)D SPT state. These
phenomena can be viewed as symmetry fractionalization on
defect lines.

To see the edge state of which (2+1)D SPT state that
the defect line carries, we need to specify that the (3+1)D
Zn × Z̃n SPT state is described by the following SPT in-
variant: Ztop = ei 2π

n

∫
M3+1 k1a

Zn ∪aZ̃n∪Bna
Z̃n +k2a

Z̃n∪aZn ∪Bna
Zn . Then,

a Zn symmetry-twist defect line will carry the edge state of a
(2+1)D Zn × Z̃n SPT state characterized by the SPT invariant
Ztop = ei 2π

n

∫
M2+1 k1a

Z̃n ∪Bna
Z̃n−k2a

Zn ∪Bna
Z̃n (see Sec. III D 3).

To be more precise, the Zn symmetry-twist defect line
in (3+1)D has a nononsite (anomalous) Zn × Z̃n symmetry
[10,11,65] along the defect line. This (1+1)D anomalous
symmetry makes the defect line to be either gapless or
symmetry breaking [10]. This result generalizes the one in
[55]. This (1+1)D anomalous symmetry can be viewed as the
symmetry fractionalization on the strings.

The (1+1)D anomalous symmetry also appears on the
edge of (2+1)D SPT state. The (1+1)D anomalous symmetry
on the Zn symmetry-twist defect line happens to be the
same (1+1)D anomalous symmetry on the edge of a (2+1)D
Zn × Z̃n SPT state characterized by the SPT invariant Ztop =
ei 2π

n

∫
M2+1 k1a

Z̃n ∪Bna
Z̃n −k2a

Zn ∪Bna
Z̃n .

Pointlike and stringlike symmetry-twist defects are extrin-
sic defects in the SPT states. The above results indicate that
extrinsic defects in the SPT states can carry fractional quantum
numbers or anomalous symmetry. We would like to remark
here we need to distinguish extrinsic defects from excitations
which are intrinsic. The pointlike or stringlike excitations, by
definition, can all be trapped by potential traps of the same
dimension. For example, a pointlike excitation at x0 can be
trapped by a potential V (x), which is nonzero only near x0.
Those pointlike or stringlike excitations in SPT states do not
have symmetry fractionalization. In contrast, extrinsic defects
cannot be trapped by potentials of the same dimension. For
example, a pointlike symmetry-twist defect in (2+1)D can
only be trapped by a “potential” (a change of Hamiltonian)
that is nonzero along a line, where the pointlike defect is
trapped at an end of the line.

B. Statistical transmutation in (3+1)D

We have constructed a (3+1)D exactly soluble local bosonic
model

Z(M3+1) =
∑

b∈C2(M3+1;Z2)

db
2=0

eiπ
∫
M3+1 b∪b, (3)

where b is a 2-cochain field (see Sec. III A for a definition of
cochain field) and ∪ the cup product of cochains. The model
has an emergent fermion, and its low-energy effective theory
is a EF Z2-gauge theory. Such kind of EF Z2-gauge theory has
been constructed in terms of strings in (3+1)D [36,66]. Here,

we give a construction in terms of membranes (see Sec. III E)
[60,63].

As a corollary of the above construction, we find a statistical
transmutation in (3+1)D lattice M3+1 (expressed in terms of
partition function):

Z(M3+1) =
∑

b∈C2(M3+1;Z2)

db
2=∗j

eiπ
∫
M3+1 b∪b, (4)

where j is a cycle corresponding to the world line of a
bosonic scalar particle, and ∗j is the 3-cocycle corresponding
to the Poincaré dual of j . The term π

∫
M3+1 b ∪ b changes

the statistics of the particle from bosonic to fermionic.
This is similar to the statistical transmutation in (2+1)D by

Chern-Simons term. Note that the condition db
2= ∗j means

db = ∗j mod 2 which can be enforced using energy penalty
e−U

∫
M3+1 |db−∗j |2 .

Is the transmuted fermion a spin-up–spin-down doublet?
To address this issue, we would like to mention that the term
π
∫
M3+1 b ∪ b is compatible with time-reversal symmetry. If

the total model has a time-reversal symmetry, then the particle
dressed by the b field, i.e., the fermion, will be a time-reversal
singlet, which corresponds to a scalar fermion. However, this
behavior can be adjusted by changing the topological term to
π
∫
M3+1 (dg̃ ∪ dg̃ + b) ∪ b, where g̃i is a Z2-0-cochain field

which is a pseudoscalar. So, the new statistical transmutation
is given by

Z(M3+1) =
∑

g̃∈C0(M3+1;Z2)

b∈C2(M3+1;Z2),db
2=∗j

eiπ
∫
M3+1 [dg̃∪dg̃+b]∪b. (5)

The second type of statistical transmutation can still change the
statistics of the particle from bosonic to fermionic, but now the
fermion, dressed by b and g̃ fields, will be a Kramers doublet
which corresponds to a spin- 1

2 fermion (see Sec. VI C 4).

C. (2+1)D time-reversal symmetric topological orders

We have constructed 23 = 8 time-reversal symmetric local
bosonic models in (2+1)D [see Eq. (203)]:

Zk0k1k2;tZ2aT (M3)

=
∑

{g̃Z2
i ,a

Z2
ij ,b

Z2
ijk }

eiπ
∫
M3 bZ2 ∪(daZ2 −k0B2dg̃Z2 )

× eiπ
∫
M3 k1a

Z2 ∪aZ2 ∪aZ2 +k2dg̃Z2 ∪dg̃Z2 ∪aZ2
, (6)

where g̃
Z2
i ,a

Z2
ij ,b

Z2
ijk are Z2-valued 0-cochain, 1-cochain, and

2-cochain fields (see Sec. III A), and k0,1,2 = 0,1. Also, the
time-reversal symmetry is described by group ZT

2 with T 2 =
1, whose action is given by (g̃Z2

i ,a
Z2
ij ,b

Z2
ijk) → [mod(g̃Z2

i +
1,2),aZ2

ij ,b
Z2
ijk] plus the complex conjugation. {The above

model also has an additional Z′
2 symmetry generated

by (g̃Z2
i ,a

Z2
ij ,b

Z2
ijk) → [mod(g̃Z2

i + 1,2),aZ2
ij ,b

Z2
ijk] without the

complex conjugation.} We see that g̃
Z2
i is a pseudoscalar field.

The above eight models realize five types of time-reversal SET
orders.

The four constructed models (labeled by k00k2) reduce to
the Z2 topological order described by UT Z2-gauge theory

205142-3



XIAO-GANG WEN PHYSICAL REVIEW B 95, 205142 (2017)

TABLE I. The (2+1)D time-reversal (T ) symmetric topological orders from four 1-cocycle models in Eq. (6). They have three or four
types of pointlike topological excitations. di’s and si’s are the quantum dimensions and spins of those excitations. A quantum dimension d = 2
means that the excitation has two internal degrees of freedom. 2± means that the two internal degrees of freedom form a T 2 = 1 time-reversal
doublet or a T 2 = −1 Kramers doublet. Spin s = 1

2 corresponds to a fermion and s = 1
4 a semion. Spin s = 3

4 is the time-reversal conjugate
of a semion. The fourth and fifth columns are volume-independent partition functions Z

top
M3 with M3 = S1 × �g,S

1 × �non
g , where �g is the

genus g Riemannian surface and �non
g is the genus g nonorientable surface.

k0k1k2 (d1,de, . . . ) (s1,se, . . . ) Z
top
S1×�g

Z
top
S1×�non

g
Comments

000 (1,1,1,1) (0,0,0, 1
2 ) 4g 2g Z2-gauge theory (three bosons and one fermion)

001 (1,1,2−,2−) (0,0,0, 1
2 ) 4g 2g−1[1 + (−)g] A boson and a fermion are Kramers doublets

10∗ (1,2−,1,2−) (0,0,0, 1
2 ) 4g 2g−1[1 + (−)g] The same SET order as above

010 (1,1,2+) (0,0,[ 1
4 , 3

4 ]) 4g 2g−1 Two semions form a T 2 = 1 time-reversal doublet

011 (1,1,2−) (0,0,[ 1
4 , 3

4 ]) 4g 2g−1 Two semions form a T 2 = −1 Kramers doublet

11∗ (1,2−,2−,2+) (0,0,[ 1
4 , 3

4 ],[ 1
4 , 3

4 ]) 4g 2g−2[1 + (−)g] A boson is Kramers doublet

after we break the time-reversal symmetry (see top three rows
in Table I). But, three of them have identical topological orders.
Thus, the four models only give us two types of time-reversal
symmetric Z2-gauge theories [67]. They correspond to two
types of time-reversal symmetric Z2-gauge theories. Those
four models are obtained by gauging the Z2 subgroup in two of
the four Z2 × ZT

2 SPT states and by gauging the Z2 subgroup
of ZT

4 SPT states (ZT
4 has T 2 = −1). There is another type

of time-reversal symmetric Z2-gauge theory where the time-
reversal transformation exchanges the Z2 charge and Z2 vortex
[68]. Such a theory is missing from the table.

The other three of five constructed time-reversal SET orders
correspond to three types of time-reversal symmetric double-
semion theories [35,36] (see bottom three rows in Table I).
Those theories are obtained by gauging the Z2 subgroup in
two of the four Z2 × ZT

2 SPT states. Two of four constructed
models (labeled by k01k2) have identical topological orders.
They give us three types of time-reversal symmetric double-
semion theories.

It the interesting to note that one of the time-reversal
symmetric double-semion topological orders (the last row in
Table I) contains four types of pointlike excitations: (1) a
trivial type which is a time-reversal singlet; (2) a bosonic
Kramers doublet (denoted by quantum dimension, i.e., internal

degrees of freedom, d = 2−); (3) a T 2 = 1 time-reversal
doublet formed by two semions with spin 1

4 and 3
4 (denoted by

quantum dimension d = 2+); (4) a T 2 = −1 Kramers doublet
formed by two semions with spin 1

4 and 3
4 (denoted by quantum

dimension d = 2−).

D. (3+1)D time-reversal symmetric Z2-gauge theories

We also have constructed 26 = 64 local bosonic models in
(3+1)D which can realize 20 types of simplest topological
orders with time-reversal symmetry (see the black rows in
Table II). Those topological orders are simplest since they have
only one type of nontrivial pointlike topological excitation
and one type of nontrivial stringlike topological excitation.
The pointlike topological excitations in those (3+1)D SET
orders can be Kramers doublet (which corresponds to the
fractionalization [69,70] of time-reversal symmetry) and can
be fermionic. If we break the time-reversal symmetry, 16 of
the 20 SET orders reduce to the (3+1)D Z2 topological order
described by the UT Z2-gauge theory, and the other 4 of the 20
SET orders reduce to the (3+1)D topological order described
by the EF Z2-gauge theory.

Those 64 bosonic models are given by [see Eq. (218)]:

Zk1k2k3k4k5k6 (M4) =
∑

{g̃Z2
i ,a

Z2
ij ,b

Z2
ijk }

eiπ
∫
M4 aZ2 ∪[dbZ2 +k1a

Z2 ∪aZ2 ∪aZ2 +(k1+k2)dg̃∪dg̃∪dg̃]

× eiπ
∫
M4 [k4b

Z2 +(k3+k4)dg̃∪dg̃]∪bZ2 +k5dg̃∪dg̃∪dg̃∪dg̃+k6w2∪w2 , (7)

where kI = 0,1, bZ2 is a Z2 2-cocycle field, aZ2 a Z2 1-
cocycle field, and g̃i a pseudoscalar field which changes under
the time-reversal transformation g̃i → mod(g̃i + 1,2). The
above local bosonic models have a time-reversal symmetry:
the action amplitude is invariant under the combined trans-
formation of g̃i → mod(g̃i + 1,2) and complex conjugation.
The models also have a Z′

2 symmetry: the action amplitude
is invariant under g̃i → mod(g̃i + 1,2) (without the complex
conjugation).

But, the above model is exactly soluble only when k1k4 = 0.
Those 48 exactly soluble models produce the rows in Table II.

The models described by the boldface rows in Table II produce
topological orders that are identical to some of the other
rows. Those identities come from the relations between the
Stiefel-Whitney classes on four-dimensional space-time [see
Eq. (D14)]:

w1 ∪ w2 = 0, w1 ∪ w3 = 0,

w1 ∪ w1 ∪ w1 ∪ w1 + w2 ∪ w2 + w4 = 0. (8)

We see that w1 ∪ w1 + w2 = 0 implies w1 ∪ w1 ∪ w1 + w2 ∪
w1 = w1 ∪ w1 ∪ w1 = 0. Thus, δ(w3

1)δ(w2
1 + w2) = δ(w2

1 +
w2), which implies that the first and the second rows in the
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TABLE II. The (3+1)D time-reversal (T ) symmetric Z2-gauge theories emerged from lattice bosonic models Zk1k2k3k4k5k6 in Eq. (7). Each
row corresponds to a root family which contains a few (Ndis) T -symmetric topological orders labeled by k5,k6 = 0,1. Topological orders in
the same root family differ only by ZT

2 SPT states. di’s and si’s are the quantum dimensions and spins of pointlike excitations. The models
described by the boldface rows produce topological orders that are identical to some of the other rows. A quantum dimension d = 2 means that
the excitation has two internal degrees of freedom. 2− means that the two internal degrees of freedom form a Kramers doublet with T 2 = −1.
The fourth column is the volume-independent partition function on space-time M4, where wi is the ith Stiefel-Whitney class.

k1k2k3k4k5k6 (d1,d2) (s1,s2) Ztop = |H 1(M4;Z2)|eiπ
∫
M4 k5w4

1

|H 0(M4;Z2)|eiπ
∫
M4 k6w2

2
× Ndis As gauged SPT state

0000k5k6 (1,1) (0,0) 1 4 Bosonic Z2 × ZT
2 trivial state

0100 ∗ k6 (1,1) (0,0) δ(w3
1) 2 Bosonic Z2 × ZT

2 SPT state

1000k5k6 (1,1) (0,0) δ(w3) 4 Bosonic Z2 × ZT
2 SPT state

1100 ∗ k6 (1,1) (0,0) δ(w3 + w3
1) 2 Bosonic Z2 × ZT

2 SPT state

0001k5∗ (1,2−) (0, 1
2 ) δ(w2) 2 Free fermion ZT

4 SPT state

0101 ∗ ∗ (1,2−) (0, 1
2 ) δ(w3

1)δ(w2) 1 unknown
0010 ∗ k6 (1,2−) (0,0) δ(w2

1) 2 Bosonic ZT
4 SPT state

0110 ∗ k6 (1,2−) (0,0) δ(w3
1)δ(w2

1) = δ(w2
1) 2

1010 ∗ k6 (1,2−) (0,0) δ(w3)δ(w2
1) 2 Bosonic ZT

4 SPT state
1110 ∗ k6 (1,2−) (0,0) δ(w3 + w3

1)δ(w2
1) = δ(w3)δ(w2

1) 2

0011 ∗ ∗ (1,1) (0, 1
2 ) δ(w2

1 + w2) 1 Fermionic Z
f

2 × ZT
2 trivial state

0111 ∗ ∗ (1,1) (0, 1
2 ) δ(w3

1)δ(w2
1 + w2) = δ(w2

1 + w2) 1

fourth block in Table II have the same partition function and
thus correspond to the same theory.

We note that the four types of (3+1)D ZT
2 SPT states

[11,71] can be labeled by k5,k6 = 0,1 and are characterized
by the SPT invariant Z(M4) = eiπ

∫
M4 k5w4

1+k6w2
2 . The ZT

2 SPT
state (k5k6) = (10) is the one described by group cohomolgy
H4(ZT

2 ; (R/Z)T ) [11], and has a time-reversal symmetric
boundary described by an anomalous Z2-gauge theory where
the Z2 charge e and the Z2 vortex m are both Kramers doublet,
while the e and m bound state ε is a time-reversal singlet
fermion [71]. The ZT

2 SPT state (k5k6) = (01) is beyond
H4[ZT

2 ; (R/Z)T ], and has a time-reversal symmetric boundary
described by an anomalous Z2 gauge theory where e, m, and
ε are all fermions.

The model with the same k1k2k3k4 but different k5k6 only
differs by stacking those four ZT

2 SPT states. We call two
time-reversal SET orders that differ only by stacking of ZT

2
SPT states as to have the same root since those SETs have
identical bulk pointlike and stringlike excitations. We find that
the 20 SET orders belong to 9 root families. This is because
stacking the four ZT

2 SPT states does not always produce four
distinct time-reversal SET phases since the partition function
may vanish on space-time with nontrivial w1 ∪ w1 ∪ w1 ∪ w1,
w2 ∪ w2, or w1 ∪ w1 ∪ w1 ∪ w1 + w2 ∪ w2. The number Ndis

of distinct time-reversal SET phases in each root family is
given in Table II. The nine root families correspond to nine
types of (3+1)D time-reversal symmetric Z2-gauge theories.

From Table II and from the discussions in Sec. VI C 5, we
also see the physical meaning of each topological term labeled
by k1k2k3k4:

(1) k4 = 1 makes the pointlike excitations to be fermions.
(2) k4 + k3 = 1 mod 2 makes the pointlike excitations to

be Kramers doublet.
(3) k1 + k2 = 1 mod 2 makes the stringlike excitations to

carry an anomalous Z′
2 symmetry that appear on the boundary

of a (2+1)D Z′
2 SPT state. Such an anomalous (nononsite)

Z′
2 symmetry is given by U ′ =∏I σ x

I

∏
I σ z

I

1+σ z
I +σ z

I+1−σ z
I σ z

I+1

2 ,

where σ z
i = (−)g̃i and

1+σ z
I +σ z

I+1−σ z
I σ z

I+1

2 = CZ(σ z
I ,σ z

I+1) is the
controlled-Z gate acting on the two qubits σI and σI+1.

Certainly, when k1 + k2 = 0 mod 2, the string will not
have anomalous symmetry, and are in general gapped and
symmetric.

There are also many other ways to realize time-reversal
symmetric Z2-gauge theories. For example, one can use non-
linear σ -model field theory to realize many of the above time-
reversal SETs with bosonic pointlike excitations [72]. More
generally, one may start with Z2 × ZT

2 bosonic SPT states.
There are eight such states since H4[Z2 × ZT

2 ; (R/Z)T ] =
Z⊕3

2 [11]. Gauging the Z2 symmetry gives us eight time-
reversal symmetric Z2 topological orders. But, some of them
only differ by a ZT

2 SPT state. We only obtain four root
states (i.e., four time-reversal symmetric Z2-gauge theories),
that correspond to the first four rows in Table II. We can
also start with ZT

4 bosonic SPT states. There are two such
states since H4[ZT

4 ; (R/Z)T ] = Z2. After gauging the unitary
Z2 subgroup of ZT

4 , we obtain two time-reversal symmetric
Z2-gauge theories (see the two black rows in the third block in
Table II). Those two root states have a property that stacking
with the (k5k6) = (10) ZT

2 SPT state gives us the same root
states back. The other two root states (the boldface rows) are
identical to the two black rows in the third block.

The second block in Table II contains two root states. The
first one can be obtained by gauging ZT

4 fermionic SPT states,
which is also known as the T 2 = −1 fermionic topological
superconductor [73,74]. There are at least 16 ZT

4 fermionic
SPT states labeled by ν = 0,1, . . . ,15 [75–77]. Gauging the
fermion-parity Z

f

2 subgroup in ZT
4 fermionic SPT states

will produce several time-reversal symmetric topological
orders that contain Kramers-doublet fermions. The stringlike
excitations (i.e., the Z

f

2 vortex lines or the Z
f

2 symmetry-twist
defect line) in those topological orders must be gapless unless
ν = even, if the time-reversal symmetry is not broken [78]. In
comparison, the strings in the three time-reversal symmetric
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TABLE III. Volume-independent partition function Ztop(M4) for the constructed local bosonic models, on closed four-dimensional space-
time manifolds. The space-time M4 considered here satisfies χ (M4) = P1(M4) = 0, which makes Ztop(M4) to be a topological invariant [31].
The topological invariants listed below are also the ground-state degeneracy on the corresponding spatial manifold M3

space. Here, L3(p) is the

three-dimensional lens space and F 4 = (S1 × S3)#(S1 × S3)#CP 2#CP
2
. F 4 is not spin. The different models are labeled by kI which all have

a range kI = 0,1, . . . ,n − 1.

Models\M4 T 4 T 2 × S2 S1 × L3(p) F 4 Low-energy effective theory

Z
top
Zna(M

4) n3 n 〈n,p〉 n UT Zn-gauge theory

Z
top
k;b2Zn

(M4) 〈2k,n〉3 〈2k,n〉 〈2k,n,p〉
〈2k,n〉 if 2kn

〈2k,n〉2 = even

0 if 2k2n

〈2k2,n〉2 = odd
Z〈2k,n〉-gauge theory with fermions

iff 2kn

〈2k,n〉2 = odd

Z
top
k1k2;aa′Ba′Zn

(M4) n6 n2 〈n,p〉〈n,p,k1,k2〉 if
p has no repeated
prime factors

n2 Zn × Zn Dijkgraaf-Witten theory

Z
top
k1k2;bBa-bbZn

(M4) n3〈2k2,n〉3 n〈2k2,n〉 〈n,p〉〈2k2,n,p,
k1p

〈n,p〉 〉
n〈2k2,n〉 if 2k2n

〈2k2,n〉2 = even

0 if 2k2n

〈2k2,n〉2 = odd
(Z n〈2k2,n〉

〈k1 ,2k2 ,n〉
× Z〈k1,2k2,n〉)-gauge theory

with fermions iff 2k2n

〈2k2,n〉2 = odd

topological orders described by the two rows in the second
block do not carry any anomalous time-reversal symmetry. In
other words, the excitations on the strings can be gapped even
if we do not break the time-reversal symmetry.

All the states in the second block have a property that
stacking with the (k5k6) = (01) bosonic ZT

2 SPT state (char-
acterized by the SPT invariant eiπ

∫
M4 k5w2∪w2 ) does not change

their ZT
2 SET orders. Similarly, the ZT

4 fermionic topological
superconductors also have the property that stacking with the
(k5k6) = (01) ZT

2 SPT state does not change the SPT order. For
example, the ν = 0 ZT

4 fermionic topological superconductor
has a boundary with two types of quasiparticles {1,c}, where
1 is the trivial type and c is a Kramers-doublet fermion.
The (k5k6) = (01) ZT

2 SPT state has boundary with four
types of quasiparticles {1,f1,f2,ε}, where f1 and f2 are
Kramers-doublet fermions and ε is a time-reversal singlet
fermion. Also, f1,2 and ε have π -mutual statistics among
them. The stacking of the two states has a boundary with
quasiparticles {1,f1,f2,ε} × {1,c}. We may condense the
time-reversal singlet boson f2c. Then, the new boundary
state has quasiparticles {1,c}. The quasiparticle f2 is also
not confined, but it is equivalent to c since the two only
differ by a condensed boson. Thus, the stacking of the
ν = 0 state and the (k5k6) = (01) state can have the same
boundary as the ν = 0 state. The stacking of (k5k6) = (01) state
does not change the SPT order in ZT

4 fermionic topological
superconductor.

The two states that correspond to the first row in the second
block differ by stacking with the (k5k6) = (10) ZT

2 SPT state
characterized by the SPT invariant eiπ

∫
M4 k5w1∪w1∪w1∪w1 . For

ZT
4 fermionic topological superconductors, stacking with the

(k5k6) = (10) state will shift ν by 8 [75,78,79]. This suggests
that the two states are the ν = 0 and the 8 ZT

4 fermionic topo-
logical superconductor with gauged Z

f

2 symmetry [75,78,79].
On the other hand, for the time-reversal symmetric topo-

logical order described by the second row in the second block,
stacking with any ZT

2 SPT states does not change its ZT
2 SET

order. It is not clear if the ZT
2 SET order can be viewed as the

Z
f

2 -gauged ν = ±4 ZT
4 fermionic topological superconductor

or not.

E. Vanishing of the volume-independent partition function

We have calculated many volume-independent partition
functions, and find they vanish some times. In general, a
partition function may have a form

Z(Md ) = e−cdLd−cd−1L
d−1−···−c0L

0−c−1L
−1−···, (9)

where L is the linear size of Md . If the ground state does
not contain pointlike, stringlike, etc., defects, then c1 = c2

= · · · = cd−1 = 0. In this case,

Ztop(Md ) ≡ lim
L→∞

Z(Md )

e−cdLd
= e−c0L

0
(10)

is the volume-independent partition function. When the calcu-
lated volume-independent partition function vanishes, it does
not mean the partition function to vanish nor the theory to
be anomalous. It just means that ci > 0, for some 0 < i < d.
This implies that the given space-time topology Md induces
pointlike, stringlike, etc., topological excitations.

We have calculated volume-independent partition functions
for many constructed systems and for many space-time
manifolds (see Tables I, II, and III). From those results, we
conjecture the following: A local bosonic model with emergent
fermion always has vanishing volume-independent partition
function Ztop(Md ) = 0 if the orientable Md is not spin.

In the presence of time-reversal symmetry, we have the
following results: (1) A local bosonic model with emergent
Kramers doublet fermions always has vanishing volume-
independent partition function Ztop(Md ) = 0 if Md is not
pin+ (i.e., w2 �= 0). (2) A local bosonic model with emergent
time-reversal singlet fermions always has vanishing volume-
independent partition function Ztop(Md ) = 0 if Md is not
pin− (i.e., w2 + w2

1 �= 0). (3) A local bosonic model with
emergent Kramers doublet bosons always has vanishing
volume-independent partition function Ztop(Md ) = 0 if w2

1 �=
0 on Md . (See Appendix E for a brief introduction of spin,
pin+, and pin− manifolds.) Those properties have been used
to develop cobordism theory for fermionic SPT states [80].

In the rest of this paper, we will present detailed construc-
tions and calculation.
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III. A GENERIC CONSTRUCTION OF EXACTLY
SOLUBLE BOSONIC LATTICE MODELS

ON SPACE-TIME LATTICE

In this section, we are going to introduce a general way to
construct exactly soluble local bosonic models. Those models
are written in terms of path integral on space-time lattice.
Those models are also designed to have topologically ordered
ground states. In other words, those models have emergent
topological field theory at low energies.

First, we will briefly review the related mathematics.
Then, we will construct models that realize some well-known
topological orders, such as those described by discrete gauge
theories, and by Dijkgraaf-Witten theories. After that, we will
construct models that realize more general topological orders
whose low-energy effective theories are beyond Dijkgraaf-
Witten theories. We will also compute the volume-independent
partition functions for those constructed models on several
choices of space-time manifolds. The results are summarized
in Table III.

A. Space-time complex, cochains, and cocycles

Our local bosonic models will be defined on a space-
time lattice. A space-time lattice is a triangulation of the
d-dimensional space-time, which is denoted as Md

latt. We will
also call the triangulation Md

latt as a space-time complex. A cell
in the complex is called a simplex. We will use i,j, . . . to label
vertices of the space-time complex. The links of the complex
(the 1-simplices) will be labeled by (i,j ),(j,k), . . . . Similarly,
the triangles of the complex (the 2-simplices) will be labeled
by (i,j,k),(j,k,l), . . . .

A cochain fn is an assignment of values in M to each
n-simplex, for example, a value fn;i,j,...,k ∈ M for n-simplex
(i,j, . . . ,k). So a cochain fn can be viewed as a bosonic field on
the space-time lattice. In this paper, we will use such cochain
bosonic field to construct our models.

In this paper, we will assume M to be a ring which supports
addition and multiplication operations, as well as scaling by
an integer:

x + y = z, x ∗ y = z, mx = y,

x,y,z ∈ M, m ∈ Z. (11)

We see that M can also be viewed a Z module (i.e., a vector
space with integer coefficient) that also allows a multiplication
operation. In this paper we will view M as a Z module. The
direct sum of two modules M1 ⊕ M2 (as vector spaces) is
equal to the direct product of the two modules (as sets):

M1 ⊕ M2
as set= M1 × M2. (12)

We like to remark that a simplex (i,j, . . . ,k) can have
two different orientations. We can use (i,j, . . . ,k) and
(j,i, . . . ,k) = −(i,j, · · · ,k) to denote the same simplex with
opposite orientations. The value fn;i,j,...,k assigned to the
simplex with opposite orientations should differ by a sign:
fn;i,j,...,k = −fn;j,i,...,k . So, to be more precise fn is a linear
map fn : n-simplex → M. We can denote the linear map as
〈fn,n-simplex〉, or

〈fn,(i,j, . . . ,k)〉 = fn;i,j,...,k ∈ M. (13)

i

l

j k

a

FIG. 2. A 1-cochain a has a value 1 on the red links: aik = ajk =
1 and a value 0 on other links: aij = akl = 0. da is nonzero on
the shaded triangles: (da)jkl = ajk + akl − ajl . For such 1-cohain,
we also have a ∪ a = 0. So, when viewed as a Z2-valued cochain,
B2a �= a ∪ a mod 2.

More generally, a cochain fn is a linear map of n-chains:

fn : n-chains → M (14)

or (see Fig. 2)

〈fn,n-chain〉 ∈ M, (15)

where a chain is a composition of simplices. For example, a
2-chain can be a 2-simplex: (i,j,k), a sum of two 2-simplices:
(i,j,k) + (j,k,l), a more general composition of 2-simplices:
(i,j,k) − 2(j,k,l), etc. The map fn is linear with respect to
such a composition. For example, if a chain is m copies of a
simplex, then its assigned value will be m times that of the
simplex. m = −1 corresponds to an opposite orientation.

The total space-time lattice Md
latt corresponds to a d-chain.

We will use the same Md
latt to denote it. Viewing fd as a linear

map of d-chains, we can define an “integral” over Md
latt:∫

Md
latt

fd ≡ 〈fd,M
d
latt

〉
. (16)

In this paper, we usually take M to be integer Z or mod n

integer Zn = {0,1, . . . ,n − 1}. So, not only the field fn;i,j,...,k

is defined on a discrete space-time lattice, even the value of the
field is discrete. We will use Cn(Md

latt;M) to denote the set of
all n-cochains on Md

latt. C
n(Md

latt;M) can also be viewed as a set
all M-values fields (or paths) on Md

latt. Note that Cn(Md
latt;M)

is an Abelian group under the + operation.
We can define a derivative operator d acting on an n-cochain

fn, which give us an n + 1-cochain (see Fig. 2)

〈dfn,(i0i1i2 . . . in+1)〉 =
n+1∑
m=0

(−)m〈fn,(i0i1i2 . . . îm . . . in+1)〉,

(17)

where i0i1i2 . . . îm . . . in+1 is the sequence i0i1i2 . . . in+1 with
im removed, and i0,i1,i2 . . . in+1 are the ordered vertices of the
(n + 1)-simplex (i0i1i2 . . . in+1).

A cochain fn ∈ Cn(Md
latt;M) is called a cocycle if dfn = 0.

The set of cocycles is denoted as Zn(Md
latt;M). A cochain
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i

k l

ij j

k la’

a

a’

a

FIG. 3. A 1-cochain a has a value 1 on the red links. Another
1-cochain a′ has a value 1 on the blue links. On the left, a ∪ a′ is
nonzero on the shade triangles: (a ∪ a′)ij l = aij a

′
j l = 1, while on the

right, a′ ∪ a is zero. Thus, a ∪ a′ + a′ ∪ a is not a coboundary.

fn is called a coboundary if there exists a cochain fn−1

such that dfn−1 = fn. The set of coboundaries is denoted
as Bn(Md

latt;M). Both Zn(Md
latt;M) and Bn(Md

latt;M) are
Abelian groups as well. Since d2 = 0, a coboundary is always
a cocycle: Bn(Md

latt;M) ⊂ Zn(Md
latt;M). We may view two

cocycles differ by a coboundary as equivalent. The equivalence
classes of cocycles [fn] form the so-called cohomology group
denoted as

Hn
(
Md

latt;M
) = Zn

(
Md

latt;M)/Bn
(
Md

latt;M
)
. (18)

Hn(Md
latt;M), as a group quotient of Zn(Md

latt;M) by
Bn(Md

latt;M), is also an Abelian group.
From two cochains fm and hn, we can construct a third

cochain pm+n via the cup product (see Fig. 3)

pm+n = fm ∪ hn,

〈pm+n,(i0 . . . im+n)〉 = 〈fm,(i0i1 . . . im)〉
× 〈hn,(imim+1 . . . im+n)〉. (19)

The cup product has the following property (see Fig. 3):

d(fm ∪ hn) = (dhn) ∪ fm + (−)nhn ∪ (dfm). (20)

We see that fm ∪ hn is a cocycle if both fm and hn are cocycles.
If both fm and hn are cocycles, then fm ∪ hn is a coboundary
if one of fm and hn is a coboundary. So, the cup product is
also an operation on cohomology groups ∪ : Hm(Md ;M) ×
Hn(Md ;M) → Hm+n(Md ;M). When both fm and hn are
cocycles, we also have

fm ∪ hn = (−)mnhn ∪ fm + coboundary. (21)

In the rest of this paper, we abbreviate the cup product a ∪ b

as ab by dropping ∪. Also, we will use Zn ={0,1, . . . ,n−1}
and Zn = {1,ei 2π

n ,ei2 2π
n , . . . ,ei(n−1) 2π

n } to denote the same
Abelian group. In Zn, the group multiplication is mod-n “+”
and in Zn, the group multiplication is “∗”.

B. Zn-1-cocycle model and emergent Zn-gauge theory

1. Model construction

Using the above mathematical formalism, let us construct
a local bosonic model on a space-time lattice Md+1

latt , where the
local degrees of freedom live on the links. The possible values
on each link are a

Zn

ij = 0,1, . . . ,n − 1 ∈ Zn.
The action amplitude e−Scell for a (d + 1)-simplex (ij . . . l)

is a complex function of a
Zn

ij : e−Lij...l ({aZn
ij }). The total action

amplitude e−S for a configuration (or a path) is given by

e−S({aZn
ij }) =

∏
(ij ...l)

e−Lij...l ({aZn
ij }), (22)

where
∏

(ij ...l) is the product over all the (d + 1)-simplices
(ijkl). Our local bosonic model is defined by the following
imaginary-time path integral (or partition function)

ZZna =
∑
{aZn

ij }
e−S({aZn

ij }) =
∑
{aZn

ij }
e−∑(ij ...l) Lij...l ({aZn

ij }), (23)

where
∑

{aZn
ij } is a sum over all paths (i.e., the path integral).

We may view a
Zn

ij asZn-valued 1-cochain on the space-time
complex M3

latt:

a
Zn

ij = 〈aZn ,(ij )〉, aZn ∈ C1
(
M3

latt,Zn

)
. (24)

The Lagrangian Lij...l({aZn

ij }) will produce an emergent low-
energy Z2-gauge theory (i.e., have a Z2 topological order) if
we choose it to be

Lij...l

({
a
Zn

ij

}) = +∞ if (daZn ) �= 0 on (ij . . . l),

Lij...l

({
a
Zn

ij

}) = 0 if (daZn ) = 0 on (ij . . . l). (25)

So, the action amplitude e−Lij...l ({aZn
ij }) is nonzero only when aZn

is a cocycle, and the nonzero value is always 1. In other words,
our local bosonic model is described by an action S(aZn )=0
when aZn is a cocycle, and S(aZn ) = +∞ when aZn is
not a cocycle. We see that the configurations described by
noncocycles cost an infinity energy. We will call the local
bosonic model described by the above Lij...l as a Zn-1-cocycle
model.

2. Topological partition functions

The partition function ZZna(Md+1
latt ) of the Zn-1-cocycle

model can be calculated exactly, which is given by the number
of 1-cocycles |Z1(Md+1

latt ;Zn)|, where |S| denotes that number
elements in set S. The number of 1-cochains is given by
|H 1(Md+1

latt ;Zn)| times the number of 0-cochains whose deriva-
tives are nonzero. The number of 0-cochains whose derivatives
are nonzero is the number of 0-cochains, |C0(Md+1

latt ;Zn)|,
divided by |H 0(Md+1

latt ;Zn)|. Since |C0(Md+1
latt ;Zn)| = 2Nv ,

where Nv is the number of vertices (the “volume” of space-
time), we find that the partition function is

ZZna
(
Md+1

latt

) = ∣∣Z1
(
Md+1

latt ;Zn

)∣∣
= ∣∣H 1

(
Md+1

latt ;Zn

)∣∣ ∣∣C0
(
Md+1

latt ;Zn

)∣∣∣∣H 0
(
Md+1

latt ;Zn

)∣∣
= 2Nv

∣∣H 1
(
Md+1

latt ;Zn

)∣∣∣∣H 0
(
Md+1

latt ;Zn

)∣∣ . (26)

According to [31], the topological information is given by
the volume-independent part of partition function, which is
obtained by taking the limit Nv → 0:

Z
top
Zna(Md+1) = |H 1(Md+1;Zn)|

|H 0(Md+1;Zn)| . (27)
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The volume-independent partition function can be a topolog-
ical invariant [31] if the Euler number and the Pontryagin
number vanish: χ (Md+1) = P (Md+1) = 0. Such topolog-
ical invariant characterizes the topological order realized
by the model. Since the Z2-gauge theory will produce the same
volume-independent partition function Z

top
Zna(Md+1) in large

system size and low-energy limit, this allows us to determine
that the Zn-1-cocycle model realizes the Z2 topological order
[81,82], the topological order described UT Zn-gauge theory.

In (2+1)D and for n = 2, the Z2 topological order has
two bosonic topological quasiparticles, Z2 charge e and Z2

vortex m, and one fermionic topological quasiparticles f

which is a bound state of e and m. In higher dimensions,
the Zn topological order has n types of bosonic pointlike
excitations: the Zn charge q = 0,1, . . . ,n − 1. It also has n

types of (d − 2)-dimensional branelike excitations: the Zn flux
m = 0, 2π

n
, . . . , 2π(n−1)

n
.

We note that the volume-independent partition function on
space-time S1 × S1 × Sd−1 = T 2 × Sd−1 is given by

Z
top
Zna(T 2 × Sd−1) = n. (28)

Since the volume-independent partition function on S1 × Md

is equal to the ground-state degeneracy (GSD) on space Md ,

GSD(Md ) = Ztop(S1 × Md ), (29)

we find that the GSD of our Zn-1-cocycle model on space
S1 × Sd−1 is given by GSD(S1 × Sd−1) = n.

It turns out that

for any topological order, GSD(S1 × Sd−1) is always equal to
the number of types of pointlike topological excitations.

Such a result can be understood by the particle-hole tunneling
process in Fig. 4. Such a particle tunneling process changes one
ground state to another degenerate one, and relates the number
types of pointlike topological excitations to GSD(S1 × Sd−1).
It is also true that

for any topological order, GSD(S1 × Sd−1) is always equal
to the number of types of (d − 2)-dimensional branelike
topological excitations [83].

(The notion of types of topological excitations, in particular
high-dimensional topological excitations was discussed in
[31]. It is very tricky to define the types of high-dimensional
topological excitations.) This can be understood by a similar
brane tunneling process around Sd−1.

S1 Sd−1 

FIG. 4. A particle-hole tunneling process is a process where we
create a particle-hole pair, move the particle around a noncontractible
loop, and then annihilate the particle and the hole. The GSD on
a d-dimensional space S1 × Sd−1 is generated by the particle-hole
tunneling process described by the blue loop. Thus, each degenerate
ground state corresponds to a type of particle, and GSD(S1 × Sd−1) =
number of types of pointlike excitations. Similarly, GSD(Sk ×
Sd−k) = number of types of (k − 1)-dimensional excitations.

In general,

in d-dimensional space, the number of types of (k − 1)-
dimensional branelike excitations is equal to the number of
types of (d − k − 1)-dimensional branelike excitations, and
they both equal to GSD(Sk × Sd−k).

3. Boundary effective theory

Using the cocycle model, we can also easily study the
properties of the boundary. Consider a space-time Md+1 whose
boundary is Nd = ∂Md . What is the low-energy effective
theory of our Zn-1-cocycle model on the boundary Nd? To be
more concrete, what is the partition function for the boundary
effective theory? Here, we propose that the partition function
for the boundary effective theory is simply given by

Zbndr
Zna (Nd ) = ZZna(Md+1). (30)

However, the above definition has a problem: the same Nd

can be viewed as boundary of different space-time manifolds
Nd = ∂Md+1 = ∂M̃d+1. In general,

ZZna(Md+1) �= ZZna(M̃d+1) (31)

so the above definition of Zbndr
Zna (Nd ) is not self-consistent.

In order for the definition to be self-consistent, we require
that

ZZna(Md+1) = ZZna(M̃d+1) (32)

for all Md+1 and M̃d+1 with ∂Md+1 = ∂M̃d+1. This implies
that the bulk model on Md+1 has no topological order. So the
boundary effective theory is well defined by itself iff the bulk
theory on Md+1 has no topological order. This is exactly the
gravitational-anomaly-free condition discussed in [31,50,65].

Since the bulk Zn-1-cocycle model has a nontrivial topo-
logical order, the boundary effective theory is anomalous.
This implies that the boundary effective partition function
Zbndr
Zna (Nd ) not only depends on Nd , it also depends on how Nd

is extended to one higher dimension, i.e., depends on Md+1.
The definition (30) correctly reflects such anomaly effect, and
thus is a proper definition. However, to stress the dependence
on the extension, we rewrite Eq. (30) as

Zbndr
Zna (Nd,Md+1) = ZZna(Md+1). (33)

Even though the boundary partition function depends on the
bulk extension, it is still very useful in determining boundary
low-energy properties, such as if the boundary gapped or not.
Let us first choose Nd = Sd and choose its extension to be
Md+1 = Bd+1, where Bd+1 is a (d + 1)-dimensional ball. We
find the boundary partition function to be

Zbndr
Zna (Sd,Bd+1) = 1

n
nNbndr

v nNblk
v , (34)

where Nbndr
v is the number of vertices on the boundary Sd

and Nblk
v is the number of vertices inside the ball Bd+1.

The partition function only depends on the “volume” of the
boundary and does not depend on the shape of the boundary.
This implies that the boundary theory is gapped.

Next, let us choose Nd = S1
t × Sd−1, where we use S1

t to
represent the closed time direction. We choose its extension to
be Md+1 = S1

t × Bd . We find the boundary partition function
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to be

Zbndr
Zna

(
S1

t × Sd−1,S1
t × Bd

) = nNbndr
v nNblk

v . (35)

We see that the volume-independent boundary partition func-
tion is

Z
bndr,top
Zna

(
S1

t × Sd−1,S1
t × Bd

) = 1. (36)

This implies that the gapped boundary has no ground-state
degeneracy (for the boundary Sd−1). For example, there is no
symmetry breaking.

To see if the boundary carries an anomalous topological
order, let us choose Nd = S1

t × Sk+1 × Sd−2−k and choose its
extension to be Md = S1

t × Sk+1 × Bd−1−k . Since the tunnel-
ing process of k-dimensional branelike topological excitations
around Sk+1 on the boundary corresponds to a noncontractible
loop in the bulk S1

t × Sk+1 × Bd−1−k , the tunneling process
will generate a map between different degenerate ground
states. In contrast, the brane tunnel process around Sd−2−k on
the boundary corresponds to a contractible “loop” in the bulk
S1

t × Sk+1 × Bd−1−k and does not generate nontrivial map
between degenerate ground states. Therefore, similar to the
bulk case, Zbndr

Zna (S1
t × Sk+1 × Sd−2−k,S1

t × Sk+1 × Bd−1−k)
can tell us the number of types of k-dimensional branelike
topological excitations on the boundary.

For our Zn-1-cocycle model, we found the volume-
independent partition function to be

Z
bndr,top
Zna

(
S1

t × Sk+1 × Sd−2−k,S1
t × Sk+1 × Bd−1−k

)
=
∣∣H 1

(
S1

t × Sk+1 × Bd−1−k;Zn

)∣∣∣∣H 0
(
S1

t × Sk+1 × Bd−1−k;Zn

)∣∣ =
{

1, k > 0
n, k = 0.

(37)

Thus, the boundary theory contains n types of pointlike exci-
tations, and no nontrivial branelike excitations of dimensions
greater then 0.

The n types of pointlike topological excitations on the
boundary contain a trivial type and n − 1 nontrivial type. When
n > 1, the existence of nontrivial topological excitations on
the boundary implies that the boundary carries a nontrivial
topological order (which is anomalous). This agrees with the
previous known result [31,84].

A given bulk model can have many types of boundaries. For
our Zn-1-cocycle model, the bulk contain n types of pointlike
topological excitations and n types of (d − 2)-dimensional
branelike topological excitations. One type of the boundary
is formed by the brane condensation. Such a boundary has
n types of pointlike topological excitations only. Another
type of boundary is formed by the particle condensation.
Such a boundary has n types of (d − 2)-dimensional branelike
topological excitations only. We see that our boundary of Zn-
1-cocycle model is the first type induced by the condensation
of branes. We will call such boundary as “free boundary”
since the 1-cocycle field has a free boundary condition on the
boundary.

To realize the second type of the boundary, we need to
use the fixed boundary condition by setting the 1-cocycle
field to be a

Zn

ij = 0 on the boundary. Again, Zbndr
Zna (S1

t ×
Sk+1 × Sd−2−k,S1

t × Sk+1 × Bd−1−k) can tell us the number
of types of k-dimensional branelike topological excitations on
the boundary. To compute such partition function, we notice

that when k < d − 2, the 1-cocycle aZn can be written as
aZn = dgZn is a Zn-valued 0-cochain which vanishes on the
boundary. The correspondence between a

Zn

ij and g
Zn

i is one to

one. This is because even when k = 0,
∮
Sk+1 aZn = 0 since we

have fixed aZn = 0 on the boundary. Thus,

Zbndr
Zna

(
S1

t × Sk+1 × Sd−2−k,S1
t × Sk+1 × Bd−1−k

) = nNblk
v .

(38)

The volume-independent partition function is

Z
bndr,top
Zna

(
S1

t × Sk+1 × Sd−2−k,S1
t × Sk+1 × Bd−1−k

)
= 1, for k < d − 2. (39)

Thus, there are no nontrivial k-dimensional branelike excita-
tions on the boundary for k < d − 2. There are no nontrivial
pointlike excitations on the boundary which is the k = 0 case
included above. When k = d − 2, Sd−2−k = S0 is a set of two
points. In this case, the boundary contains two disconnected
pieces. We may set the 0-cochain field gZn = 0 on one piece.
But, we need to set gZn = const on the other piece. We find
that

Zbndr
Zna

(
S1

t × Sd−1 × S0,S1
t × Sd−1 × B1

) = nnNblk
v (40)

or the volume-independent one

Z
bndr,top
Zna

(
S1

t × Sd−1 × S0,S1
t × Sd−1 × B1

) = n. (41)

There are n types of (d − 2)-dimensional branelike excita-
tions on the boundary. The aZn = 0 boundary gives us the
second type of boundary formed by condensing the pointlike
excitations.

C. Twisted (2+1)D Zn-1-cocycle model and emergent
Dijkgraaf-Witten theory

1. Model construction

To construct another local bosonic model that realizes a
different topological order, we may choose Lijkl to be

Lijkl = +∞ if (daZn) �= 0,

Lijkl = −ik
2π

n
(aZnBna

Zn)(i,j,k,l) if (daZn) = 0. (42)

Here, we have used Bockstein homomorphism Bn :
Hm(Md ;Zn) → Hm+1(Md ;Zn),

Bnx
n= 1

n
dx,

x ∈ Hm(Md ;Zn), Bnx ∈ Hm+1(Md ;Zn). (43)

To understand the Bockstein homomorphism, we note that x

in the above is a cocycle with Zn. If we view it as a cochain
with integer coefficient Z, then dx is a cochain whose values
are always multiples of n. Thus, 1

n
dx is a valid cochain with

integer coefficient. In fact, it is (m + 1)-cocycle with integer
coefficient. After a mod n reduction, 1

n
dx mod n becomes a

(m + 1)-cocycle with Zn coefficient. This is why Bn is a map
from Hm(Md ;Zn) to Hm+1(Md ;Zn). Therefore, Bna

Zn is a
2-cocycle and aZnBna

Zn is a 3-cocycle. Here, we use such a
3-cocycle to construct the action Lijkl .
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The total action amplitude e−S({aZn
ij }) is given by

e−S({aZn
ij }) = e

ik 2π
n

∫
M3

latt
aZnBna

Zn

(44)

for daZn = 0, and e−S({aZn
ij }) = 0 for daZn �= 0. The partition

function is given by

Zk;aBaZn

(
M3

latt

) =
∑

{aZn
ij },daZn=0

e
ik 2π

n

∫
M3

latt
aZnBna

Zn

. (45)

Such a partition function defines the twisted (2+1)D Zn-1-
cocycle model.

The volume-independent part of partition function (45) is
given by

Z
top
k;aBaZn

(M3) =
∑

aZn ∈H 1(M3;Zn) e
ik 2π

n

∫
M3 aZnBna

Zn

|H 0(M3;Zn)| . (46)

Since the Euler number on odd-dimensional closed manifolds
vanishes, the above volume-independent partition function is
a topological invariant.

2. Topological partition functions

In this section, we are going to calculate some topolog-
ical invariants. On M3 = S3, S1 × S2, or T 3 = S1 × S1 ×
S1, Bna

Zn = 0 and the topological term k 2π
n

∫
M3 aZnBna

Zn

vanishes. We find

Z
top
k;aBaZn

(S3) = 1

n
,

Z
top
k;aBaZn

(S1 × S2) = 1,

Z
top
k;aBaZn

(T 3) = n2. (47)

From Z
top
1;aBaZn

(M2 × S1), we can determine the ground-state
degeneracy (GSD) on M2:

Z
top
1;aBaZn

(M2 × S1) = GSD1;aBaZn
(M2). (48)

Using

Z
top
1;aBaZn

(S2 × S1) = 1,
(49)

Z
top
1;aBaZn

(T 2 × S1) = n2,

we find that the GSD on a sphere S2 is 1 and the GSD on a
torus T 2 = S1 × S1 is n2.

To obtain the topological invariant that detects the topo-
logical term, we put the system on the lens space L3(p) (see
Appendix F 4). We find from

H1(L3(p),Z) = Zp,

H2(L3(p),Z) = 0,

H3(L3(p),Z) = Z. (50)

that [using Eq. (A8)]

H 1(L3(p),Zn) = Z〈p,n〉 = {a},
H 2(L3(p),Zn) = Z〈p,n〉 = {b}, (51)

H 3(L3(p),Zn) = Zn = {c},

where we have also listed the generators {a,b,c}. Here, 〈l,m〉
is the greatest common divisor of l and m, and 〈0,m〉 ≡ m.
In Appendix F 4, we have computed the cohomology ring
H ∗(L3(p),Zn) [see Eq. (F32)]:

a2 = n2p(p − 1)

2〈p,n〉2
b, ab = n

〈p,n〉c, b2 = ac = 0. (52)

We have also computed the Bockstein homomorphism

Bna = p

〈p,n〉b. (53)

We can parametrize aZn as

aZn = αa, α ∈ Z〈n,p〉 (54)

and find that

Z
top
k;aBaZn

[L3(p)] = 1

n

〈n,p〉−1∑
α=0

e
i2πα2 kp

〈n,p〉2 . (55)

We find the above topological invariant is identical to the
topological invariant of (2+1)D Zn Dijkgraaf-Witten theory
on lens space L3(p) for any p [see Eq. (168)]. In fact, one
can show that the Zn-1-cocycle model realize the (2+1)D
Zn Dijkgraaf-Witten theory [33] [see discussions below
Eq. (169)]. In other words, the above topological invariant
is the topological invariant of a Zn-gauge theory twisted by
a quantized topological term [85] k 2π

n

∫
M3 aZnBna

Zn . The
quantized topological term corresponds to a group cocycle in
H3(Zn,R/Z) = Zn. It is the simplest Dijkgraaf-Witten theory.
Such a Dijkgraaf-Witten theory can be obtained by gauging
the Zn symmetry of a Zn SPT state [53]. When k = 0, our
model realizes the Zn topological order described by UT
Zn-gauge theory. For (n,k) = (2,1), our model realizes the
double-semion topological order [35,36,53].

We like to remark that the twisted (2+1)D Zn-1-cocycle
model and Dijkgraaf-Witten theory are different. Dijkgraaf-
Witten theory is a gauge theory where two a

Zn

ij configurations
differing by a Zn-gauge transformation are regarded as the
same configuration. In other words, two a

Zn

ij configurations
differing by a coboundary are regarded as the same con-
figuration. Thus, the Dijkgraaf-Witten Zn-gauge theory may
be called twisted Zn-1-cohomology model. In our twisted
(2+1)D Zn-1-cocycle model, different a

Zn

ij configurations are
always different with no gauge redundancy. So, the cocycle
model is not a gauge theory but a local bosonic system.
However, the cocycle model has an emergent gauge theory at
low energies which is described by Dijkgraaf-Witten theory.

D. Twisted (3+1)D (Zn ⊕ Zn)-1-cocycle model
and emergent Dijkgraaf-Witten theory

1. Model construction

In this section, we like to design a (3+1)D local bosonic
model that realizes the Dijkgraaf-Witten twisted gauge theory
at low energies. Since H4(Zn,R/Z) = 0, there is no Zn

Dijkgraaf-Witten gauge theory in (3+1)D. So, here we try
to realize the Zn × Zn Dijkgraaf-Witten gauge theory. Such
theory exists since H4(Zn × Zn,R/Z) = Zn ⊕ Zn.

To realize Zn × Zn gauge theory, we construct a (Zn ⊕ Zn)-
1-cocycle theory on (3+1)D space-time lattice. The local
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degrees of freedom of the model correspond to two 1-cochains
a
Zn

1 ,a
Zn

2 ∈ C2(M4
Latt;Zn) (i.e., the local degrees of freedom

are described by Zn ⊕ Zn on each 1-simplex). The partition
function on an oriented space-time M4

latt is given by [59,63]

Zk1k2;aa′Ba′Zn

(
M4

latt

)
=

∑
{aZn

I ;ij },da
Zn
I =0

e
i 2π

n

∫
M4

latt
k1a

Zn
1 a

Zn
2 Bna

Zn
2 +k2a

Zn
2 a

Zn
1 Bna

Zn
1 , (56)

where k1,k2 = 0,1, . . . ,n − 1, We have assumed that the
configuration with da

Zn

I �= 0, I = 1,2, have infinite energy
and do not contribute to the partition function. The term
1
n

∫
M4

latt
k1a

Zn

1 a
Zn

2 Bna
Zn

2 + k2a
Zn

2 a
Zn

1 Bna
Zn

1 corresponds to a

cocycle (k1,k2) ∈ H4(Zn × Zn,R/Z) = Zn ⊕ Zn.
There are other possible choices of the action amplitude,

such as

e
ik 2π

n

∫
M4

latt
Bna

Zn
1 Bna

Zn
2 . (57)

But, ∫
M4

latt

Bna
Zn

1 Bna
Zn

2 =
∫

M4
latt

1

n
da

Zn

1

1

n
da

Zn

2 = 0, (58)

if M4
latt is orientable. So, such a term always vanishes. Yet

another possible choice is
∫
M4

latt
a
Zn

1 (aZn

2 )3. But when n = 2,

it is the same as
∫
M4

latt
a
Zn

1 a
Zn

2 Bna
Zn

2 , and when n = odd, it
vanishes. So, here we do not discuss it further.

2. Topological partition functions

When k1,k2 = 0, the partition function is given by
the square of the number of 1-cocycles, |Z1(M4

latt;Zn)|2.
|Z1(M4

latt;Zn)| is |H 1(M4
latt;Zn)| times the number of 0-

cochains whose derivatives are nonzero. The number of
0-cochains whose derivatives are nonzero is the number of
0-cochains [|C0(M4

latt;Zn)| = nNv ] divided by |H 0(M4
latt;Zn)|.

Thus, the partition function is

Z0,0;aa′Ba′Zn

(
M4

latt

) = ∣∣Z1(M4
Latt;Zn

)∣∣2
= ∣∣H 1

(
M4

latt;Zn

)∣∣2 ∣∣C0
(
M4

Latt;Zn

)∣∣2∣∣H 0
(
M4

Latt;Zn

)∣∣2
= nNv

∣∣H 1
(
M4

Latt;Zn

)∣∣2∣∣H 0
(
M4

Latt;Zn

)∣∣2 . (59)

The volume-independent topological partition function is
given by

Z0,0;aa′Ba′Zn

(
M4

latt

) =
∣∣H 1

(
M4

latt;Zn

)∣∣2∣∣H 0
(
M4

latt;Zn

)∣∣2 . (60)

When k1,k2 �= 0, the volume-independent topological par-
tition function is given by

Zk1k2;aa′Ba′Zn

(
M4

latt

)

=
∑

a
Zn
I ∈H 1(M4;Zn)

e
i 2π

n

∫
M4

latt
k1a

Zn
1 a

Zn
2 Bna

Zn
2 +k2a

Zn
2 a

Zn
1 Bna

Zn
1∣∣H 0

(
M4;Zn

)∣∣2 ,

(61)

where |H 1(M4
latt;Zn)|2 is replaced by the summation of phase

factors.
Now, let us compute Zk1k2;aa′Ba′Zn

(M4) on several
M4. On M4 = S1 × S1 × S1 × S1 = T 4 or M4 = S2 ×
S1 × S1 = S2 × T 2, Bna

Zn

I = 0. Thus, Zk1k2;aa′Ba′Zn
(M4) =

Z0,0;aa′Ba′Zn
(M4) on those manifolds. Using

H 1(T 4;Zn) = 4Zn, H 1(T 2 × S2;Zn) = Z⊕2
n , (62)

we find that (see Table III)

Zk1k2;aa′Ba′Zn
(T 4) = n6,

Zk1k2;aa′Ba′Zn
(S2 × T 2) = n2. (63)

On M4 = S1 × L3(p), from

H1(L3(p),Z) = Zp, H2(L3(p),Z) = 0, H3(L3(p),Z) = Z,

(64)

we find that [using (A4)]

H1(S1 × L3(p),Z) = Z ⊕ Zp,

H2(S1 × L3(p),Z) = Zp,

H3(S1 × L3(p),Z) = Z,

H4(S1 × L3(p),Z) = Z. (65)

This allows us to obtain [using (A8)]

H 1(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {a1,a},
H 2(S1 × L3(p),Zn) = Z〈p,n〉 ⊕ Z〈p,n〉 = {a1a,b},

(66)
H 3(S1 × L3(p),Zn) = Zn ⊕ Z〈p,n〉 = {c,a1b},
H 4(S1 × L3(p),Zn) = Zn = {a1c},

where we have also listed the generators, where a1 comes from
S1 and a,b,c from L3(p). Here, 〈l,m〉 is the greatest common
divisor of l and m, and 〈0,m〉 ≡ m.

In Appendix F 4, we have computed the cohomology ring
H ∗(S1 × L3(p),Zn) [see (F32)]:

a2
1 = 0, a2 = n2p(p − 1)

2〈p,n〉2
b, ab = n

〈p,n〉c, b2 = ac = 0.

(67)

We have also computed the Bockstein homomorphism

Bna = p

〈p,n〉b, Bna1 = 0. (68)

We see that for 〈n,p〉 = 1, a = b = 0, and thus Bna
Zn

I = 0.
Therefore,

∫
M4

latt
k1a

Zn

1 a
Zn

2 Bna
Zn

2 + k2a
Zn

2 a
Zn

1 Bna
Zn

1 = 0. So

Zk1k2;aaβaZn
[S1 × L3(p)] = 1.

For 〈n,p〉 �= 1, we can parametrize a
Zn

I as

a
Zn

I = αIa1 + α̃I a, αI ∈ Zn, α̃I ∈ Z〈n,p〉. (69)

Using Eqs. (66), (67), and (68), we find that

Zk1k2;aa′Ba′Zn
[S1 × L3(p)]

= 1

n2

∑
α1,2∈Zn,α̃1,2∈Z〈n,p〉

e
i

2πp

〈p,n〉2 [k1(α1α̃
2
2−α̃1α2α̃2)+k2(α2α̃

2
1−α̃2α1α̃1)]
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= s2
m−1∑

α̃1,2=0

δm

(
k1α̃

2
2 − k2α̃1α̃2

)
δm

(
k2α̃

2
1 − k1α̃1α̃2

)
,

s =
〈

p

〈n,p〉 ,〈n,p〉
〉
, m = 〈n,p〉/s. (70)

When p has no repeated prime factor, the above sum has a
simple expression

Zk1k2;aa′Ba′Zn
[S1 × L3(p)]

= 〈n,p〉〈n,p,k1,k2〉 = s2m〈m,k1,k2〉. (71)

On M4 = F 4 ≡ (S1 × S3)#(S1 × S3)#CP 2#CP
2
, we note

that the cup product of 1-cocycles is always zero (see
Appendix F 5). Thus, Zk1k2;aa′Ba′Zn

(F 4) = Z0,0;aa′βa′Zn
(F 4) =

n2.

3. Dimension reduction

Last, let us consider M4 = M3 × S1, where M4 and M3

are assumed to be closed manifolds. We write a
Zn

I as

a
Zn

I = a
Zn

I,M3 + a
Zn

I,S1 , (72)

where a
Zn

I,M3 lives on M3 and a
Zn

I,S1 on S1. We also fix
∮
S1 a

Zn

I,S1 =
αI ∈ Z. The partition function now has a form

Zk1k2;aa′Ba′Zn
(M3 × S1,α1,α2)

= 1

|H 0(M3;Zn)|2
∑

a
Zn

I,M3 ∈H 1(M3;Zn)

e
i 2π

n

∫
M3 (k1α2−k2α1)aZn

1,M3Bna
Zn

2,M3

× e
i 2π

n

∫
M3 k1α1a

Zn

2,M3Bna
Zn

2,M3 +k2α2a
Zn

1,M3Bna
Zn

1,M3 . (73)

In fact, αI in the above happens to label the different sectors.
We find the topological theory in each sector from the partition
function Zk1k2;aa′Ba′Zn

(M3 × S1,α1,α2). As we can see, they
are (2+1)D Dijkgraaf-Witten theories.

Since the Dijkgraaf-Witten theories can be viewed as
gauged SPT states [53], the dimension reduction of the
Dijkgraaf-Witten theories implies a similar dimension reduc-
tion of SPT states: If we compact a (3+1)D Z(1)

n × Z(2)
n SPT

state to (2+1)D via a circle S1, and add a symmetry twist
around S1 described by ei2πα1/n for the Z(1)

n and ei2πα2/n for the
Z(2)

n , then the resulting (2+1)D SPT state is a stacking of a Z(1)
n

SPT state labeled by k2α2 ∈ H3(Z(1)
n ,R/Z) = Zn, a Z(2)

n SPT
state labeled by k1α1 ∈ H3(Z(2)

n ,R/Z) = Zn, and a Z(1)
n × Z(2)

n

SPT state labeled by k1α2 − k2α1 ∈ H3(Z(1)
n × Z(2)

n ,R/Z)
[51,59].

This implies that the symmetry-twist defect line (twisted
by ei2πα1/n for the Z(1)

n and ei2πα2/n for the Z(2)
n ) in the

(3+1)D Z(1)
n × Z(2)

n SPT state [labeled by (k1,k2) ∈ H4(Z(1)
n ×

Z(2)
n ,R/Z) = Zn ⊕ Zn], will carry gapless (1+1)D excitations

along the symmetry-twist defect line described by the bound-
ary of the (k2α2)th Z(1)

n SPT state, the (k1α1)th Z(2)
n SPT state,

and the (k1α2 − k2α1)th Z(1)
n × Z(2)

n SPT state, provided that
the Z(1)

n × Z(2)
n symmetry is not broken. This result generalized

the one in [55].

E. Twisted (3+1)D Zn-2-cocycle model
and emergence of fermions

1. Model construction

In this section, we will study Zn-2-cocycle theory on
(3+1)D space-time lattice. The local degrees of freedom
of the model correspond to 2-cochains bZn ∈ C2(M4

Latt;Zn)
(i.e., the local degrees of freedom are described by Zn

on each 2-simplex). The partition function is given by, for
k = 0,1, . . . ,n − 1 [60],

Zk;b2Zn

(
M4

latt

) =
∑

{bZn
ij },dbZn =0

e
ik 2π

n

∫
M4

latt
(bZn )2

(74)

(i.e., the configuration with dbZn �= 0 has infinite energy).
Note that the source (or “charge”) of the 2-cocycle field b is
a Zn string. When k = 0, it describes a Zn-2-cocycle theory.
When k �= 0, it describes a twisted Zn-2-cocycle theory.

When k = 0, the partition function is given by the number
of 2-cocycles |Z2(M4

latt;Zn)|, which is |H 2(M4
latt;Zn)| times

the number of 1-cochains whose derivatives are nonzero.
The number of 1-cochains whose derivatives are nonzero is
the number of 1-cochains [|C1(M4

latt;Zn)| = nNe ] divided by
|H 1(M4

latt;Zn)| and by the number of 0-cochains whose deriva-
tives are nonzero. The number of 0-cochains whose derivatives
are nonzero is the number of 0-cochains [|C0(M4

Latt;Zn)| =
nNv ] divided by |H 0(M4

Latt;Zn)|. Thus, the partition function
is

Z0;b2Zn

(
M4

latt

) = ∣∣Z2
(
M4

latt;Zn

)∣∣
= ∣∣H 2

(
M4

latt;Zn

)∣∣ ∣∣C1
(
M4

latt;Zn

)∣∣∣∣H 1
(
M4

latt;Zn

)∣∣
×
∣∣H 0

(
M4

latt;Zn

)∣∣∣∣C0
(
M4

latt;Zn

)∣∣
= nNe−Nv

∣∣H 2
(
M4

latt;Zn

)∣∣∣∣H 0
(
M4

latt;Zn

)∣∣∣∣H 1
(
M4

latt;Zn

)∣∣ .

(75)

The volume-independent topological partition function is
given by

Z
top
0;b2Zn

(M4) = |H 2(M4;Zn)||H 0(M4;Zn)|
|H 1(M4;Zn)| . (76)

When k �= 0, the volume-independent topological partition
function is given by

Z
top
k;b2Zn

(M4) = |H 0(M4;Zn)|
|H 1(M4;Zn)|

∑
bZn∈H 2(M4;Zn)

eik 2π
n

∫
M4 (bZn )2

,

(77)

where
∑

bZn ∈H 2(M4;Zn) e
ik 2π

n

∫
M4 (bZn )2

replaces |H 2(M4;Zn)|.

2. Topological partition functions

Now, let us compute topological invariants (see Table III).
On M4 = T 4, the cohomology ring H ∗(T 4;Zn) is generated
by aI , I = 1,2,3,4, where aI ∈ H 1(T 4;Zn) = 4Zn. Using
the cohomology ring equation (F5) in Appendix F, we can
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parametrize bZn as

bZn = βIJ aI aJ , βIJ = −βJI ∈ Zn. (78)

Thus,

Z
top
k;b2Zn

(T 4) = 1

n3

∑
βIJ ∈Zn

eik 2π
n

(β12β34−β13β24+β14β23). (79)

Using
∑

β1,β2∈Zn
eik 2π

n
2β1β2 = 〈2k,n〉n, we find that

Z
top
k;b2Zn

(T 4) = 〈2k,n〉3. (80)

On M4 = S2 × T 2, the cohomology ring H ∗(T 2 × S2;Zn)
is generated by aI , I = 1,2 and b, where aI ∈ H 1(T 2 ×
S2;Zn) = Z⊕2

n and b ∈ H 2(T 2 × S2;Zn) = Z⊕2
n . Using the

cohomology ring equation (F7) in Appendix F, we can
parametrize bZn as

bZn = β1a1a2 + β2b, β1,β2 ∈ Zn. (81)

Thus,

Z
top
k;b2Zn

(S2 × T 2) = 1

n

∑
β1,β2∈Zn

eik 2π
n

2β1β2 = 〈2k,n〉. (82)

On M4 = S1 × L3(p), we need to use the cohomology ring
H ∗[S1 × L3(p);Zn] as described in Eqs. (66), (67), and (68).
For 〈n,p〉 = 1, Z

top
k;b2Zn

[S1 × L3(p)] = 1. For 〈n,p〉 �= 1, we

can parametrize bZn as

bZn = β1aa1 + β2b, β1,β2 ∈ Z〈n,p〉. (83)

Using aa1b = n
〈n,p〉a1c and (aa1)2 = b2 = 0, we find that

Z
top
k;b2Zn

[S1 × L3(p)] = 1

〈n,p〉
〈n,p〉−1∑
β1,β2=0

e
i2k 2π

〈n,p〉 β1β2 = 〈2k,n,p〉.

(84)

On M4 = F 4, we need to use the cohomology ring
H ∗(F 4;Zn) as described in Appendix F 5. We can parametrize
bZn as

bZn = β1b1 + β2b2, β1,β2 ∈ Zn, (85)

where b1,b2 are generators of H 2(F 4;Zn). Using b2
1 = −b2

2 =
v and b1b2 = 0, we find that

Z
top
k;b2Zn

(F 4) = 1

n

n−1∑
β1,β2=0

eik 2π
n

(β2
1 −β2

2 )

=
{〈2k,n〉 if 2kn

〈2k,n〉2 = even;

0, if 2kn
〈2k,n〉2 = odd.

(86)

The above results are summarized in Table III.

3. Pointlike and stringlike topological excitations

When k �= 0, the twisted (3+1)D Zn-2-cocycle theory
realizes a topological order that is not described by Zn-gauge
theory nor by the group-cocycle-twisted Dijkgraaf-Witten
theory since the group-cohomology H4(Zn,R/Z) = 0. Here,
we will show that

the (3+1)D twisted Zn-2-cocycle theory realizes a (3+1)D
Z〈2k,n〉-gauge theory. The Z〈2k,n〉-gauge theory is a EF Z〈2k,n〉-
gauge theory if 2kn/〈2k,n〉2 = odd, and it is a UT Z〈2k,n〉-gauge
theory if 2kn/〈2k,n〉2 = even.

The reduction from Zn to Z〈2k,n〉 by the twist can be seen from
the GSD of the model. The GSD on S1 × S2 counts the number
of types of pointlike topological excitations, and the number of
types of stringlike topological excitations. From Eq. (82), we
see that twisted Zn-2-cocycle model gives rise to a topological
order with 〈2k,n〉 types of pointlike topological excitations
and 〈2k,n〉 types of stringlike topological excitations.

It is interesting to see that the twisted model describes
an invertible topological order when 〈2k,n〉 = 1. Since all
(3+1)D invertible topological orders are trivial topological
orders, thus

the twisted Zn-2-cocycle model describes a trivial product
state when 〈2k,n〉 = 1.

Naively, the twisted Zn-2-cocycle model should have n types
of pointlike topological excitations and n types of stringlike
topological excitations. But actually, there are only 〈2k,n〉
types of pointlike topological excitations and 〈2k,n〉 types
of stringlike topological excitations. Other excitations are
confined.

To understand the unconfined topological excitations in
level-kZn-2-cocycle model, we note that we can view bZn

as the field strength 2-form of a U(1) gauge theory

2πbZn = f, (87)

where the 2π factor comes from the different quantization
convention

∫
M2

closed
bZn = integer and

∫
M2

closed
f = 2π× integer.

In this case, the pointlike topological excitations correspond
to the monoples in the U(1) gauge theory. Such a U(1) gauge
theory is described by the partition function

Zk,U(1)(M
4) =

∫
D[a]ei �

8π2

∫
M4 ff +···

, (88)

where � = 4πk
n

, and · · · represents additional interactions.
Without the additional interactions, the particle like excitation
in the U(1) gauge theory are labeled by two integers (q,m)
where m = M is the magnetic charge. The U(1) charge
of (q,m) is given by Qq,m = q + �

2π
m. The statistics of

particle (q,m) is determined by eiθ = (−)mq , where eiθ = 1
corresponds to boson and eiθ = −1 corresponds to fermion.
Let us express the statistics in terms of physical quantities
(Q,M): eiθ = (−)MQ− �

2π
M2

. We see that when � = 0 or
� = 2π , both Q and M are integers, but the statistics of
particles with charge (Q,M) are different for � = 0 and
� = 2π . Thus, changing � by 2π will lead to a different U(1)
gauge theory. Changing � by 4π will give us the same U(1)
gauge theory. This is consistent with the mod n periodicity
of k.

For � = 4πk
n

, we note that the (q,m) = (−2k,n) particle
has a vanishing U(1) charge and is a boson. We can use the
additional interactions to condense such a dyon [86]. Such
a condensation will make the U(1) gauge theory to be our
Zn-2-cocycle theory. This is because a change of

∫
M2

closed
bZn

by n is a trivial change, which means a change of
∫
M2

closed
f by
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2πn should also be a trivial change in the U(1) gauge theory.
This is achieved by condensing n units of magnetic charge that
is carried by (q,m) = (−2k,n) particle.

Since the condensing particles have a nonzero mag-
netic charge, in the condensed phase, all the particles with
nonzero U(1) charge, Qq,m �= 0, are confined. Thus, the
unconfined pointlike topological excitations are given by
(q,m) = l( −2k

〈2k,n〉 ,
n

〈2k,n〉 ), with l = 0,1, . . . ,〈2k,n〉 − 1. We see

that the GSD on S1 × S2 corresponds to the number of types
of pointlike topological excitations. We also note that when
2kn/〈2k,n〉2 = odd (such as k = 1, n = 2), some pointlike
topological excitations are fermions. When 2kn/〈2k,n〉2 =
even, all pointlike topological excitations are bosons.

In the condensed phase, the electric flux lines are quantized
as
∫
M2

closed
dS · E = 1

n
× m, m ∈ Z. They are the stringlike

topological excitations. Moving a pointlike excitation labeled
by l around a stringlike excitation labeled by m give rise a
phase e

i lm
〈2k,n〉 . So, the strings labeled by m and m + 〈2k,n〉 are

indistinguishable. This suggests that we have 〈2k,n〉 type of
stringlike excitations.

We find that the pointlike and stringlike topological
excitations in the level-k Zn-2-cocycle model are very sim-
ilar to those in Z〈2k,n〉-gauge theory, except that the odd
Z〈2k,n〉 charges are fermions when 2kn/〈2k,n〉2 = odd. The
emergence of fermions is supported by the vanishing of
volume-independent partition function on a nonspin manifold

F 4 = (S1 × S3)#(S1 × S3)#CP 2#CP
2

[see Eq. (86)], which
happens exactly at 2kn/〈2k,n〉2 = odd.

It was first pointed out in the string-net theory [36] that a
(3+1)D gauge theory can be twisted which makes some gauge
charge described by “odd” representations to be fermionic.

But, when we use cocycles in H4(G,R/Z) to twist a G-gauge
theory [33], the pointlike topological excitations are always
boson [87]. Thus, the level-k Zn-2-cocycle model is a different
realization of the twist discussed in the (3+1)D string-net
theory.

4. Including excitations in the path integral

We know that the pointlike excitations are described by
the world lines M1

WL in space-time. A world line M1
WL

can be viewed as a Zn-valued 1-cycle, which is dual to a
3-coboundary C

Zn

WL. In the twisted Zn-2-cocycle model, such
a pointlike excitation is described by the 2-cochain field
bZn that satisfies dbZn = p̃C

Zn

WL, where p̃ is the charge of
the pointlike excitation. The world sheet can be viewed as
Zn-valued 2-cycles M2

WS in the space-time lattice. Therefore,
in the presence of pointlike topological excitations described
by C

Zn

WL and stringlike topological excitations described by
M2

WS, the partition function becomes

Zk;b2Zn

(
M4

latt; p̃C
Zn

WL,sM2
WS

)
=

∑
{bZn

ijk },dbZn=p̃C
Zn
WL

e
ik 2π

n

∫
M4

latt
(bZn )2+is 2π

n

∫
M2

WS
bZn

, (89)

where s is the charge of the stringlike excitation.
We first solve dbZn = p̃C

Zn

WL mod n as

bZn
n= p̃b

Zn

WL + b
Zn

0 + daZn , (90)

where b
Zn

WL is a fixed 2-cochain field that satisfies db
Zn

WL = C
Zn

WL

and b
Zn

0 ∈ H 2(M4;Zn). We can rewrite the partition function
as

Zk;b2Zn

(
M4; p̃C

Zn

WL,sM2
WS

) ∝ ei 2π
n

∫
M4 kp̃2(bZn

WL )2
e
i 2π

n

∫
M2

WS
sp̃b

Zn
WL

∑
{aZn

ij },bZn
0 ∈H 2(M4;Zn)

eik 2π
n

∫
M4 2p̃(bZn

0 +daZn )bZn
WL

= ei
2πkp̃2

n

∫
M4 (bZn

WL )2
e
i

2πsp̃

n

∫
M2

WS
b
Zn
WL

∑
b
Zn
0 ∈H 2(M4;Zn)

eik 2π
n

∫
M4 b

Zn
0 (2p̃b

Zn
WL+b

Zn
0 )
∑
{aZn

ij }
ei2kp̃ 2π

n

∫
M4 aZn C

Zn
WL . (91)

Let D3
WS be the extension of M2

WS, i.e., ∂D3
WS = M2

WS.
Then, we can rewrite

∫
M2

WS
b
Zn

WL = ∫
D3

WS
db

Zn

WL = ∫
D3

WS
C
Zn

WL. In

fact,
∫
D3

WS
C
Zn

WL = Int(D3
WS,M

1
WL) is the intersection number

between D3
WS and M1

WL, which in turn is the linking number
between M2

WS and M1
WL: Lnk(M2

WS,M
1
WL).

Using the Poincaré duality we can also rewrite
∫
M4 aZnC

Zn

WL

as
∫
M1

WL
aZn . Then,

∑
{aZn

ij }
ei2kp̃ 2π

n

∫
M4 aZn C

Zn
WL =

∑
{aZn

ij }
e
i2kp̃ 2π

n

∫
M1

WL
aZn �= 0 (92)

only when [2kp̃]n = 0, i.e., when p̃ is quantized as p̃ =
p n

〈2k,n〉 , p ∈ Z〈2k,n〉. If p̃ is not quantized as the above, the
corresponding pointlike excitation is confined.

Thus, the above partition function for unconfined excita-
tions can be rewritten as

Zk;b2Zn

(
M4;

pn

〈2k,n〉C
Zn

WL,sM2
WS

)

∝ e
isp 2π

〈2k,n〉 Lnk(M2
WS,M1

WL)
e
iπp2 2nk

〈2k,n〉2
∫
M4 (bZn

WL )2

×
∑

b
Zn
0 ∈H 2(M4;Zn)

e
ik 2π

n

∫
M4 b

Zn
0 ( 2pn

〈2k,n〉 b
Zn
WL+b

Zn
0 )

. (93)

The above expression tells us the braiding statistics of
pointlike excitations and stringlike excitations. Let us assume
H 2(M4;Zn) = 0. In this case

∫
M4 b

Zn

WLb
Zn

WL is an integer, and

p2 2nk
〈2k,n〉2 is also an integer. Thus, e

iπp2 2nk

〈2k,n〉2
∫
M4 b

Zn
WLb

Zn
WL is always

1 when p2 2nk
〈2k,n〉2 = even and e

iπp2 2nk

〈2k,n〉2
∫
M4 b

Zn
WLb

Zn
WL can be −1

when p2 2nk
〈2k,n〉2 = odd. This factor determines the statistics of
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the pointlike excitations since b
Zn

WL is determined by the particle
world line M1

WL. Comparing with the results obtained in the

last section, we find that when the factor e
iπp2 2nk

〈2k,n〉2
∫
M4 b

Zn
WL b

Zn
WL

can be −1 (depending one the braiding of the world line M1
WL),

then the corresponding particle is a fermion. This means that
when p2 2nk

〈2k,n〉2 = odd, the charge p particle is a fermion.

The factor e
isp 2π

〈2k,n〉 Lnk(M2
WS,M1

WL) determines the mutual statis-
tics (i.e., the Aharonov-Bohm phase) between pointlike and
stringlike excitations. We see that it is the usual mutual
statistics of Z〈2k,n〉-gauge theory. We also see that there is
no nontrivial braiding statistics between stringlike excitations.
This confirms our result in the last section that

the Zn-2-cocyle model produces a low-energy effective Z〈2k,n〉-
gauge theory. It is a UT Z〈2k,n〉-gauge theory if 2nk

〈2k,n〉2 = even,

and a EF Z〈2k,n〉-gauge theory if 2nk

〈2k,n〉2 = odd.

The term
∑

b
Zn
0 ∈H 2(M4;Zn) e

ik 2π
n

∫
M4 b

Zn
0 ( 2pn

〈2k,n〉 b
Zn
WL+b

Zn
0 ) tells us

when the partition function will vanish in the presence of
emergent fermions, i.e., when 2nk

〈2k,n〉2 = odd. Let us assume

there is no world line and 2nk
〈2k,n〉2 = odd. In this case, the above

factor becomes
∑

b
Zn
0 ∈H 2(M4;Zn) e

ik 2π
n

∫
M4 (bZn

0 )2
. We note that

2nk
〈2k,n〉2 = odd implies that k and n

2 are both odd integers. Since
n is even and n

2 is odd, we have Zn = Zn/2 ⊕ Z2. Therefore,

b
Zn

0 can be expressed as

b
Zn

0 = 2b
Zn/2

0 + n

2
b
Z2
0 . (94)

We obtain

∑
b
Zn
0 ∈H 2(M4;Zn)

eik 2π
n

∫
M4 (bZn

0 )2

=
∑

b
Zn/2
0 ∈H 2(M4;Zn/2)

eik 2π
n

∫
M4 4(b

Zn/2
0 )2

×
∑

b
Z2
0 ∈H 2(M4;Z2)

eik 2π
n

∫
M4 ( n

2 )2(b
Z2
0 )2

=
∑

b
Zn/2
0 ∈H 2(M4;Zn/2)

e
i2k 2π

n/2

∫
M4 (b

Zn/2
0 )2 ∑

b
Z2
0 ∈H 2(M4;Z2)

eiπ
∫
M4 (b

Z2
0 )2.

(95)

The factor
∑

b
Z2
0 ∈H 2(M4;Z2)

eiπ
∫
M4 (b

Z2
0 )2

can be rewritten as

∑
b
Z2
0 ∈H 2(M4;Z2)

eiπ
∫
M4 (b

Z2
0 )2 =

∑
b
Z2
0 ∈H 2(M4;Z2)

eiπ
∫
M4 w2b

Z2
0 (96)

since M4 is orientable. Now, we see that

Zk;b2Zn
(M4) = 0 whenw2 �= 0 (i.e., when the orientable M4 is

not spin), if there is an emergence of fermions.

F. (3+1)D twisted ZnaZnb model

1. Model construction

In this section, we are going to construct a local bosonic
model on space-time lattice M4

latt. Our model is a mixture
of Zn-1-cocycle model and Zn-2-cocycle model. The local
degrees of freedom of our model are Zn indices a

Zn

ij on the

links and b
Zn

ijk on the triangles. We view a
Zn

ij as a 1-cochain in

C1(M4
latt;Zn) and b

Zn

ijk as a 2-cochain in C2(M4
latt;Zn).

Using the Bockstein homomorphism for Zn, Bn :
Hm(Md ;Zn) → Hm+1(Md ;Zn), the partition function of our
model is defined as

Zk1k2;bBa-bbZn

(
M4

latt

)
=
∑
{aZn

ij
}

daZn =0

∑
{bZn

ijk
}

dbZn =0

e
i 2π

n

∫
M4

latt
k1b

ZnBna
Zn+k2b

Zn bZn

. (97)

The volume-independent topological partition function is
given by

Z
top
k1k2;bBa-bbZn

(M4) =
∑

aZn ∈H1(M4;Zn )

bZn ∈H2(M4;Zn )

ei 2π
n

∫
M4 k1b

ZnBna
Zn+k2b

Zn bZn

|H 1(M4;Zn)| .

(98)

2. Topological partition functions

On M4 = T 4 or M4 = S2 × T 2, Bna
Zn = 0. Thus, the

partition function is a product of the partition function of the
Zna model in Sec. III B and the partition function of the Znb
model in Sec. III E. We find that (see Table III)

Z
top
k1k2;bBa-bbZn

(T 4) = n3〈2k2,n〉3,

Z
top
k1k2;bBa-bbZn

(S2 × T 2) = n〈2k2,n〉. (99)

On M4 = S1 × L3(p), for 〈n,p〉 = 1, we
find that

∫
M4 bZnBna

Zn = ∫
M4 bZnbZn = 0, since

H 2[S1 × L3(p);Zn] = 0. So, Ztop
k1k2;bBa-bbZn

[S1 × L3(p)] = 1.

For 〈n,p〉 �= 1, we can parametrize aZn , bZn as

aZn = α1a1 + α2a, α1 ∈ Zn, α2 ∈ Z〈n,p〉,

bZn = β1a1a + β2b, β1,β2 ∈ Z〈n,p〉. (100)

Using Bna = p

〈n,p〉b, Bna1 = 0, a1ab = n
〈n,p〉ca1, and b2 =

(a1a)2 = 0 [see Eqs. (66), (67), and (68)], we find that

Z
top
k1k2;bBa-bbZn

[S1 × L3(p)]

=
∑

α1∈Zn;α2,β1,β2∈Z〈n,p〉

e
i 2π

〈n,p〉 (k1
p

〈n,p〉 α2β1+2k2β1β2)

n〈n,p〉

=
∑

α2,β2∈Z〈n,p〉

δ〈n,p〉
(
k1

p

〈n,p〉α2 + 2k2β2
)

〈n,p〉

= 〈n,p〉
〈
2k2,k1

p

〈n,p〉 ,〈n,p〉
〉
. (101)

On M4 = F 4, we note that the Bockstein homomorphism
Bn maps all 1-cocycles to 0. Thus, the partition function is a
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product of the partition function of the Zna model in Sec. III B
and the partition function of the Znb model in Sec. III E:

Z
top
k1k2;bBa-bbZn

(F 4) =
{

n〈2k2,n〉 if 2k2n

〈2k2,n〉2 = even,

0 if 2k2n
〈2k2,n〉2 = odd.

(102)

3. Pointlike and stringlike topological excitations

Here, we are going to study more physical properties of
the ZnaZnb model. The GSD of our model on space M3 is
given by GSDk1k2;bBa-bbZn

(M3) = Z
top
k1k2;bBa-bbZ2

(S1 × M3). If
we choose M3 = S1 × S2, we find that

GSDk1k2;bBa-bbZn
(S1 × S2) = n〈2k2,n〉. (103)

The GSD on S1 × S2 implies that there are n〈2k2,n〉 types
of pointlike and stringlike excitations regardless the value of
k1. This result is unexpected since one may guess the number
of types of pointlike and stringlike excitations are n2. The
reduction is due to confinement as will be explained below.

Again, we will view bZn as the field strength 2-form of a
U(1) gauge theory

2πbZn = f. (104)

We will also viewBna
Zn as the field strength 2-form of another

U(1) gauge theory

2πBna
Zn = f ′. (105)

So, the twisted (3+1)D bBa-bbZn model can be viewed as
U(1) × U′(1) gauge theory with some proper condensations.
The U(1) × U′(1) gauge theory has a form

Z1,U2(1)(M
4) =

∫
D[a]D[a′]ei

�1
4π2

∫
M4 ff ′i �2

8π2

∫
M4 ff +···

, (106)

with �1 = k1
2π
n

and �2 = k2
4π
n

.
Let us consider a more general Uκ (1) model

Z =
∫ ∏

I

D[aI ]ei 2π

8π2

∫
M4 fI �IJ fJ +···

, (107)

where �IJ is a symmetric rational matrix. On the boundary,
the action amplitude becomes

ei 1
4π

∫
∂M4 �IJ aI daJ +···. (108)

We see that 2π flux of aJ carries aI charge QI = �IJ .
Before the condensation, the pointlike excitations are

labeled by (q,m,q ′,m′). The magnetic charges for the two
U(1) gauge fields are M = m and M ′ = m′. Using the above
result with

� =
(

0 k1
n

k1
n

2k2
n

)
, (109)

we see that the electric charges for the two U(1) gauge fields
are Q = q + k1

n
m′ and Q′ = q ′ + k1

n
m + 2k2

n
m′. The statistics

of the (q,m,q ′,m′) excitation is eiθ = (−)qm+q ′m′
.

Next, we condense (q,m,q ′,m′) = (−k1,0,−2k2,n) excita-
tions that have Q = Q′ = 0. Since (M,M ′) = (0,n) for such

excitations, it breaks the second U′(1) to Zn (in the dual
picture). We also condense (q,m,q ′,m′) = (n,0,0,0) particles
with (Q,Q′,M,M ′) = (n,0,0,0). It breaks the first U(1) to
Zn. The unconfined particles must have M = Q′ = 0, i.e.,
q ′ = m = 0. Thus, the unconfined particles are generated by
(q,m,q ′,m′) = (1,0,0,0) with (Q,M,Q′,M ′) = (1,0,0,0) and
(q,m,q ′,m′) = (0,0,− 2k2

〈2k2,n〉 ,
n

〈2k2,n〉 ) with (Q,M,Q′,M ′) =
( k1
〈2k2,n〉 ,0,0, n

〈2k2,n〉 ). We see that the pointlike excitations are
labeled by (p,p′) [a bound state of p type (q,m,q ′,m′) =
(1,0,0,0) and p′ type (q,m,q ′,m′) = (0,0,− 2k2

〈2k2,n〉 ,
n

〈2k2,n〉 ) ex-
citations]. Two particles that differ by a condensing particle are
regarded as equivalent. Thus, (p,p′) labels have the following
equivalent relation:

(p + n,p′) ∼ (p,p′) ∼ (p − k1,p
′ + 〈2k2,n〉). (110)

So, there are n〈2k2,n〉 distinct types of pointlike excitations.
The type (q,m,q ′,m′) = (1,0,0,0) excitation is a boson.
The type (q,m,q ′,m′) = (0,0,− 2k2

〈2k2,n〉 ,
n

〈2k2,n〉 ) excitation has

a statistics (−)
2k2n

〈2k2 ,n〉2 .
We note that the pointlike excitations are labeled by the

integer points (p,p′) in a two-dimensional unit cell with
basis vectors (n,0) and (−k1,〈2k2,n〉). We put the two basis
vectors together to form a matrix ( n 0

−k1 〈2k2,n〉). The fusion
of the pointlike excitations is described by an Abelian group
G( n 0

−k1 〈2k2,n〉) characterized by the matrix. In general, the
fusion rule of the pointlike excitations is not given by
Zn × Z〈2k2,n〉.

The stringlike excitations are generated by the 2π/n

magnetic flux line of the first U(1) and the 1/n-unit electric flux
line of the second U′(1). So, the generic stringlike excitations
are labeled by (s,s ′). Two strings that can join are regarded as
equivalent [31]. Note we can attach a (q,m,q ′,m′) excitation
to change string (s,s ′) to an equivalent one, which generates
the following equivalence relation:

(s,s ′) ∼ (s + nm,s ′ + nq ′ + k1m + 2k2m
′). (111)

The above can be rewritten as

(s + n,s ′ + k1) ∼ (s,s ′) ∼ (s,s ′ + 〈2k2,n〉). (112)

We see that there are n〈2k2,n〉 distinct types of stringlike
excitations.

The fusion of the stringlike excitations is described by an
Abelian group G(n k1

0 〈2k2,n〉). It turns out that the fusion of the
pointlike excitations and the fusion of the stringlike excitations
are described by the same Abelian group

G

(
n 0

−k1 〈2k2,n〉
)

= G

(
n k1

0 〈2k2,n〉
)

. (113)

In general, two integer matrices M1 and M2 describe the same
Abelian group if M2 = WM1U where U,W are invertible
integer matrices. In this case, we say M1 ∼ M2. Let (m1 0

0 m2
)

be the Smith normal form of ( n 0
k1 〈2k2,n〉), i.e.,

W

(
n 0
k1 〈2k2,n〉

)
U =

(
m1 0
0 m2

)
. (114)
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This implies that

UT

(
n k1

0 〈2k2,n〉
)

WT =
(

m1 0
0 m2

)
. (115)

We see that(
n k1

0 〈2k2,n〉
)

∼
(

n 0
k1 〈2k2,n〉

)
∼
(

n 0
−k1 〈2k2,n〉

)
.

(116)

Via direct numerical calculation, we find that

G

(
n k1

0 〈2k2,n〉
)

= Z n〈n,2k2〉
〈n,k1 ,2k2〉

× Z〈n,k1,2k2〉. (117)

The mutual braiding phase between a type-(p,p′) pointike
excitation and a type-(s,s ′) stringlike excitation is given by

θ = 2π
(ps

n
− p′s ′

〈2k2,n〉 + p′sk1

n〈2k2,n〉
)
. (118)

Since both pointlike excitations and stringlike excitations have
a fusion described by Z n〈n,2k2〉

〈n,k1 ,2k2〉
× Z〈n,k1,2k2〉, we will call the

corresponding theory a Z n〈n,2k2〉
〈n,k1 ,2k2〉

× Z〈n,k1,2k2〉 fusion theory.

When 2k2n

〈2k2,n〉2 = odd, some pointlike excitations are fermions.

4. Including excitations in the path integral

In the ZnaZnb model, there are two kinds of pointlike
excitations described by the world lines M1

WL and N1
WL, which

are Z-valued 1-cycles. Let 3-coboundary CZ
WL be the Poincaré

dual of M1
WL. Then, the pointlike excitation that corresponds

to M1
WL is described the 2-cochain field bZn that satisfies

dbZn
n= p̃1C

Z
WL, (119)

where p̃1 is the charge of the pointlike excitation.
The ZnaZnb model also contains two kinds of stringlike

excitations described by the world sheets M2
WS and N2

WS in
space-time. The world sheet N2

WS can be viewed as a Z-valued

2-cycle, which is dual to a Z-valued 2-coboundary BZ
WS. Such

a stringlike excitation is described the 1-cochain field aZn that
satisfies

daZn
n= s2B

Z
WS, (120)

where s2 is the charge of the stringlike excitation. Therefore,
in the presence of pointlike topological excitations described
by CZ

WL, N1
WL and stringlike topological excitations described

by M2
WS, BZ

WS, the partition function becomes

Zk1k2;bBa-bbZn

(
M4,p̃1C

Zn

WL,p2N
1
WL,s1M

2
WS,s2B

Z
WS

)
=

∑
{aZn

ij
}

daZn n=s2BZ

∑
{bZn

ijk
}

dbZn n=p̃1CZ
WL

ei 2π
n

∫
M4 k1b

ZnBna
Zn+k2(bZn )2

× e
i 2π

n
(p2
∫
N1

WL
aZn+s1

∫
M2

WS
bZn )

, (121)

where p2 is the charge of the pointlike excitation and s1

the charge of the stringlike excitation. However, the above
partition function is not well defined. It is well defined only
when bZn and aZn are cocycles. When bZn and aZn are not
cocycles, the partition function is not invariant under the shift
bZn → bZn + nb̃Zn and/or aZn → aZn + nãZn .

So, to remove such ambiguity, we write bZn and aZn as

bZn = p̃1b
Z
WL + b

Zn

0 + dãZn ,

aZn = s2a
Z
WS + a

Zn

0 + dgZn . (122)

Here, bZWL is a fixed Z-valued 2-cochain field that satisfies

dbZWL = CZ
WL, (123)

and b
Zn

0 ∈ H 2(M4;Zn). Also, aZWS is a fixed Z-valued 1-
cochain field that satisfies

daZWS = BZ
WS, (124)

and a
Zn

0 ∈ H 1(M4;Z). aZn

0 , gZn , b
Zn

0 , ãZn are Zn valued. The
partition function on orientable M4 is defined by summing
over those Zn-valued fields:

Zk1k2;bBa-bbZn

(
M4,p̃1C

Zn

WL,p2N
1
WL,s1M

2
WS,s2B

Z
WS

)
=

∑
{ãZn

ij ,g
Zn
i }

∑
a
Zn
0 ∈H1(M4;Zn )

b
Zn
0 ∈H2(M4;Zn )

ei 2π
n

∫
M4 k2(p̃1b

Z
WL+b

Zn
0 +dãZn )2

ei 2π
n

∫
M4 k1(p̃1b

Z
WL+b

Zn
0 )Bn(s2a

Z
WS+a

Zn
0 )e

i 2π
n

[p2
∫
N1

WL
(s2a

Z
WS+a

Zn
0 )+s1

∫
M2

WS
(p̃1b

Z
WL+b

Zn
0 )]

.

(125)

We note that

ei 2π
n

∫
M4 k2(p̃1b

Z
WL+b

Zn
0 +dãZn )2 = ei 2π

n

∫
M4 k2p̃

2
1(bZWL)2

ei 2π
n

∫
M4 k2(bZ0 )2

ei 2π
n

∫
M4 2k2p̃1b

Z
WLdãZn

= ei 2π
n

∫
M4 k2p̃

2
1(bZWL)2

ei 2π
n

∫
M4 k2(bZ0 )2

e−i 2π
n

∫
M4 2k2p̃1C

Z
WLãZn

= ei 2π
n

∫
M4 k2p̃

2
1(bZWL)2

ei 2π
n

∫
M4 k2(bZ0 )2

e
−i 2π

n

∫
M1

WL
2k2p̃1ã

Zn

. (126)

Also,

ei 2π
n

∫
M4 k1(p̃1b

Z
WL+b

Zn
0 )Bn(s2a

Z
WS+a

Zn
0 ) = e

i 2π

n2

∫
M4 k1p̃1s2b

Z
WLBZ

WSe
i 2π

n2

∫
M4 k1s2b

Zn
0 BZ

WSe
i 2π

n2

∫
M4 k1p̃1C

Z
WLa

Zn
0 ei 2π

n

∫
M4 k1b

Zn
0 Bna

Zn
0

= e
i 2π

n2

∫
M4 k1p̃1s2b

Z
WLBZ

WSe
i 2π

n2

∫
N2

WS
k1s2b

Zn
0 e

i 2π

n2

∫
M1

WL
k1p̃1a

Zn
0 ei 2π

n

∫
M4 k1b

Zn
0 Bna

Zn
0 . (127)
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We can rewrite the partition function as

Zk1k2;bBa-bbZn

(
M4,p̃1C

Zn

WL,p2N
1
WL,s1M

2
WS,s2B

Z
WS

) ∝ ei 2π
n

∫
M4 k2p̃

2
1(bZWL)2

e
i 2π

n2

∫
M4 k1p̃1s2b

Z
WLBZ

WSe
i 2π

n
[p2
∫
N1

WL
s2a

Z
WS+s1

∫
M2

WS
p̃1b

Z
WL]

×
∑

a
Zn
0 ∈H1(M4;Zn )

b
Zn
0 ∈H2(M4;Zn )

ei 2π
n

∫
M4 k2(bZ0 )2

ei 2π
n

∫
M4 k1b

Zn
0 Bna

Zn
0 e

i 2π

n2

∫
N2

WS
k1s2b

Zn
0 e

i 2π

n2

∫
M1

WL
k1p̃1a

Zn
0

× e
i 2π

n
[p2
∫
N1

WL
a
Zn
0 +s1

∫
M2

WS
b
Zn
0 ] ∑

{ãZn
ij ,g

Zn
i }

e
−i 2π

n

∫
M1

WL
2k2p̃1ã

Zn

. (128)

Using the Poincaré duality, we can rewrite
∫
M4 b

Zn

WLB
Zn

WS as
∫
N2

WS
b
Zn

WL. Let D3
WS be the extension of N2

WS, i.e., ∂D3
WS = N2

WS.

Then, we can rewrite
∫
N2

WS
b
Zn

WL = ∫
D3

WS
db

Zn

WL = ∫
D3

WS
C
Zn

WL. In fact,
∫
D3

WS
C
Zn

WL = Int(D3
WS,M

1
WL) is the intersection number between

D3
WS and M1

WL which is the linking number between N2
WS and M1

WL: Lnk(N2
WS,M

1
WL).

Also,
∑

{ãZn
ij } e

i 2π
n

∫
M1

WL
2k2p̃1ã

Zn �= 0 only when [2k2p̃1]n = 0, or when p̃1 is quantized as p̃1 = p1
n

〈2k2,n〉 , p1 ∈ Z〈2k,n〉. If p̃1 is

not quantized as the above, the corresponding pointlike excitation is confined.
Thus, the above partition function for unconfined like excitations can be rewritten as

Zk1k2;bBa-bbZn

(
M4,

np1C
Zn

WL

〈2k2,n〉 ,p2N
1
WL,s1M

2
WS,s2B

Zn

WS

)

= e
iπ

2nk2p2
1

〈2k2,n〉2
∫
M4 b

Zn
WLb

Zn
WL e

i
2πs1p1
〈2k2,n〉 Lnk(M2

WS,M1
WL)

e
i

2πs2p1k1
n〈2k2,n〉 Lnk(N2

WS,M1
WL)

ei
2πs2p2

n
Lnk(N2

WS,N1
WL)

∑
a
Zn
0 ∈H1(M4;Zn )

b
Zn
0 ∈H2(M4;Zn )

ei 2π
n

∫
M4 k2(bZ0 )2

× ei 2π
n

∫
M4 k1b

Zn
0 Bna

Zn
0 e

i
2πk1s2

n2

∫
N2

WS
b
Zn
0 e

i
2πp1k1
n〈2k2,n〉

∫
M1

WL
a
Zn
0 e

i 2π
n

[p2
∫
N1

WL
a
Zn
0 +s1

∫
M2

WS
b
Zn
0 ]

. (129)

The factors

e
iπ

2nk2p2
1

〈2k2 ,n〉2
∫
M4 b

Zn
WLb

Zn
WL e

i
2πs1p1
〈2k2 ,n〉 Lnk(M2

WS,M1
WL),

e
i

2πs2p1k1
n〈2k2,n〉 Lnk(N2

WS,M1
WL)

ei
2πs2p2

n
Lnk(N2

WS,N1
WL) (130)

in the above expression determine the braiding statistics of
pointlike and stringlike excitations. We see that there is
no nontrivial braiding for stringlike excitations. But, there
are nontrivial mutual statistics (i.e., the Aharonov-Bohm
phase) between pointlike and stringlike excitations. Also, when

2nk2
〈2k2,n〉2 = odd, the theory contains fermions.

IV. COMPARISON BETWEEN THE (3+1)D Zn-2-COCYCLE
MODEL AND (3+1)D Zn-1-COCYCLE MODEL

There is a well-known duality between the (3+1)D Zn-1-
cocycle theory (with emergent Zn-gauge theory) and the above
(3+1)D Zn-2-cocycle theory with k = 0. In the following,
we will compare the two theories in detail. We find that
the two theories are equivalent, if they are viewed as pure
topological theory without any symmetry. So, both (3+1)D
Zn-1-cocycle theory and (3+1)D Zn-2-cocycle theory realize
the same topological order described by UT Zn-gauge theory.
However, if we view the two theories as topological theory
with time-reversal symmetry or parity symmetry, then the two
theories are not equivalent. In other words, the two models
realize the same topological orders, but different symmetry-
enriched topological orders (with time-reversal symmetry or
parity symmetry).

A. Duality

To see the above-mentioned duality, let us describe the
lattice Hamiltonian of the two theories. We consider a 3D
cubic lattice whose sites are labeled by i. To obtain a Zn-
1-cocycle theory, we put a Zn degrees of freedom a

Zn

ij =
0,1, . . . ,n − 1 = −a

Zn

j i on each nearest-neighbor link (ij ). Let

Uij = ei 2π
n

a
Zn
ij and Vij is an operator that raises a

Zn

ij by one:

Vij |aZn

ij = m〉 = |aZn

ij = m + 1〉. Noting that theZn-1-cocycle
theory is a theory of closed Zn loops at low energy, we find
that the lattice Hamiltonian for the Zn-1-cocycle theory will
be

HZna = −
∑

i

(Qi + Q
†
i ) −

∑
(ijkl)

(Bijkl + B
†
ijkl),

Qi =
∏

j next to i

Uij , (131)

Bijkl = VijVjkVklVli ,

where
∑

i sum over all sites and
∑

(ijkl) sum over all

squares (ijkl). The −(Qi + Q
†
i ) terms enforce the closed-loop

condition and the −(Bijkl + B
†
ijkl) terms are the loop hopping

and/or loop creation/annihilation terms.
To obtain a Zn-2-cocycle theory, we put a Zn degrees

of freedom b
Zn

ijkl = 0,1, . . . ,n − 1 = −b
Zn

lkj i on each square
(ijkl). But, this is equivalent to put a Zn degrees of freedom
a
Zn

IJ = 0,1, . . . ,n − 1 = −a
Zn

J I on each link (IJ ) of the dual
lattice. The dual lattice of a cubic lattice is also a cubic lattice.
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TheZn-2-cocycle theory is a theory of closedZn membranes at
low energy. Thus, the lattice Hamiltonian for the Zn-2-cocycle
theory with k = 0 is

H0;b2Zn
= −

∑
I

(QI + Q
†
I ) −

∑
(IJKL)

(BIJKL + B
†
IJKL),

QI =
∏

J next to I

VIJ ,

BIJKL = UIJ UJKUKLULI . (132)

The −(BIJKL + B
†
IJKL) terms enforce the closed-membrane

condition and the −(QI + Q
†
I ) are the membrane hopping

and/or membrane creation/annihilation terms. The two Hamil-
tonians HZna and H0;b2Zn

are equivalent under a local unitary
transformation that exchanges U and V . This implies that the
two theories are really equivalent.

B. Topological invariants for orientable space-time

To compare the two theories at Lagrangian level, we note
that the volume-independent topological partition function for
(3+1)D Zn-1-cocycle theory is given by

Z
top
Zna(M4) = |H 1(M4;Zn)|

|H 0(M4;Zn)| , (133)

while the volume-independent topological partition function
for (3+1)D Zn-2-cocycle theory (with k1 = k2 = 0) is given
by

Z
top
00;bBa-bbZn

(M4) = |H 0(M4;Zn)||H 2(M4;Zn)|
|H 1(M4;Zn)| . (134)

So, their ratio is given by

Z
top
00;bBa-bbZn

(M4)

Z
top
Zna(M4)

= |H 0(M4;Zn)|2|H 2(M4;Zn)|
|H 1(M4;Zn)|2 . (135)

In Appendix C, we will show that for orientable close space-
time M4,

Z
top
00;bBa-bbZn

(M4)

Z
top
Zna(M4)

= nχ(M4), (136)

where χ (M4) is the Euler number. The volume-independent
topological partition functions of the two models are different,
which may lead one to conclude that the Zn-1-cocycle model
and the Zn-2-cocycle model realize different topological
orders. However, in [31], it was conjectured that two (3+1)D
topological partition functions Z

top
1 (M4) and Z

top
2 (M4) de-

scribe the same L-type topological orders iff their ratio has
a form

Z
top
1 (M4)

Z
top
2 (M4)

= ρχ(M4)λP1(M4), (137)

where P1(M4) is the Pontryagin number of M4. Therefore,
the above result implies that the Zn-1-cocycle model and the
Zn-2-cocycle model realize the same topological order.

C. Ground-state degeneracy for nonorientable spaces

Now, we turn to study the ground-state degeneracy of the
two models. To calculate the GSD on closed space manifold
M3, we compute the volume-independent partition function
on M3 × S1 space-time:

GSD(M3) = Ztop(M3 × S1). (138)

We see that the ground-state degeneracy of the two models
is the same on orientable spaces M3 since their partition
functions are the same on orientable space-times M3 × S1.

However, for nonorientable space M3, the GSDs of the two
models can be different. For example, let us assume the space
to be M3 = S1 × KB, where KB is the Klein bottle. We note
that

H2(KB;Z) = 0, H1(KB;Z) = Z ⊕ Z2, H0(KB;Z) = Z
(139)

and

H2(S1 × KB;Z) = H2(KB;Z) ⊕ H1(KB;Z) = Z ⊕ Z2;

H1(S1 × KB;Z) = H1(KB;Z) ⊕ Z = Z ⊕ Z2 ⊕ Z. (140)

Then, using the universal coefficient theorem (A8), we find
that

H 2(S1 × KB;Zn) = Zn ⊕ Z⊕2
〈n,2〉;

H 1(S1 × KB;Z) = Z⊕2
n Z〈n,2〉. (141)

Thus,

GSD0;b2Zn
(S1 × KB) = n〈n,2〉2,

GSDZna(S1 × KB) = n2〈n,2〉. (142)

When n > 2, the GSDs of the two theories are different. Since
the difference only appears in nonorientable manifolds,

the Zn-2-cocycle model and the Zn-1-cocyle model realize two
different time-reversal symmetry-enriched topological orders.

This is consistent with the fact that the two theories realize
the same topological order if we ignore the time-reversal
symmetry.

Both topological orders have pointlike excitations labeled
by i ∈ Zn and stringlike excitations labeled by s ∈ Zn. But,
they transform differently under time reversal. For the Zn-
1-cocyle theory (i,s) → (i,−s) under time reversal. For the
Zn-2-cocycle theory (i,s) → (−i,s) under time reversal. Both
the Zn-1-cocycle theory and the Zn-2-cocycle theory are
described by the same Hamiltonian (131). But, the time-
reversal symmetry is realized differently. In the Zn-1-cocyle
theory, we assume |aZn

ij 〉, the eigenstates of Uij , are invariant

under time reversal. Thus, (Uij ,Vij ) → (U †
ij ,Vij ) under time

reversal. In the Zn-2-cocycle theory, we assume that the
eigenstates of Vij are invariant under time reversal. Thus,
(Uij ,Vij ) → (Uij ,V

†
ij ) under time reversal.

V. NON-ABELIAN COCYCLE MODELS

So far, we have constructed many local bosonic models:
the cocycle models. But, in those constructions, the local
degrees of freedom are always described by an Abelian group,
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FIG. 5. Two branched simplices with opposite orientations. (a)
A branched simplex with positive orientation and (b) a branched
simplex with negative orientation.

such as Zn. In this section, we will use group cocycles in
group cohomology theory (see Appendix G) to generalize
the cocycle models so that the local degrees of freedom are
described by a non-Abelian group G. To use group cocycles
to construct the cocycle models, we need to map the group
cocycles in group cohomology theory to topological cocycles
in topological cohomology theory. To obtain such a map, we
need to first introduce the branching structure in space-time
lattice.

A. Branching structure of space-time lattice

In order to define a generic lattice theory on the space-time
complex Md

latt using group cocycles, it is important to give the
vertices of each simplex a local order. A nice local scheme to
order the vertices is given by a branching structure [11,48,88].
A branching structure is a choice of orientation of each link
in the d-dimensional complex so that there is no oriented loop
on any triangle (see Fig. 5).

The branching structure induces a local order of the vertices
on each simplex. The first vertex of a simplex is the vertex
with no incoming links, and the second vertex is the vertex
with only one incoming link, etc. So, the simplex in Fig. 5(a)
has the following vertex ordering: 0,1,2,3.

The branching structure also gives the simplex (and its
subsimplices) a canonical orientation. Figure 5 illustrates two
3-simplices with opposite canonical orientations compared
with the three-dimensional space in which they are embedded.
The blue arrows indicate that canonical orientations of the
2-simplices. The black arrows indicate that canonical orienta-
tions of the 1-simplices.

B. Group-vertex models that realize G-SPT orders

References [10,11,48] have constructed exactly soluble
local bosonic models using homogeneous group cocycles (see
Appendix G) of group G to realize G-SPT orders. Those
models are actually cocycle models on space-time lattice. In
this section, we will review those results using the cocycle
notation introduced above.

The local degrees of freedom of our model are now group
elements living on the vertices of the orientable space-time
lattice Md

latt: gi ∈ G. Let νn(g0, . . . ,gn) be a homogeneous
group n-cocycle: νn(g0, . . . ,gn) ∈ Hn(G,R/Z). From νn, we
can construct a topological n-cocycle ν̃n on Md

latt:

ν̃n(i0,i1, . . . ,in) = νn

(
gi0,gi1 , . . . ,gin

)
, (143)

where (i0,i1, . . . ,in) is an n-simplex with the canonical orien-
tation and the vertex ordering i0 < i1 · · · < in. Below, we will
drop the ∼ and denote ν̃n(i0,i1, . . . ,in) as νn(gi0,gi1 , . . . ,gin).

Using such mapping, we can construct a group-vertex
model on orientable space-time Md

latt:

Zνd

(
Md

latt

) =
∑
{gi }

e
i2π

∫
Md

latt
νd ({gi })

. (144)

Since νd ({fgi}) = νd ({gi}), f ∈ G, the group-vertex model
has a global onsite G symmetry. Since ei2π

∫
Md νd ({gi }) = 1

on any closed orientable manifold Md . We find that the
constructed model is gapped. We also see that

Zνd

(
Md

latt

) = |G|Nv . (145)

So, the volume-independent partition function Z
top
νd

(Md ) = 1,
for all closed orientable manifolds Md , which implies that
the model does not have any topological order regardless
the choice of the group cocycle νd . Z

top
νd

(Md ) = 1 also
implies that the group-vortex model does not break the G

symmetry [as one can see from the ground-state degeneracy
on closed orientable space manifold Md−1

space: GSDtop
νd

(Md−1
space) =

Z
top
νd

(S1 × Md−1
space) = 1].

But, Z
top
νd

(Md ) = 1 also means that volume-independent
partition function fails to detect SPT orders. In fact, we do
not even know whether the lattice models with different νd ’s
belong to different SPT phases, if we just look at Z

top
νd

(Md ).
To detect SPT order via the partition function [49,50,54,55],

we need to add the symmetry twist [53] in space-time. A
symmetry twist is described by aij ∈ G on each link (i.e.,
1-simplex), that satisfy

aij = a−1
ji , aij ajkaki = 1. (146)

Such a aij configuration defines a so-called “flat G connection”
on space-time Md . In the presence of symmetry twist, the
partition function becomes

Zνd

(
Md

latt,aij

) =
∑
{gi }

e
i2π

∫
Md

latt
ν

g
d ({gi },{aij })

, (147)

where

ν
g
d ({gi},{aij }) ≡ ν

g
d

(
gi0 ,gi1 , . . . ,gid ; ai0i1 ,ai1i2 , . . .

)
≡ νd

(
gi0,ai0i1gi1 ,ai0i1ai1i2gi2 , . . .

)
. (148)

Clearly, the partition function Zνd
(Md

latt,aij ) is invariant under
the gauge transformation

gi → figi, aij → fiaijf
−1
j ;

ν
g
d

({figi},
{
fiaijf

−1
j

}) = ν
g
d ({gi},{aij });

Zνd

(
Md

latt,aij

) = Zνd

(
Md

latt,fiaij f
−1
j

)
. (149)

So, the partition function Zνd
(Md

latt,aij ) only depends on the
gauge-equivalent class of the flat connection aij .

The volume-independent partition functions Z
top
νd

(Md
latt,aij )

are the so-called SPT invariants that suppose to fully character-
ize the SPT order [49–51,54,55]. Using a gauge transformation
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to change gi → 1, we find the SPT invariant to be given by

Ztop
νd

(
Md

latt,aij

) = e
i2π

∫
Md

latt
ν

g
d ({gi=1},{aij })

= e
i2π

∫
Md

latt
ωd ({aij })

, (150)

where ωd is the inhomogeneous group cocycle that corre-
sponds to the homogeneous group cocycle νd [see Eq. (G9)].
The above expression allows us to compute the SPT invariant.

In the following, we will list some of the SPT invariants for
some simple SPT states:

(1) The Zn SPT states in (2+1)D are classified by
H3(Zn;R/Z) = Zn. For a Zn SPT state labeled by k ∈ Zn,
its SPT invariant is

Z
top
k (M3,aZn) = eik 2π

n

∫
M3 aZnBna

Zn

. (151)

(2) The Zn × Z̃n SPT states in (3+1)D are classified by
H4(Zn × Z̃n;R/Z) = Z⊕2

n . For a Zn × Z̃n SPT state labeled
by i(k1,k2) ∈ Z⊕2

n , its SPT invariant is

Z
top
k1,k2

(M4,aZn ,ãZn ) = ei 2π
n

∫
M4 k1a

Zn ãZnBnã
Zn+k2ã

Zn aZnBna
Zn

.

(152)

C. Group-vertex models that realize ZT
2 SPT orders

To construct a local bosonic model that realizes the time-
reversal ZT

2 SPT order, we consider a Z2-group-vertex model:
gi ∈ Z2 = {0,1}. The Z2-group-vertex model on orientable
space-time Md

latt is given by

Zνd

(
Md

latt

) =
∑
{gi }

e
i2π

∫
Md

latt
νd ({gi })

, (153)

where the homogeneous Z2-group cocycle νd ({gi}) ∈
Hd (Z2,(R/Z)Z2 ) satisfies

νd ({gi + 1}) = −νd ({gi}) mod 1. (154)

The extra “−” sign implies that the Z2 group has a nontrivial
action on R/Z which is indicated by the subscript Z2 in
(R/Z)Z2 . For example, in (1+1)D,

ν2(g0,g1,g2) = 1
2 [g1 − g0]2[g2 − g1]2. (155)

Since the Z2 action corresponds to the time-reversal
(or orientation reversal) transformation, to obtain partition
function with the symmetry twist, we need to put the system
on nonorientable space-time and to introduce a Z2-valued
1-cocycle aij to describe orientation reversal:

Zνd

(
Md

latt

) =
∑
{gi }

e
i2π

∫
Md

latt
ν

g
d ({gi },{aij })

, (156)

where

ν
g
d ({gi},{aij }) ≡ ν

g
d

(
gi0 ,gi1 , . . . ,gid ; ai0i1 ,ai1i2 , . . .

)
≡ νd

(
gi0,ai0i1 + gi1 ,ai0i1 + ai1i2 + gi2 , . . .

)
.

(157)

Here, aij is the Z2 flat connection that describes the
orientation of the manifold (see Fig. 6). In other words,
if the orientation does not change around a loop C, then∑

(ij )∈C aij = ∮
C

a = 0; if the orientation changes around
a loop C, then

∑
(ij )∈C aij = ∮

C
a = 1 (see Fig. 6). The
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FIG. 6. Two triangulations of RP 2 where the opposite points on
the boundary are identified. One triangulation has 3 vertices and the
other has 16 vertices. The open dots represent g̃i = 0 and the filled
dots represent g̃i = 1 at the vertices. g̃i is multivalued since it takes
different values on the same vertex, such as vertex 1 and vertex 2. The
black links represent aij = (dg̃)ij = g̃i − g̃j = (w1)ij = 0 and the
red links represent aij = (dg̃)ij = g̃i − g̃j = (w1)ij = 1 mod 2. The
unshaded triangles represent (dg̃dg̃)ijk = (w2

1)ijk = B2dg̃ = B2w1 =
0 and the shaded triangle represents (dg̃dg̃)ijk = (w2

1)ijk = B2dg̃ =
B2w1 = 1. {By definition, (dg̃dg̃)ijk = [(g̃i − g̃j )(g̃j − g̃k)]2 and

(B2w1)ijk = [
(w1)ij +(w1)jk−(w1)ik

2 ]2 where i,j,k are ordered as i < j <

k.} We see that
∫
RP 2 w2

1 = ∫RP 2 dg̃dg̃ = 1.

above definition implies that aij is a Z2-valued 1-cocycle
a ∈ C1(Md ;Z2). In fact, a = w1.

We can use a multivalued Z2-gauge transformation to make
aij = 0, which changes the single-valued gi to multivalued g̃i .
If the orientation changes around a loop C, g̃ will have to
take different values on the same vertex somewhere on C (see
Fig. 6). We see that to realize ZT

2 SPT order, the local bosonic
degrees of freedom must couple to space-time orientation. In
other words, (−)g̃i is a pseudoscalar, which changes sign under
time-reversal and parity transformations. In this paper, we will
also refer g̃ as a pseudoscalar field. Thus, if we view g̃i as a
Z2-valued 0-cochain, we have (see Fig. 6)

a = w1 = dg̃. (158)

In terms of such multivalued g̃i , the partition function can be
written as

Zνd

(
Md

latt

) =
∑
{g̃i }

e
i2π

∫
Md

latt
νd ({g̃i })

. (159)

The ZT
2 SPT invariant is given by the corresponding

inhomogeneous cocycle ωd :

Ztop
νd

(
Md

latt

) = e
i2π

∫
Md

latt
ν

g
d ({gi=1},{aij })

= e
i2π

∫
Md

latt
ωd ({aij })

. (160)

We can express ωd ({aij }) in terms of aij (see Fig. 6):

ωd ({aij }) =
{

1
2ad if d = even,

0 if d = odd.
(161)

Thus, the ZT
2 SPT invariant is given by

Ztop
νd

(Md ) = eiπ
∫
Md wd

1 . (162)
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From wd
1 = Sq1(wd−1

1 ) = (d − 1)wd
1 , we see that wd

1 = 0 mod
2 automatically, when d = odd. So, the above expression for
the ZT

2 SPT invariant is valid for both d = even and odd.
Last, we like to mention that, using multivalued g̃i , we can

also express the nontrivial homogeneous cocycle νd ({g̃i}) as
(see Fig. 6)

νd ({g̃i}) =
{

1
2 (dg̃)d if d = even,

0 if d = odd,
(163)

since a = dg̃. This allows us to rewrite Eq. (159) as (see Fig. 6)

Zνd

(
Md

latt

) =
∑
{g̃i }

e
iπ
∫
Md

latt
(dg̃)d

(164)

for even d.

D. Group-link model and emergent Dijkgraaf-Witten
gauge theory

Now, let us construct local bosonic models: group-link
models, whose topological orders are described by Dijkgraaf-
Witten gauge theory. The local degrees of freedom of the
group-link model are group elements living on the links of
the space-time lattice Md

latt: aij ∈ G that satisfies aij = G−1
ji .

Then, using the inhomogeneous group cocycle ωd ({aij }), we
can construct a group-link model [33,83,85,89]

ZG,ωd

(
Md

latt

) =
∑
{aij }

aij ajkaki=1

e
i2π

∫
Md

latt
ωd ({aij })−U

∑
(ijk) |aij ajkaki−1|

,

(165)

where
∑

(ijk) sums over all 3-simplices, and U → +∞.
Note that the above model is a local bosonic model, not the

Dijkgraaf-Witten gauge theory. The Dijkgraaf-Witten gauge
theory is defined by

ZG,ωd ,DW
(
Md

latt

) =
∑
[{aij }]

aij ajkaki=1

e
i2π

∫
Md

latt
ωd ({aij })−U

∑
(ijk) |aij ajkaki−1|

,

(166)

where the summation
∑

[{aij }] is over the gauge-equivalent
class [{aij }] of the configurations {aij }. In contrast, the
summation

∑
{aij } in the group-link model is over all the

configurations {aij } (without the gauge reduction). However,
the volume-independent partition function of the two models
is the same:

Z
top
G,ωd ,DW

(
Md

latt

) = Z
top
G,ωd

(
Md

latt

)
. (167)

So, the two models have the same emergent topological order.
As an example, let us compute the topological invariant

for (2+1)D lens space L3(p), using the explicit CW complex
decomposition in Fig. 7:

Z
top
G,ω3

[L3(p)] = 1

|G|2
∑
g,h∈G

gp=1

ei2π
∑p−1

m=0 ω3(g,gmh,h−1gh). (168)

For G = Zn, ω3 ∈ H3(Zn,R/Z) = Zn is labeled by k ∈ Zn:

ω3(g1,g2,g3) = k

n2
g1(g2 + g3 − [g2 + g3]n). (169)

S 1

3
2
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gh

g h2

g h2

g h3

g h3
0’
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h gh

h gh

h gh−1

h gh−1
−1

−1

FIG. 7. The lens space L3(p) is obtained by identifying the
bottom and the top disks after a 2π/p rotation, e.g., link (01) and
link (0′2) are identified, link (02) and link (0′3) are identified, link
(12) and link (23) are identified, etc.

We find that

Z
top
Zn,k

[L3(p)] = Z
top
k;aBaZn

[L3(p)]. (170)

In fact, the topological term in the Zn Dijkgraaf-Witten theory
and the topological term in theZn-1-cocycle model are directly
related,

2π

∫
M3

ω3({aZn}) = k
2π

n

∫
M3

aZnBna
Zn , (171)

as one can see from Eq. (169) and the explicit expression of
aZnBna

Zn :

〈aZnBna
Zn ,(ijkl)〉 = a

Zn

ij 〈Bna
Zn ,(jkl)〉;

〈Bna
Zn ,(jkl)〉 = 1

n

(
a
Zn

jk + a
Zn

kl − a
Zn

j l

)
= 1

n

(
a
Zn

jk + a
Zn

kl − [aZn

jk + a
Zn

kl

]
n

)
.

(172)

Therefore, the Zn-1-cocycle model realizes the Zn Dijkgraaf-
Witten theory.

E. Symmetric topological orders described by gauge theories

We can also construct local bosonic models (called mixed
group-vertex group-link models) that will produce topological
orders described by a Ggauge-gauge theory that also have a
symmetry Gsymm. In the mixed model, the local degrees of
freedom of are group elements gi ∈ Gsymm living on the links
group elements aij ∈ Ggauge living on the links of the space-
time lattice Md

latt. Then, using the homogeneous group cocycle
νn({gi}) ∈ Hn(Gsymm,R/Z), and the inhomogeneous group
cocycle ωd−n({aij }) ∈ Hd−n(Ggauge,R/Z), we can construct
the mixed model

Zνnωd−n

(
Md

latt

) =
∑

{gi ,aij },aij ajkaki=1

e
i2π

∫
Md

latt
νn({gi })ωd−n({aij })

.

(173)

We can also construct a more general mixed model using in-
homogeneous group cocycle ωd ∈ Hd (Gsymm × Ggauge,R/Z):

Zνnωd−n

(
Md

latt

) =
∑

{gi ,aij },aij ajkaki=1

e
i2π

∫
Md

latt
ωd [{(g−1

i gj ,aij )}]
,

(174)

where (gi,aij ) is the group element of Gsymm × Ggauge.
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We can construct an even more general mixed model using
inhomogeneous group cocycle ωd ∈ Hd (GPSG,R/Z) [85]:

Zωd ;GPSG

(
Md

latt

) =
∑

{gi ,aij },aPSG
ij aPSG

jk aPSG
ki =1

e
i2π

∫
Md

latt
ωd [{(g−1

i gj ,aij )}]
,

(175)

where GPSG is a group that contains Ggauge as a nor-
mal subgroup such that GPSG/Ggauge = Gsymm, and aPSG

ij =
(g−1

i gj ,aij ) is the group element of GPSG [69]. In other words,
GPSG is an extension of Gsymm by Ggauge, which is also
described by the following short exact sequence:

1 → Ggauge → GPSG → Gsymm → 1. (176)

In this case, as discussed in [69], a gauge charge does not
transform as a representation of Ggauge, but rather transforms as
a representation of GPSG. Under the symmetry transformation,
the gauge charge transforms according to GPSG (which is called
the projective symmetry group). In fact, GPSG describes the
so-called “symmetry fractionalization”.

If there is a symmetry twist described by a
symm
ij ∈ Gsymm

on the links, then the partition function will be

Zωd ;GPSG

(
Md

latt,a
symm
ij

)
=

∑
{gi ,aij },aij ajkaki=1

e
i2π

∫
Md

latt
ωd [{(g−1

i a
symm
ij gj ,aij )}]

. (177)

The above construction also applies to the situation where
Gsymm contains time-reversal symmetry. In that case, a

symm
ij

will contain contributions from the change of the orientations
of the manifold, and ωd ∈ Hd (GPSG,(R/Z)T ) where time
reversal T ∈ GPSG will have a sign-changing action on R/Z.

If we include Zn-2-cochain field bZn , we can construct
new general local boson models with emergent symmetric
topological order, such as [45]

ZbZnωd−2;GPSG

(
Md

latt,a
symm
ij

)
=

∑
{gi ,aij ,b

Zn
ijk

},dbZn =0

aij ajkaki=1

e
i2π

∫
Md

latt
bZn ωd−2[{(g−1

i a
symm
ij gj ,aij )}]

, (178)

where we have assumed that nωd−2 = 0. This model has an
emergent (Zn × Ggauge)-gauge theory with Gsymm symmetry.
When, Ggauge = 1, the Zn charge may carry a projective
representation of Gsymm. When Gsymm = 1, the Zn charge
may carry a projective representation of Ggauge. In general,
the Zn charge may carry projective representation of GPSG

(i.e., with mixed fractionalized symmetry Gsymm charge and
gauge Ggauge charge).

VI. TIME-REVERSAL SYMMETRIC
TOPOLOGICAL ORDERS

In this section, we are going to construct exactly soluble
local bosonic models that have time-reversal symmetry and
emergent time-reversal symmetric topological orders. The
time-reversal symmetry T is described by the symmetry group
ZT

2 , which means T 2 = 1. We will first construct (2+1)D mod-
els and then (3+1)D models. All the (3+1)D models realize
time-reversal symmetric Z2-gauge theories at low energies.

A. (2+1)D time-reversal symmetric Z2-1-cocycle models

1. Model construction

We start with theZ2-1-cocycle models which produce time-
reversal symmetry-enriched Z2 topological orders and double-
semion topological orders in (2+1)D. The partition function
has a form

ZZ2aT
(
M3

latt

) =
∑

{aZ2
ij },daZ2 =0

e
iπ
∫
M3

latt
W (aZ2 ,wm).

(179)

The possible topological terms W (aZ2 ,wm) are mixture
of 1-cocycle aZ2 and Stiefel-Whitney classes wm. Here,

W (aZ2 ,wm) has its value in Z2. Thus, e
iπ
∫
M3

latt
W (aZ2 ,wm) = ±1

and there is time-reversal symmetry in our model. Also, since

W (aZ2 ,wm) ∈ C3(M3
latt;Z2), e

iπ
∫
M3

latt
W (aZ2 ,wm)

is well defined
even for nonorientable manifold M3

non where H3(M3
non;Z) = 0

but H3(M3
non;Z2) = Z2. We also note that for nonorientable

manifold, M3
non itself is a chain with boundary (i.e., M3

non is
not a cycle). Therefore,

∫
M3

non
db �= 0, for a 2-cochain b.

The possible topological terms are given by the combina-
tions of the following six 3-cocycles:

w3
1, w1w2, w3,

(aZ2 )3, w1(aZ2 )2, w2
1a

Z2 . (180)

From Appendix D 3, we find many relations between Stiefel-
Whitney and the Z2-1-cocycle:

w2
1 = w2, w1w2 = w3 = 0,

w1(aZ2 )2 = Sq1[(aZ2 )2] = 2(aZ2 )3 = 0. (181)

So, the most general time-reversal symmetric Z2-1-cocycle
model that couples to Stiefel-Whitney classes is given by

Zk1k2;tZ2aT
(
M3

latt

) =
∑

{aZ2
ij },daZ2 =0

e
iπ
∫
M3

latt
k1a

Z2B2a
Z2 +k2w2

1a
Z2

,

(182)

where k1,k2 ∈ Z2, and we have used (aZ2 )3 = aZ2B2a
Z2 .

We like to remark that the Stiefel-Whitney class w1 in
the above path integral can be induced by a local degrees
of freedom, a pseudoscalar g̃i introduced in Sec. V C. Using
w1 = dg̃i − dgi , where gi is Z2 single-valued 0-cochain, we
can rewrite the above path integral as (the gi dependence
disappears)

Zk1k2;tZ2aT
(
M3

latt

)
=

∑
{g̃i ,a

Z2
ij },daZ2 =0

e
iπ
∫
M3

latt
k1a

Z2B2a
Z2 +k2B2dg̃aZ2

(183)

which is a pure local bosonic model.
The above four local bosonic models with different values

of k1,k2 give rise to four different time-reversal symmetry-
enriched topological orders. If we break the time-reversal
symmetry, the above local bosonic model will only give rise
to two different topological orders labeled by k1: the Z2

topological order (i.e., the Z2-gauge theory) for k1 = 0 and
the double-semion topological order for k1 = 1.
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2. Topological partition functions

Next, we will compute the volume-independent partition
function, which is given by

Z
top
k1k2;tZ2aT (M3) = 1

2

∑
aZ2 ∈H 1(M3;Z2)

eiπ
∫
M3 k1a

Z2B2a
Z2 +k2w2

1a
Z2

.

(184)

On M3 = S1 × �g ,
∫
M3 k1a

Z2B2a
Z2 + k2w2

1a
Z2 = 0. Thus,

Z
top
k1k2;tZ2aT (S1 × �g) = 22g. (185)

On M3 = S1 × �non
g , we note that the cohomology ring

H ∗(S1 × �non
g ;Z2) has a basis

H ∗(S1 × �non
g ;Z2) = {a0,ai |i=1,...,g,a0ai,b,a0b} (186)

with a0,ai ∈ H 1(S1 × �non
g ;Z2) and b ∈ H 2(S1 × �non

g ;Z2),
which have the following cup product:

a2
i = b, a2

0 = aib = 0. (187)

The Stiefel-Whitney classes are given by

w1 =
g∑

i=1

ai, w2 = w2
1 = [g]2b, (188)

and the Bockstein homomorphism is given by

B2ai = (ai)
2 = b, B2a0 = 0. (189)

Expanding

aZ2 =
g∑

μ=0

αμaμ, (190)

we find that

Z
top
k1k2;tZ2aT

(
S1 × �non

g

) = 1

2

∑
aμ=0,1

eiπ(k1α0
∑g

i=1 αi+k2gα0)

=
∑

ai=0,1

δ2

(
k1

g∑
i=1

αi + k2g

)

= (1 − k1)[k2g + 1]22g + k12g−1.

(191)

The results are summarized in Table I.
We like to remark that Z2 × ZT

2 SPT states are classi-
fied by H3[Z2 × ZT

2 ; (R/Z)T ] = Z⊕2
2 . For a Z2 × ZT

2 SPT
state labeled by (k1,k2) ∈ Z⊕2

2 , its SPT invariant is given
by Ztop(M3,aZ2 ) = eiπ

∫
M3 k1a

Z2B2a
Z2 +k2w2

1a
Z2 , where aZ2 de-

scribes the Z2 symmetry twist on M3. Such SPT invariant
happens to be the phase factor in Eq. (184), and the summation
in Eq. (184) happens to be the summation of all possible
Z2 symmetry twists. This implies that the topological orders
produced by the (2+1)D Z2-1-cocycle model can be regarded
as the Z2-gauged Z2 × ZT

2 SPT states.

3. Properties of excitations

When k1 = 0, the (2+1)D Z2-1-cocycle model has an
emergent Z2 topological order described by a low-energy
Z2-gauge theory. It has four types of pointlike excitations: 1, e,

m, ε = em, where ε is a fermion and others are bosons. When
k1 = 1, the cocycle model has an emergent double-semion
topological order. It has four types of pointlike excitations: 1,
e, m, ε, where e is a semion with spin 1

4 , and ε a semion with
spin − 1

4 . 1 and e are bosons, and they carry Z2 charge 0 and
1, respectively.

To obtain more properties of the excitations in those
T -symmetric topological orders, let us consider dimension
reduction. In general, when we reduce a stable phase Cd in
d dimension to lower dimension d ′ via a compactification
Md → Md ′ × Nd−d ′

, the resulting lower-dimensional phase
on Md ′

may correspond to several stable phases Cd ′
i with

accidental degenerate energy [90]. We denote such dimension
reduction as

Cd =
⊕

i

Cd ′
i , (192)

and refer Cd ′
i ’s as different sectors. The different sectors arise

from different field configurations on Nd−d ′
. We like to ask the

following: What are effective theories for those d ′-dimensional
systems in each sector?

To apply the above general picture to our case, let us assume
the space-time to be M3 = M2 × S1 and S1 is a small circle.
We can view the (2+1)D Z2-1-cocycle models as a (1+1)D
local bosonic system. Then, what is the effective theory for
such (1+1)D systems?

To answer the above question, we can write aZ2 as aZ2 =
a
Z2

M2 + a
Z2

S1 , where a
Z2

M2 are low-energy degrees of freedom only

live on M2 (i.e., constant in the S1 direction), and a
Z2

S1 are
high-energy degrees of freedom only live on S1 (i.e., constant
in the M2 directions). The different field configurations on S1

are labeled by α = ∫ 1
S

a
Z2

S1 ∈ Z2. So, the different sectors are
also labeled by α = 0,1. The partition function on M2 × S1

becomes

Zk1k2;tZ2aT (M2 × S1)

=
∑

{aZ2
ij },daZ2 =0

eiπ
∫
M2×S1 k1a

Z2B2a
Z2 +k2B2dg̃aZ2

=
∑

{aZ2
ij },da

Z2
M2 =0

e
iπα

∫
M2 k1B2a

Z2
M2 +k2B2dg̃

. (193)

We see that in the sector α = 0, the resulting (1+1)D
ZT

2 SPT order is trivial. In contrast, in the sector α = 1,
the resulting (1+1)D ZT

2 SPT order is nontrivial. Usually, in
(1+1)D, the gauge field a

Z2

M2 fluctuates strongly. Here, we want
to treat the (1+1)D system as reduced from the (2+1)D system
as shown in Fig. 8. In this case, we can assume the gauge field
a
Z2

M2 to fluctuate weakly, and treat a
Z2

M2 as a background probe
field. Therefore, we can view the (1+1)D system as a system
with Z2 × ZT

2 symmetry. Then, from the (1+1)D effective
theory (193) which can be viewed as an SPT invariant [55],
we see that in the sector α = 1 is described by a Z2 × ZT

2
SPT state labeled by (k1,k2), which agrees with the group
cohomology result H2(Z2 × ZT

2 ,R/ZT ) = Z⊕2
2 .

If (k1,k2) = (0,1), the (1+1)D SPT state is a pure ZT
2 SPT

state as indicated by the term eiπ
∫
M2 k2B2dg̃ . Such SPT state has

Kramers doublet at the chain end. In fact, the chain end has
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C
C

FIG. 8. In a dimension reduction from 2D space to 1D space
(a cylinder), a hole in the 2D space becomes an end of the 1D space.
The Z2 vortex with

∫
C

aZ2 = 1 in 2D space becomes the
∫

C
aZ2 = 1

sector in the 1D space.

to sector with Z2 charge 0 and with Z2 charge 1. Both sectors
are Kramers doublets. We may view the (1+1)D system with
a chain end as a (2+1)D system with a hole as described
in Fig. 8. Thus, the α = 1 sector, corresponding to a π flux
in (2+1)D. We see that a π flux carries a Kramers doublet
regardless if it carries addition Z2 charge or not. Similarly, the
α = 0 sector gives rise to trivial (1+1)D SPT state, and thus
a π flux carries a time-reversal singlet regardless if it carries
additional Z2 charge or not. To summarize,

the (2+1)D Z2-1-cocycle model labeled by (k1,k2) = (0,1)
has four types of pointlike excitations 1, e, m, ε = em. The
excitations m, ε carry π flux, while the excitations e, ε carry
a Z2 gauge 1. The excitations m, ε are Kramers doublets and
the excitation ε is a fermion (see Table I).

The time-reversal singlet has a quantum dimension
d = 1 and the Kramers doublet has a quantum dimension
d = 2. (Quantum dimension is the dimension of the Hilbert
space for the internal degrees of freedom carried by a particle.)
Thus, the four types of particles have the following quantum
dimensions (d1,de,dm,df ) = (1,1,2−,2−), where the subscript
− indicates the Kramers doublet. A particle can also carry spin
s, which is defined mod 1. A boson has spin 0 mod 1 and a
fermion has spin 1

2 mod 1. Thus, the four types of particles have
the following spins (s1,se,sm,sf ) = (0,0,0, 1

2 ) (see Table I).
If (k1,k2) = (1,0), the cocycle model has four excitations:

1, e, m, ε. 1 and e transform as time-reversal singlet. m and ε

transform into each other and form a time-reversal doublet.
Since m and ε are always degenerate with time-reversal
symmetry, we view them as a single type of excitation with
quantum dimension 2. Thus,

the (2+1)DZ2-1-cocycle model labeled by (k1,k2) = (1,0) has
three types of pointlike excitations with quantum dimensions
(di) = (1,1,2) and spins (si) = (0,0,[ 1

4 , 3
4 ]).

Under the dimension reduction, the (1+1)D state in α = 1
sector is a Z2 × ZT

2 SPT state described by the SPT invariant

e
iπ
∫
M2 B2a

Z2
M2 . The chain end for such a Z2 × ZT

2 SPT is a doublet
with fraction Z2 charge ± 1

2 . Under the time reversal, the + 1
2

and − 1
2 Z2 charge states get exchanged and T 2 = 1. Thus, the

π flux in (2+1)D ground state will carry a doublet of ± 1
2Z2

charges. There are two types of 0-flux excitations with 0 and
1 Z2 charges. Those two types of excitations are time-reversal
singlets. Thus, we denote that quantum dimensions for those
excitations as (di) = (1,1,2+), where subscript + indicates
T 2 = 1 (see Table I).

If (k1,k2) = (1,1), under the dimension reduction, the
(1+1)D state in α = 1 sector is a Z2 × ZT

2 SPT state described

by the SPT invariant e
iπ
∫
M2 B2a

Z2
M2 +B2dg̃ . The chain end for

such Z2 × ZT
2 SPT states may contain four degenerate states

formed by a doublet with fraction Z2 charge ± 1
2 and a Kramers

doublet. The time-reversal transformation is described by

T =

⎛
⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎠K = σ 1 ⊗ iσ 2K, T 2 = −1,

(194)

where K is the antiunitary transformation, and σ 1,2,3 are the
Pauli matrices. The Z2 symmetry is generated by

Q =

⎛
⎜⎝

i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 −i

⎞
⎟⎠ = iσ 3 ⊗ σ 0, Q2 = −1. (195)

However, the four states can be split by a time-reversal and
Z2-symmetric perturbation

δH = �

⎛
⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠ = �σ 3 ⊗ σ 3. (196)

Thus, the chain end in general has a doublet with fractional
Z2 charge ± 1

2 which is also a T 2 = −1 Kramers doublet at
the same time. As a result, the π flux in (2+1)D ground state
carries a Kramers doublet with fractional Z2 charge ± 1

2 . We
stress that there is no time-reversal symmetric perturbation that
can give rise to T 2 = 1 doublet. To summarize,

the (2+1)D Z2-1-cocycle model labeled by (k1,k2) = (1,1)
has three types of pointlike excitations with quantum dimen-
sions (d1,de,ds) = (1,1,2−) and spins (s1,se,ss) = (0,0,[ 1

4 , 3
4 ]),

where subscript “−” indicates T 2 = −1 (see Table I).

B. (2+1)D time-reversal symmetric ZT
4 group

cohomology models

1. Model construction

Using the group cocycles, we can construct more local
bosonic models that can produce time-reversal symmetric
(2+1)D (twisted) Z2-gauge theories at low energy [see (177)].
In this section, we will discuss those models.

We put Z2 degrees of freedom on both vertices and links:
g̃i ∈ Z2 and a

Z2
ij ∈ Z2. Note that g̃i is a pseudoscalar as

discussed in Sec. V C (see Fig. 6). Using

1 → Z2 → Z4 → Z2 → 1, (197)

we can construct a Z4-1-cocycle field

a
Z4
ij = 2a

Z2
ij + (dg̃)ij . (198)

Notice that H3(Z4,(R/Z)Z4 ) = 0. Thus, there is no group
cocycle term in the action amplitude. We obtain the following
time-reversal symmetric model:

ZZT
4
(M3) =

∑
{aZ2

ij
,g̃i },daZ4 =0

aZ4 =2aZ2 +dg̃

1. (199)
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The condition daZ4 = 0 becomes (when we view the cochains
as Z valued)

daZ4 = 2daZ2 + d(dg̃)
4= 0

→ daZ2 + B2dg̃
2= 0. (200)

We can rewrite the above partition function as

ZZT
4
(M3) =

∑
{aZ2

ij ,g̃i },daZ2
2=B2dg̃

1. (201)

We see that such a model is different from the model (183) with
k1,2 = 0. The condition daZ2 = B2dg̃ encodes the nontrivial
group extension (197).

Due to the relation B2dg̃ = B2w1
2= w2

1, ZZT
4
(M3) �= 0

only when w2
1 = 0 as Z2-valued cohomology class. Thus, we

introduce

δ̄m(c) =
{

0 if c �= db mod m,

1 if c = db mod m.
(202)

So ZZT
4
(M3) contains a factor δ̄2(B2w1). Furthermore, on

space-time M3 with B2w1 = 0, we have daZ2
2= 0. In this

case, we can combine the Z2-1-cocycle model and the ZT
4

group cohomology model together:

Zk0k1k2;tZ2aT (M3)

=
∑

{g̃i ,a
Z2
ij },daZ2

2=k0B2dg̃

eiπ
∫
M3 k1(aZ2 )3+k2a

Z2B2dg̃

=
∑

{g̃i ,a
Z2
ij ,ã

Z2
ij }

eiπ
∫
M3 k1(aZ2 )3+ãZ2 daZ2 +k0ã

Z2B2dg̃+k2a
Z2B2dg̃.

(203)

When k0 = 0, the above model reduces to the Z2-1-cocycle
model (183). When k0 = 1 and k1 = k2 = 0, the above
becomes the ZT

4 group cohomology model. The volume-
independent partition function is given by

Z
top
k0k1k2;tZ2aT (M3)

= δ̄2(k0B2w1)

|H 0(M3;Z2)|
∑

aZ2 ∈H 1(M3;Z2)

eiπ
∫
M3 k1(aZ2 )3+k2w2

1a
Z2

.

(204)

In the above, we have assumed that when k0B2w1 is a
coboundary, we will choose such a coboundary to be zero. We
note that Z

top
k0k1k2;tZ2aT (M3) is simply given by Z

top
k1k2;tZ2aT (M3)

(see Sec. VI A 2) with an extra δ̄2(k0B2w1) term.

When k0 = 0, the above model becomes the one studied in
Sec. VI A, and the topological order that it produces can be
viewed as a gauged Z2 × ZT

2 SPT state.

2. Properties of excitations

When k0 = 1, the nontrivial group extension makes the
time-reversal transformation T to have a property that T 2 is
a Z2-gauge transformation. So, T 2 = −1 for a nontrivial Z2

charge. In other words, the e particle with Z2 charge 1 carries
a Kramers doublet. e is also a boson, since if we break the
time-reversal symmetry, the above model gives rise to the Z2

or double-semion topological orders, where, in both cases, the
Z2 charge is a boson. We also note that when k0 = 1, k2 = 0,1
gives rise to the same model.

When (k0,k1,k2) = (1,0,∗), the dimension reduction
M3 → M2 × S1 does not produce nontrivial Z2 × ZT

2 SPT
state in (1+1)D, thus, the Z2 vortex m in (2+1)D is a
time-reversal singlet and is a boson. The bound state of a
Z2 charge and a Z2 vortex is a fermion that carries a Kramers
doublet. The results are summarized in Table I.

When (k0,k1,k2) = (1,1,0), the dimension reduction M3 →
M2 × S1 produces a nontrivial Z2 × ZT

2 SPT state in (1+1)D,
thus, the Z2 vortex m. In fact, the Z2 vortex m is a T 2 = 1
time-reversal doublet that carries Z2-gauge charge ± 1

2 [the
same as discussed in Sec. VI A 3 for the (k0,k1,k2) = (0,1,0)
case]. The Z2-gauge-charge ± 1

2 doublet is formed by a semion
with spin s = 1

4 and a conjugate semion with spin s = 3
4 . The

bound state of a Z2 charge and a Z2 vortex is ε which also
forms a time-reversal doublet. But, ε is a T 2 = −1 Kramers
doublet that carries Z2-gauge charge ± 1

2 . To summarize,

the (2+1)D ZT
4 group-cocycle model labeled by (k0,k1,k2) =

(1,1,0) has four types of pointlike excitations with quan-
tum dimensions (d1,de,dm,dε) = (1,2−,2+,2−) and spins
(s1,se,sm,sε) = (0,0,[ 1

4 , 3
4 ],,[ 1

4 , 3
4 ]) (see Table I).

For (k0,k1,k2) = (1,1,1), the results are the same as those
for (k0,k1,k2) = (1,1,0), except that the properties of m

and ε are exchanged. This is why (k0,k1,k2) = (1,1,0) and
(k0,k1,k2) = (1,1,1) correspond to the same time-reversal
SET order.

3. Including excitations in the path integral

Now, let us include the excitations in the partition function
(203). Let M1

e be the Z2-valued 1-cycle that corresponds to
the world line of the Z2 charge e: M1

e ∈ Z1(M4;Z2). Let M1
m

be the Z2-valued 1-cycle that corresponds to the world line of
the Z2 vortex m: M1

m ∈ Z1(M4;Z2). The Poincaré dual of M1
e

is a Z2-valued 2-cocycle BZ2
e and the Poincaré dual of M1

m

is a Z2-valued 2-cocycle BZ2
m : BZ2

e ∈ Z2(M4;Z2) and BZ2
m ∈

Z2(M4;Z2). The partition function with excitations is given by

Zk0k1k2;tZ2aT (M3) =
∑

{g̃i ,a
Z2
ij },daZ2

2=k0B2dg̃+B
Z2
m

eiπ
∫
M3 k1(aZ2 )3+k2a

Z2B2dg̃e
iπ
∫
M1

e
aZ2

=
∑

{g̃i ,a
Z2
ij ,ã

Z2
ij }

eiπ
∫
M3 ãZ2 (daZ2 +k0B2dg̃+B

Z2
m )eiπ

∫
M3 k1(aZ2 )3+k2a

Z2B2dg̃e
iπ
∫
M1

e
aZ2

=
∑

{g̃i ,a
Z2
ij ,ã

Z2
ij }

eiπ
∫
M3 ãZ2 daZ2

eiπ
∫
M3 k1(aZ2 )3

eiπ
∫
M3 ãZ2 (k0B2dg̃+B

Z2
m )+aZ2 (k2B2dg̃+B

Z2
e ). (205)
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Let us change the variables to

aZ2 2= aZ2
m + a

Z2
0 , ãZ2 2= aZ2

e + ã
Z2
0 , (206)

where a
Z2
0 ,ã

Z2
0 ∈ C1(M2;Z2), and aZ2

m , aZ2
e are fixed Z2-valued 1-cochains satisfying

daZ2
m

2= BZ2
m + k0B2w1, daZ2

e

2= BZ2
e + k2B2w1. (207)

(Here, we have assumed that BZ2
m + k0B2w1 and BZ2

e + k2B2w1 are coboundaries.) Now, we can rewrite the partition function as

Zk0k1k2;tZ2aT (M3) =
∑

g̃,a
Z2
0 ,ã

Z2
0

eiπ
∫
M3 a

Z2
e da

Z2
m +ã

Z2
0 da

Z2
0 eiπ

∫
M3 k1(a

Z2
m +a

Z2
0 )3

eiπ
∫
M3 a

Z2
e (k0B2dg̃+B

Z2
m )+a

Z2
m (k2B2dg̃+B

Z2
e )

=
∑

g̃,da
Z2
0 =0

eiπ
∫
M3 a

Z2
e da

Z2
m eiπ

∫
M3 k1(a

Z2
m +a

Z2
0 )3

eiπ
∫
M3 a

Z2
e (k0B2dg̃+B

Z2
m )+a

Z2
m (k2B2dg̃+B

Z2
e ). (208)

Since a
Z2
0 becomes a cocycle, we can further simplify the

factor eiπ
∫
M3 k1(a

Z2
m +a

Z2
0 )3

using Eq. (21):

eiπ
∫
M3 k1(a

Z2
m +a

Z2
0 )3

= eiπ
∫
M3 k1[(a

Z2
m )3+(a

Z2
0 )3+(a

Z2
m )2a

Z2
0 +a

Z2
m (a

Z2
0 )2]. (209)

The partition function now becomes

Zk0k1k2;tZ2aT (M3)

= eiπ
∫
M3 a

Z2
m B

Z2
e

∑
g̃,da

Z2
0 =0

eiπ
∫
M3 k0a

Z2
e B2dg̃+k2a

Z2
m B2dg̃

× eiπ
∫
M3 k1[(a

Z2
m )3+(a

Z2
0 )3+(a

Z2
m )2a

Z2
0 +a

Z2
m (a

Z2
0 )2]. (210)

The above partition function can be expressed in terms of
linking numbers. Consider

∫
M3 BZ

e aZ2
m = ∫

M1
e
aZ2

m . If M1
e is

a boundary M1
e = ∂D2

e , then we can relate the above to the
intersection number and the linking number:∫

M1
e

aZ2
m =

∫
D2

e

daZ2
m =

∫
D2

e

BZ2
m + k0w2

1

= Int
(
D2

e ,M
1
m + k0M

1
w

) = Lnk
(
M1

e ,M1
m + k0M

1
w

)
,

(211)

where M1
w is the Z2-valued 1-cycle which is the Poincaré dual

ofB2w1. Here, Int(D2
e ,M

1
m) is the intersection number between

D2
e and M1

m, and Lnk(M1
e ,M1

m) the linking number between
M1

e and M1
m. The linking number satisfies

Lnk
(
M1

e ,M1
m

) = Lnk
(
M1

m,M1
e

)
. (212)

Using the linking number, we can rewrite the partition function
as

Zk0k1k2;tZ2aT (M3)

∝ eiπ
∫
M3 k1(a

Z2
m )3

eiπLnk(k2M
1
w+M1

e ,M1
m)

×
∑

g̃,da
Z2
0 =0

eiπ
∫
M3 k0a

Z2
e B2dg̃+k2a

Z2
m B2dg̃

× eiπ
∫
M3 k1[(a

Z2
0 )3+(a

Z2
m )2a

Z2
0 +a

Z2
m (a

Z2
0 )2]. (213)

We like to stress that the above path integral has a time-reversal
symmetry: it is invariant under a combined transformation
g̃i → [g̃i + 1]2, a

Z2
0,ij → a

Z2
0,ij , and complex conjugation.

The physical properties of excitations can be obtained from
the above effective theory. Let us first assume k1 = 0, and
rewrite the partition function as

Zk0k1k2;tZ2aT (M3)

∝ δ̄2
(
M1

m + k0M
1
w

)
δ̄2
(
M1

e + k2M
1
w

)
eiπLnk(k2M

1
w+M1

e ,M1
m)

×
∑

g̃,da
Z2
0 =0

eiπ
∫
M3 k0a

Z2
e B2dg̃+k2a

Z2
m B2dg̃, (214)

where we have restored the two δ functions. For simplicity, we
will also assume w2

1 = 0, and choose aZ2
e to be the Poincaré

dual of D2
e and aZ2

m to be the Poincaré dual of D2
m. Here, D2

e

and D2
m are the disks bonded by the world lines M1

e and M1
m.

The dynamical part of the partition function can be written as∑
g̃

eiπ
∫
M3 k0a

Z2
e B2dg̃+k2a

Z2
m B2dg̃

=
∑

g̃

e
iπ
∫
D2

e
k0B2dg̃

e
iπ
∫
D2

m
k2B2dg̃

∝ e
iπ
∫
D2

e
k0B2w1e

iπ
∫
D2

m
k2B2w1 .

From the above, we see that, when k0 = 1, there is ZT
2 SPT

state described by the SPT invariant e
iπ
∫
D2

e
B2w1 on D2

e . In this
case, the boundary of D2

e , i.e., the e particle described by
the world line M1

e = ∂D2
e , will carry a Kramers doublet. This

agrees with the result in Sec. VI B 2. Similarly, when k2 = 1,

there is ZT
2 SPT state described by the SPT invariant eiπ

∫
D2

m
B2w1

on D2
m, and the m particle will carry a Kramers doublet.

The term eiπLnk(M1
e ,M1

m) tells us that the e and m have a mutual
π statistics between them. The absence of self-linking terms
eiθLnk(M1

e ,M1
e ) and eiθLnk(M1

m,M1
m) implies that the e and m are

bosons. We also see that the emergence of Kramers-doublet
bosons cause the partition function to vanish on the space-
time with w2

1 �= 0. From the form of δ̄2(M1
m + k0M

1
w)δ̄2(M1

e +
k2M

1
w), we see that space-time with w2

1 �= 0 will generate a m

particle (or more precisely, a noncontractible world line of the
m) if the bosonic e particle is a Kramers doublet. Similarly,
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space-time with w2
1 �= 0 will generate a e particle if the bosonic

m particle is a Kramers doublet. In other words,

if there is an emergent bosonic Kramers doublet, then a space-
time with w2

1 �= 0 will create a world line of a particle that has
a mutual π statistics with the bosonic Kramers doublet. The
world line is equal to the Poincaré dual of w2

1.

Those results are summarized by the top three rows in
Table I.

Next, we consider the case of k1 = 1. The partition function
now reads as

Zk0k1k2;tZ2aT (M3)

∝ δ̄2
(
M1

m + k0M
1
w

)
eiπ

∫
M3 k1(a

Z2
m )3

eiπLnk(k2M
1
w+M1

e ,M1
m)

×
∑

g̃,da
Z2
0 =0

eiπ
∫
M3 k0a

Z2
e B2dg̃+k2a

Z2
m B2dg̃

× eiπ
∫
M3 (a

Z2
0 )3+(a

Z2
m )2a

Z2
0 +a

Z2
m (a

Z2
0 )2

. (215)

Note that we only have one δ function in this case. The above
result for the e particle is not changed: the e is still a boson,
which carries Kramers doublet if k0 = 1 and time-reversal
singlet if k0 = 0.

But, the result for the m particle is changed. The effective
theory on D2

m now becomes∑
g̃,a

Z2
0

e
iπ
∫
D2

m
k2B2dg̃+(a

Z2
0 )2

. (216)

If we treat the emergent Z2-gauge symmetry as a Z2 symmetry,
then the above can be viewed as a Z2 × ZT

2 SPT state
on D2

m. The SPT state is characterized by SPT invariant

e
iπ
∫
D2

e
k2B2w1+(aZ2 )2

where aZ2 is the symmetry twist of Z2. As
discussed in Sec. VI A 3, when k2 = 0, the m particle will carry
± 1

2 Z2-gauge charge, which forms a T 2 = 1 time-reversal
doublet (labeled by 2+). When k2 = 1, the m particle will
carry ± 1

2 Z2-gauge charge, which forms a T 2 = −1 Kramers
doublet (labeled by 2−). The above applies for both k0 = 0,1
cases.

For the bond state of e and m, the ε particle, the Z2 × ZT
2

SPT state on the corresponding D2
ε is described by∑

g̃,a
Z2
0

e
iπ
∫
D2

m
(k0+k2)B2dg̃+k1(a

Z2
0 )2

. (217)

We see that the ε is always a ± 1
2 Z2-gauge-charge doublet.

It is a T 2 = −1 Kramers doublet (2−) if (k0 + k2) = 1 and a
T 2 = 1 time-reversal doublet (2+) if (k0 + k2) = 0.

The statistics of the m particle is no longer bosonic due the

self-braiding term eiπ
∫
M3 k1(a

Z2
m )3

(which can be viewed as the

triple self-intersection of D2
m). We note that eiπ

∫
M3 k1(a

Z2
m )3 =

±1 respects the time-reversal symmetry. But, one expects m to
be a semion described by the self-linking term ei π

2 Lnk(M1
m,M1

m).
In fact, the above self-linking term breaks the time-reversal
symmetry, and does not describe the statistics of m which in our
case is a particle with respect to the time-reversal symmetry.
In other words, due to the time-reversal symmetry, m is not a
semion.

In fact, m is a T 2 = −1 Kramers doublet or a T 2 = 1
time-reversal doublet formed by a semion (with spin s = 1

4 )
and a conjugate semion (with spin s = 3

4 ). The statistics of
such a time-reversal symmetric doublet is not described by
the self-linking term ei π

2 Lnk(M1
m,M1

m) or the self-linking term
e−i π

2 Lnk(M1
m,M1

m). Our calculation suggests that the statistics
of the time-reversal symmetric doublet is described by

eiπ
∫
M3 k1(a

Z2
m )3

: the triple self-intersection of D2
m. Those results

are summarized by the bottom three rows in Table I.

C. (3+1)D time-reversal symmetric model

1. Model construction

In this section, we are going to study a class of (3+1)D
time-reversal symmetric local bosonic models, that can
produce the simplest time-reversal symmetric topological
orders. The (3+1)D time-reversal symmetric local bosonic
models contain Z2-multivalued 0-cochain field g̃i , Z2-valued
1-cochain field a

Z2
ij , and Z2-valued 2-cochain field b

Z2
ijk . Its

path integral is given by

Zk1k2k3k4k5k6 (M4)

=
∑

{g̃Z2
i ,a

Z2
ij ,b

Z2
ijk }

eiπ
∫
M4 bZ2 daZ2

eiπ
∫
M4 (k3+k4)bZ2B2dg̃+k4(bZ2 )2

× eiπ
∫
M4 k1(aZ2 )4+(k2+k1)aZ2 (dg̃)3

eiπ
∫
M4 k5(dg̃)4+k6(w2)2

.

(218)

The 0-cocycle field g̃i is a pseudoscalar as introduced in
Sec. V C. It satisfies dg̃i = w1 + dg, where gi is a Z2

single-valued 0-cochain field. Thus, B2dg̃i = B2w1. The
above path integral defines the system for both closed and
open space-time manifold M4. But, in the following, we will
assume M4 to be closed. The index kI = 0,1. So, there are
26 = 64 different models.

We note that the above path integral has the time-reversal
symmetry ZT

2 , i.e., invariant under the combined
transformation of g̃i → [g̃i + 1]2 and complex conjugation.
(Under the transformation g̃i → g̃′

i = [g̃i + 1]2, dg̃i = −dg̃′
i .)

This is a designed property. However, the path integral also
has an extra Z′

2 symmetry: g̃i → [g̃i + 1]2 (without the
complex conjugation).

Let us also include the excitations in the path integral. We
know that the pointlike excitations are described by the world
lines in space-time. A world line M1

WL can be viewed as a
Z2-valued 1-cycle, which is Poincaré dual to a Z2-valued 3-
cochain C

Z2
WL. The stringlike excitations are described by the

world sheet in space-time, which can be viewed as Z2-valued
2-cycles M2

WS in the space-time lattice, whose Poincaré dual
is a Z2-valued 2-cocycle B

Z2
WS.

Just like the Z2-gauge theory, we can include those
excitations in path integral (218), by adding the Z2-charge

coupling term e
iπ
∫
M1

WL
aZ2

and the Z2-flux coupling term

e
iπ
∫
M2

WS
bZ2

. Due to the Poincaré duality,

e
iπ
∫
M1

WL
aZ2 = eiπ

∫
M4 C

Z2
WL aZ2

,

e
iπ
∫
M2

WS
bZ2 = eiπ

∫
M4 B

Z2
WS bZ2

. (219)
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Thus, in the presence of pointlike topological excitations
described by C

Z2
WL and stringlike topological excitations de-

scribed by B2
WS, the partition function (218) becomes

Zk1k2k3k4k5k6 (M4)

=
∑

g̃,aZ2 ,bZ2

eiπ
∫
M4 bZ2 (daZ2 +k4b

Z2 +(k3+k4)B2dg̃+B
Z2
WS )

× eiπ
∫
M4 k1(aZ2 )4+[(k2+k1)(dg̃)3+C

Z2
WL ]aZ2

eiπ
∫
M4 k5(dg̃)4+k6w2

2 .

(220)

2. Partition function

To understand the physical properties of those 64 models,
we like to compute the corresponding partition functions
on closed space-time M4. However, unlike other models
constructed in this paper, the above models are not exactly
soluble. They are exactly soluble only in the cases k1 = 0 or
k4 = 0. So, we will calculate the partition functions for those
two cases.

When k4 = 0, the action is linear in bZ2 , and we can
integrate out bZ2 first, which leads to a constraint

daZ2 2= k3B2dg̃ + B
Z2
WS = k3B2dg̃0 + B

Z2
WS, (221)

where g̃0 is a fixed Z2-multivalued 0-cochain such that

g̃ − g̃0
2= g (222)

is a Z2-single-valued 0-cochain g. We see that the partition
function is zero when k3B2dg̃0 + B

Z2
WS is not a coboundary.

Thus, the partition function contains a factor δ̄2(k3B2dg̃0 +
B
Z2
WS). We may solve the daZ2

2= k3B2dg̃ + B
Z2
WS constraint

via the following ansatz:

aZ2 2= a
Z2
WS + a

Z2
0 , (223)

where a
Z2
WS is a Z2-valued 1-cochain that satisfies

da
Z2
WS

2= k3B2dg̃ + B
Z2
WS, (224)

and a
Z2
0 is a Z2-valued 1-cocycle field a

Z2
0 ∈ Z1(M4;Z2). The

partition function now becomes

Zk1k2k30k5k6 (M4) = δ̄2
(
k3B2dg̃ + B

Z2
WS

) ∑
g̃,da

Z2
0

2=0

eiπ
∫
M4 k1(a

Z2
WS )4+[(k2+k1)(dg̃)3+C

Z2
WL ]a

Z2
WS

× eiπ
∫
M4 k1(a

Z2
0 )4+[(k2+k1)(dg̃)3+C

Z2
WL ]a

Z2
0 eiπ

∫
M4 k5(dg̃)4+k6w2

2 . (225)

Since a
Z2
0 is a cocycle, we can replace dg̃ by dg̃0 in the last line above, and use many relations between a

Z2
0 and Stiefel-Whitney

classes, such as (see Appendix D 4 where w1 is replaced by dg̃0)

(dg̃0)2(aZ2
0

)2 2,d= (dg̃0)3a
Z2
0 , w2

(
a
Z2
0

)2 2,d= w3a
Z2
0 ,

(
a
Z2
0

)4 2,d= dg̃0
(
a
Z2
0

)3
,
[
a
Z2
0

)2 + (dg̃0)2 + w2
](

a
Z2
0

)2 2,d= 0, (226)

to simplify the last line. Note that those relations are valid only when a
Z2
0 is a cocycle and when M4 is closed. Therefore, we can

rewrite the above partition function on closed M4 as

Zk1k2k30k5k6 (M4) = δ̄2
(
k3B2dg̃0 + B

Z2
WS

) ∑
g̃,da

Z2
0

2=0

eiπ
∫
M4 k1(a

Z2
WS )4+[(k2+k1)(dg̃)3+C

Z2
WL ]a

Z2
WS eiπ

∫
M4 [k1w3+k2(dg̃0)3+C

Z2
WL ]a

Z2
0 eiπ

∫
M4 k5(dg̃)4+k6w2

2

= δ̄2
(
k3B2dg̃0 + B

Z2
WS

)
δ̄2
[
k1w3 + k2(dg̃0)3 + C

Z2
WL

]
eiπ

∫
M4 k5(dg̃0)4+k6w2

2

∑
g̃

eiπ
∫
M4 k1(a

Z2
WS )4+[(k2+k1)(dg̃)3+C

Z2
WL ]a

Z2
WS .

(227)

We note that x2 2= B2x for any Z2-valued 1-cocycle x, and dg̃ = dg̃0 + dg. Thus,

eiπ
∫
M4 (k2+k1)(dg̃)3a

Z2
WS = eiπ

∫
M4 (k2+k1)dg̃B2dg̃0a

Z2
WS

= eiπ
∫
M4 (k2+k1)dg̃0B2dg̃0a

Z2
WS eiπ

∫
M4 (k2+k1)dgB2dg̃0a

Z2
WS

= eiπ
∫
M4 (k2+k1)(dg̃0)3a

Z2
WS eiπ

∫
M4 (k2+k1)gB2dg̃0(k3B2dg̃0+B

Z2
WS ). (228)

Therefore, the volume-independent partition function is given by

Z
top
k1k2k30k5k6

(M4) = |H 0(M4;Z2)||H 2(M4;Z2)|
|H 1(M4;Z2)| eiπ

∫
M4 k5(dg̃0)4+k6w2

2+k1(a
Z2
WS )4+[(k2+k1)(dg̃0)3+C

Z2
WL ]a

Z2
WS

× δ̄2
(
k3B2dg̃0 + B

Z2
WS

)
δ̄2
[
k1w3 + k2(dg̃0)3 + C

Z2
WL

]
δ2
[
(k2 + k1)B2dg̃0

(
k3B2dg̃0 + B

Z2
WS

)]
.
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We note that g̃0 is multivalued only on ∂M4 (which is a nonzero
even cycle when M4 is not orientable). So, B2dg̃0 is nonzero
only near the “boundary” ∂M4 (see Fig. 6). Therefore, δ2[(k2 +
k1)B2dg̃0(k3B2dg̃0 + B

Z2
WS)] is a boundary term.

When k1 = 0, the action is linear in aZ2 . In this case, we
can integrate out aZ2 first, which leads to a constraint

dbZ2 = k2(dg̃)3 + C
Z2
WL. (229)

So, the partition function is zero when k2(dg̃0)3 + C
Z2
WL is not

a coboundary. Thus, the partition function contains a factor

δ̄2[k2(dg̃0)3 + C
Z2
WL]. We may solve the dbZ2

2= k2(dg̃)3 +

C
Z2
WL constraint via the following ansatz:

bZ2 2= b
Z2
WL + b

Z2
0 , (230)

where b
Z2
WL is a Z2-valued 2-cochain that satisfies

db
Z2
WL

2= k2(dg̃)3 + C
Z2
WL, (231)

and b
Z2
0 is a Z2-valued 2-cocycle field b

Z2
0 ∈ Z2(M4;Z2). The

partition function now becomes

Z0k2k3k4k5k6 (M4) = δ̄2
[
k2(dg̃0)3 + C

Z2
WL

] ∑
g̃,db

Z2
0

2=0

eiπ
∫
M4 b

Z2
WL[k4b

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ]

× eiπ
∫
M4 b

Z2
0 [k4b

Z2
0 +(k3+k4)B2dg̃+B

Z2
WS ]eiπ

∫
M4 k5(dg̃0)4+k6w2

2 . (232)

Since b
Z2
0 is a cocycle, we can replace dg̃ by dg̃0 in the last line above, and use many relations between b

Z2
0 and Stiefel-Whitney

classes, such as (see Appendix D 5)

dg̃0B2b
Z2 = 0, (bZ2 )2 + [(dg̃0)2 + w2]bZ2 = 0, (233)

to simplify the last line. Therefore, we can rewrite the above partition function on closed M4 as

Z0k2k3k4k5k6 (M4) = δ̄2
[
k2(dg̃0)3 + C

Z2
WL

] ∑
g̃,db

Z2
0

2=0

eiπ
∫
M4 b

Z2
WL[k4b

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ]eiπ

∫
M4 b

Z2
0 [k4w2+k3B2dg̃0+B

Z2
WS ]eiπ

∫
M4 k5(dg̃0)4+k6w2

2

= δ̄2
[
k2(dg̃0)3 + C

Z2
WL

]
δ̄2
(
k4w2 + k3B2dg̃0 + B

Z2
WS

)
eiπ

∫
M4 k5(dg̃0)4+k6w2

2

∑
g̃

eiπ
∫
M4 b

Z2
WL[k4b

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ].

(234)

The above partition function can be simplified further. Let b̄
Z2
WL be a fixed 2-cocycle that satisfies

db̄
Z2
WL

2= k2(dg̃0)3 + C
Z2
WL, (235)

and let

b
Z2
WL

2= b̄
Z2
WL + b

Z2
1 . (236)

In this case, b
Z2
1 satisfies

db
Z2
1

2= k2[(dg̃)3 − (dg̃0)3]
2= k2[dg̃B2dg̃ − dg̃0B2dg̃0] = k2d(gB2dg̃0), (237)

where we have used dg̃ = dg̃0 + dg and x2 2= B2x for any Z2-valued 1-cocycle x. So, b
Z2
WL is given by

b
Z2
WL

2= k2gB2dg̃0 + b̄
Z2
WL. (238)

Now, we can rewrite the partition function (232) in the following form (using the relations obtained in Appendix D 5):

Z0k2k3k4k5k6 (M4) = δ̄2
[
k2(dg̃0)3 + C

Z2
WL

]
δ̄2
(
k4w2 + k3B2dg̃0 + B

Z2
WS

)
eiπ

∫
M4 k5(dg̃0)4+k6w2

2eiπ
∫
M4 b̄

Z2
WL[k4b̄

Z2
WL+(k3+k4)B2dg̃0+B

Z2
WS ]

×
∑

g

eiπ
∫
M4 k2gB2dg̃0[k4gB2dg̃0+(k3+k4)B2dg̃0+B

Z2
WS ]. (239)

Using the fact [see Eq. (21)] gB2dg̃0g
2,d= g2B2dg̃0 = gB2dg̃0, we can simplify∑

g

eiπ
∫
M4 k2gB2dg̃0[k4gB2dg̃0+(k3+k4)B2dg̃0+B

Z2
WS ] =

∑
g

eiπ
∫
M4 k2gB2dg̃0[k4B2dg̃0+(k3+k4)B2dg̃0+B

Z2
WS ] = δ2

[
k2B2dg̃0

(
k3B2dg̃0 + B

Z2
WS

)]
.

(240)
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Thus, the volume-independent partition function is given by

Z
top
0k2k3k4k5k6

(M4) = |H 0(M4;Z2)||H 2(M4;Z2)|
|H 1(M4;Z2)| eiπ

∫
M4 k5(dg̃0)4+k6w2

2+b̄
Z2
WL[k4b̄

Z2
WL+(k3+k4)B2dg̃0+B

Z2
WS ]

× δ̄2
[
k2(dg̃0)3 + C

Z2
WL

]
δ̄2
(
k4w2 + k3B2dg̃0 + B

Z2
WS

)
δ2
[
k2B2dg̃0

(
k3B2dg̃0 + B

Z2
WS

)]
.

3. Physical properties of ground states

Using the above partition functions, we can obtain many
physical properties of ground states by setting B

Z2
WS = C

Z2
WL =

0. For simplicity, we will also assume that wi = 0 on M4, so
that we can choose a

Z2
WS = b̄

Z2
WL = 0.

First, we see that the partition functions for different kI ’s
do not depend the shape or the metrics of space-time manifold
M4. So, the ground states of the 48 models with k1k4 = 0 are all
gapped. The partition functions also do not depend on the trian-
gulation of the space-time. So, the ground states are all gapped
liquids [16,17]. If we choose space-time to be M4 = S1 × S3

where w1 = w2 = w3 = 0, we find the volume-independent
partition functions to be Z

top
k1k2k3k4k5k6

(S1 × S3) = 1. This means
that the ground-state degeneracies on S3 for the 48 models
(with k1k4 = 0) are all equal to 1, and there is no spontaneous
symmetry breaking of ZT

2 or Z′
2.

The volume-independent partition functions are not equal
to 1 for other closed space-times with vanishing Euler number
and Pontryagin number. For example, on M4 = T 2 × S2

where w1 = w2 = w3 = 0, Z
top
k1k2k3k4k5k6

(T 2 × S2) = 2. Thus,
those 48 models all realize nontrivial (3+1)D topological
orders in their ground states. The twofold ground-state de-
generacy on space S1 × S2 tells us that the topological orders
are simple since they all have only one nontrivial pointlike
topological excitation and one nontrivial stringlike topological
excitation. In fact, the emergent topological orders are Z2

topological orders described by UT or EF Z2-gauge theories
with aZ2 as the Z2-gauge field. Because the ground states also
have symmetries, we may view those topological orders as ZT

2
SET orders or as Z′

2 × ZT
2 SET orders.

We remark that the action amplitude eiπ
∫
M4 k5(dg̃)4+k6w2

2 =
eiπ

∫
M4 k5w4

1+k6w2
2 is the SPT invariant for the ZT

2 SPT states. So,
different k5,k6 correspond to stacking with different ZT

2 SPT
states.

4. Properties of pointlike excitations

First, if we break the time-reversal symmetry (i.e., only
put the system on orientable space-time with w1 = 0), then
our models with k1 = 0 reduce to the Zn-2-cocycle model
(74) with n = 2 and k = k4. So, when k1 = 0, the pointlike
topological excitation in our model is a fermion if k4 = 1, and
a boson if k4 = 0 (see Table II where a fermion is indicated by
spin s2 = 1

2 and a boson by spin s2 = 0).
When k4 = 0 (and without time-reversal symmetry), our

model reduces to the UT Z2-gauge theory [note that (aZ2
0 )4 =

(aZ2
0 )3w1, and (aZ2

0 )4 = 0 when w1 = 0]. So, the pointlike
topological excitation in our model is a boson if k4 = 0, even
when k1 �= 0.

In the presence of time-reversal symmetry ZT
2 with T 2 = 1,

the pointlike topological excitation may carry fractionalized

time-reversal symmetry with T 2 = −1, i.e., it may carry
Kramers doublet. In fact, in this section, we will consider
both time-reversal symmetry and the extra Z′

2 symmetry
g̃i → [g̃i + 1]2 of our models. So, the total symmetry group
is Z′

2 × ZT
2 . In this case, the multivaluedness of g̃i is not only

due to the orientation twist around a loop, it is also due to the
Z′

2 symmetry twist around a loop. Thus,

dg̃ = w1 + a′Z2 , (241)

where a′Z2 is the 1-cocycle that describes the Z′
2 symmetry

twist in space-time [53–56].
To see the time-reversal and Z′

2 symmetry properties of the
pointlike topological excitation, we first consider the k4 = 0
case and start with the path integral (225). We like to stress
that in our calculation to obtain Eq. (225), we did not use
the relation dg̃ = w1 which is not valid in the presence of Z′

2
symmetry twist, which is necessary to consider Z′

2 symmetry.
The only term that involves the world line of the pointlike

topological excitation is eiπ
∫
M4 C

Z2
WL (a

Z2
WS + a

Z2
0 ), which can be

expanded as

eiπ
∫
M4 C

Z2
WL (a

Z2
WS +a

Z2
0 ) = e

iπ
∫
M1

WL
a
Z2
WS +a

Z2
0 = e

iπ
∫
D2

WL
da

Z2
WS

= e
iπ
∫
D2

WL
k3B2dg̃+B

Z2
WS , (242)

where D2
WL is the two-dimensional submanifold whose bound-

ary is the world line ∂D2
WL = M1

WL. The term e
iπ
∫
M1

WL
a
Z2
0

indicates that the pointlike excitation carries a unit of Z2-gauge
charge.

The term e
iπ
∫
D2

WL
B

Z2
WS = eiπLnk(M1

WL,M2
WS) is determined by

the linking number Lnk(M1
WL,M2

WS) between the world line
M1

WL of the pointlike excitation and the world sheet M2
WS of

the stringlike excitation. It describes the π phase change as a
pointlike excitation goes around the stringlike excitation.

The term e
iπ
∫
D2

WL
k3B2dg̃

gives rise to a Z′
2 × ZT

2 SPT
invariant

e
iπ
∫
D2

WL
k3B2dg̃ → e

iπ
∫
D2

WL
k3(B2w1+B2a

′Z2 )
, (243)

which describes a (1+1)D Z′
2 × ZT

2 SPT state on D2
WL when

k3 = 1. Due to the term B2w1 in the SPT invariant, the
boundary of the (1+1)D ZT

2 SPT state carries a Kramers
doublet. Thus,

the world line, i.e., the pointlike excitation, carries a Kramers
doublet if k3 = 1 and carries a time-reversal singlet if k3 = 0

(see Table II where a Kramers doublet is indicated by
quantum dimension d2 = 2− and a time-reversal singlet by
quantum dimension d2 = 1). Due to the term B2a

′Z2 , the
Kramers doublet on the pointlike excitation is formed by
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Z′
2-charge ± 1

2 states. So,

the Kramers doublet also carries fractional Z′
2 charge ± 1

2 .

We next consider the k1 = 0 case and start with the path
integral (232). Again, in our calculation to obtain Eq. (232), we
did not use the relation dg̃ = w1. The only term that involves
the world line of the pointlike topological excitation is

eiπ
∫
M4 b

Z2
WL[k4b

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ]. (244)

Let us consider a particular world line which is a boundary:
M1

WL = ∂D2
WL, and write b

Z2
WL as

b
Z2
WL

2= b̄
Z2
WL + b

′Z2
WL, (245)

where

db
′Z2
WL = C

Z2
WL (246)

comes from the world line and b̄
Z2
WL from the background

Stiefel-Whitney class and other world lines. We obtain

eiπ
∫
M4 b

Z2
WL[k4b

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ]

= eiπ
∫
M4 b̄

Z2
WL[k4b̄

Z2
WL+(k3+k4)B2dg̃+B

Z2
WS ]

× eiπ
∫
M4 b

′Z2
WL [k4b

′Z2
WL +(k3+k4)B2dg̃+B

Z2
WS ] (247)

which can be viewed as the effective action amplitude on the
word line.

Compared with our previous result, we see that

the term eiπ
∫
M4 k4(b

′Z2
WL )2

should describe the Fermi statistics of
the pointlike excitation when k4 = 1.

Using the fact that Poincaré dual of b
′Z2
WL is D2

WL, we can express

eiπ
∫
M4 k4(b

′Z2
WL )2

in terms of self-intersection number of D2
WL:

eiπ
∫
M4 k4(b

′Z2
WL )2 = eiπInt(D2

WL,D2
WL). (248)

We see that

the Fermi statistics in (3+1)D is described by the self-
intersection number of the disk whose boundary is the world
line of the fermion.

The term eiπ
∫
M4 b

′Z2
WL B

Z2
WS describes the π phase change as a

pointlike excitation goes around the stringlike excitation.
Now, let us concentrate on

eiπ
∫
M4 (k3+k4)b

′Z2
WL B2dg̃ = e

iπ
∫
D2

WL
(k3+k4)B2dg̃

, (249)

where we have used the fact that Poincaré dual of b
′Z2
WL is D2

WL.
As discussed before, due to such a term will make

the pointlike excitation carries a Kramers doublet formed by

fractional Z′
2 charge ± 1

2 , if k3 + k4
2= 1 and carry a time-

reversal singlet with integer Z′
2 charge, if k3 + k4

2= 0.

5. Properties of stringlike excitations

To obtain physical properties of string excitations, let us
consider a dimension reduction M4 = M3 × S1 (for details,
see Sec. VI A 3).

Let us first consider the case for k4 = 0 and start from
Eq. (225). We can choose a

Z2
WS to make

∫
S1 a

Z2
WS = 0. The

two sectors after the reduction are labeled by α = ∫
S1 aZ2 =

∫
S1 a

Z2
0 . The effective theory on M3 after the dimension

reduction is given by

Zk1k2k3k4k5k6 (M4) = δ̄2
(
k3B2w1 + B

Z2
WS

) ∑
g̃,da

Z2
0

2=0

eiπ
∫
M3 B

Z2
WL a

Z2
WS

× eiπ
∫
M3 B

Z2
WL a

Z2
0 +α(k2+k1)(dg̃)3

,

where a
Z2
0 now lives on M3 and B

Z2
WL is the Poincaré dual of

the world line in M3.
For simplicity, let us choose the world line to make

B
Z2
WL = 0. The effective theory on M3 now becomes (only

the dynamical part)

Zk1k2k3k4k5k6 (M4) =
∑

g̃,da
Z2
0

2=0

eiπ
∫
M3 α(k2+k1)(dg̃)3

. (250)

If we view the above effective theory as a (2+1)D theory with
time-reversal ZT

2 symmetry that acts on g̃i , then the above
effective theory describe trivial ZT

2 SPT states since the SPT
invariant

eiπ
∫
M3 α(k2+k1)(dg̃)3 = eiπ

∫
M3 α(k2+k1)w3

1 = 1 (251)

becomes trivial in (2+1)D (see Appendix D 3). The (1+1)D
boundary of the (2+1)D theory in the α = 1 sector corresponds
to the Z2 vortex line. So, the above result implies that the Z2

vortex line of our model just behaves like the Z2 vortex line of
UT Z2-gauge theory regardless the values of kI .

Our model actually has a Z′
2 × ZT

2 symmetry. So, the
(2+1)D effective theory can be viewed as a model with Z′

2
symmetry. In this case, the model describes a nontrivial Z′

2
SPT state, when α(k2 + k1) �= 0. To see this, we note that the
Z′

2 acts like g̃i → [g̃i + 1]2. So, to obtain the Z′
2 SPT invariant,

we need to gauge the Z′
2 symmetry (see Sec. V B) by replacing

dg̃ by a′Z2 :

eiπ
∫
M3 α(k2+k1)(dg̃)3 = eiπ

∫
M3 α(k2+k1)(a′Z2 )3

. (252)

The above SPT invariant allows us to show our (2+1)D
effective theory leads to a nontrivial Z′

2 SPT state, which was
first studied in [10]. Since the (1+1)D boundary of the (2+1)D
theory in the α = 1 sector corresponds to the Z2 vortex line,
so the above result implies that

the Z2 vortex line of our model carries nontrivial edge
excitations of Z′

2 SPT state described by SPT invariant

eiπ
∫
M3 (k2+k1)(a′Z2 )3

.

The above results about the Z2 vortex line can be obtained
by directly calculating the effective theory on the Z2 vortex
line. We start from the theory with excitations (225). Let the
world sheet of the string (i.e., the Z2 vortex line) M2

WS be
the boundary of D3

WS. For simplicity, let us assume that w2 =
w1 = 0 and a′Z2 = 0 (i.e., no Z′

2 symmetry twist) on M4. In
this case, aZWS can be chosen to be the Poincaré dual of D3

WS.
The effective theory on the string comes from the factor

eiπ
∫
M4 (k2+k1)a

Z2
WS (dg̃)3

in Eq. (225), which leads to the following
effective theory:

Z =
∑
g̃i

e
iπ
∫
D3

WS
(k2+k1)(dg̃)3

. (253)
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If we identify (−)g̃i as σ z
i of spin- 1

2 , then the above action
amplitude describes a (2+1)D spin- 1

2 model with Z′
2 × ZT

2
symmetry acting on g̃i’s:

Z′
2 :
∏

i

σ x
i , ZT

2 : K
∏

i

σ x
i , (254)

where K is the complex conjugation. The effective theory
actually describes a nontrivial Z′

2 × ZT
2 SPT state on D3

WS. So,
the effective theory on the world sheet M2

WS is the effective
boundary theory of the Z′

2 × ZT
2 SPT state. In other worlds, the

string will carry nontrivial boundary excitations of the (2+1)D
Z′

2 × ZT
2 SPT state. The nontrivialness of the excitations on the

string is protected by the anomalous symmetry on the boundary
[65]. This can be viewed as the symmetry fractionalization (or
quantum number fractionalization) on strings. We have seen
that on pointlike excitation, the T 2 = 1 ZT

2 time-reversal sym-
metry can be fractionalized into T 2 = −1 Kramers doublet. In
contrast, on strings, the symmetry fractionalization is realized
as the anomalous (i.e., nononsite) symmetry that constrains
the effective theory for degrees of freedom on the strings.

So, the key to calculate the symmetry fractionalization is
to calculate the nononsite (i.e., anomalous) symmetry on the
strings. Let us do the calculation for the case k2 + k1 = 1,
which leads to the following effective theory:

Z =
∑
g̃i

e
iπ
∫
D3

WS
(dg̃)3

. (255)

which describes a Z′
2 × ZT

2 SPT state. The group cocycle that
describes the Z′

2 × ZT
2 SPT phase is in fact the topological

term
∫
D3

WS
(dg̃)3:

ν3(g̃0,g̃1,g̃2,g̃3) = −(g̃0 − g̃1)(g̃1 − g̃2)(g̃2 − g̃3). (256)

The Z2 × ZT
2 symmetry on the string is twisted by the group

cocycle and becomes nononsite:

Z′
2 :

∏
I

σ x
I eiπν3(1,0,g̃I ,g̃I+1),

(257)
ZT

2 : K
∏
I

σ x
I eiπν3(1,0,g̃I ,g̃I+1),

where

eiπν3(1,0,g̃I ,g̃J ) = (−)g̃I (g̃I −g̃J ) = (−)g̃I (−)g̃I g̃J

= σ z
I

1 + σ z
I + σ z

J − σ z
I σ z

J

2
. (258)

The effective Hamiltonian on the string respects the
anomalous Z′

2 × ZT
2 symmetry, which may take a form

Hstr =
∑

I

J z
I σ z

I σ z
I+1 +

∑
I

Kx
I

(
σ z

I−1σ
x
I σ z

I+1 − σx
I

)
. (259)

The ground state of such Hamiltonian is gapless or spon-
taneously breaks the Z′

2 symmetry. So, when k1 + k2 =
1 and k4 = 0, the strings carry nontrivial excitations de-
scribed by the above Hamiltonian with an anomalous Z′

2 ×
ZT

2 symmetry: U ′ =∏I σ x
I

∏
I σ z

I

1+σ z
I +σ z

I+1−σ z
I σ z

I+1

2 and UT =
K
∏

I σ x
I

∏
I σ z

I

1+σ z
I +σ z

I+1−σ z
I σ z

I+1

2 .

Next, let us consider the case for k1 = 0 and start from
Eq. (234). The only term that involves the world sheet is

eiπ
∫
M4 b

Z2
WLB

Z2
WS , which can be rewritten as

eiπ
∫
M4 b

Z2
WLB

Z2
WS = e

iπ
∫
M2

WS
b
Z2
WL = e

iπ
∫
D3

WS
db

Z2
WL

= e
iπ
∫
D3

WS
k2(dg̃)3+C

Z2
WL . (260)

Repeating the above calculation, we see that

when k2 = 1 and k1 = 0, the strings carry
nontrivial excitations with an anomalous Z′

2 × ZT
2

symmetry: U ′ =∏I σ x
I

∏
I σ z

I

1+σz
I
+σz

I+1−σz
I
σ z
I+1

2 and

UT = K
∏

I σ x
I

∏
I σ z

I

1+σz
I
+σz

I+1−σz
I
σ z
I+1

2 .

We like to remark that, potentially, the strings may carry an
anomalous Z2 × Z′

2 × ZT
2 symmetry, where Z2 is associated

with aZ2 . From the above calculation, we see that the
anomalous symmetry only comes from the Z′

2 symmetry.
There is no anomalous symmetry from Z2.
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APPENDIX A: KÜNNETH FORMULA

The Künneth formula is a very helpful formula that allows
us to calculate the cohomology of chain complex X × X′
in terms of the cohomology of chain complex X and chain
complex X′. The Künneth formula is expressed in terms of the
tensor product operation ⊗R and the torsion product operation
TorR1 that act on R modules M,M′,M′′. Here, R is a ring and a
R module is like a vector space over R (i.e., we can “multiply”
a “vector” in M by an element of R, and two “vectors” in M
can add.) The tensor product operation ⊗R has the following
properties:

M ⊗Z M′ � M′ ⊗Z M,

(M′ ⊕ M′′) ⊗R M = (M′ ⊗R M) ⊕ (M′′ ⊗R M),

M ⊗R (M′ ⊕ M′′) = (M ⊗R M′) ⊕ (M ⊗R M′′);

Z ⊗Z M � M ⊗Z Z = M,

Zn ⊗Z M � M ⊗Z Zn = M/nM,

Zm ⊗Z Zn = Z〈m,n〉. (A1)

The torsion product operation TorR1 has the following proper-
ties:

Tor1
R(M,M′) � Tor1

R(M′,M),

Tor1
R(M′ ⊕ M′′,M) = Tor1

R(M′,M) ⊕ Tor1
R(M′′,M),

Tor1
R(M,M′ ⊕ M′′) = Tor1

R(M,M′) ⊕ Tor1
R(M,M′′),

(A2)
Tor1

Z(Z,M) = Tor1
Z(M,Z) = 0,

Tor1
Z(Zn,M) = {m ∈ M|nm = 0},

Tor1
Z(Zm,Zn) = Z〈m,n〉,
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where 〈m,n〉 is the greatest common divisor of m and n. These
expressions allow us to compute the tensor product ⊗R and the
torsion product Tor1

R . We will use abbreviated Tor to denote
Tor1

Z.
The Künneth formula itself is given by (see [91], p. 247)

Hd (X × X′,M ⊗R M′)

� [⊕d
k=0H

k(X,M) ⊗R Hd−k(X′,M′)
]

⊕ [⊕d+1
k=0Tor1

R(Hk(X,M),Hd−k+1(X′,M′))
]
. (A3)

Here, R is a principal ideal domain and M,M′ are R

modules such that Tor1
R(M,M′) = 0. We also require either

(1) Hd (X;Z) and Hd (X′;Z) are finitely generated, or (2) M′
and Hd (X′;Z) are finitely generated.

For more details on principal ideal domain and R module,
see the corresponding Wiki articles. Note that Z and R are
principal ideal domains, while R/Z is not. Also, R and R/Z
are not finitely generate R modules if R = Z. The Künneth
formula also works for topological cohomology where X and
X′ are treated as topological spaces.

For homology, there is a similar Künneth formula

Hd (X × X′;Z)

� [⊕d
k=0Hk(X;Z) ⊗ Hd−k(X′;Z)

]
⊕ [⊕d−1

k=0Tor(Hk(X;Z),Hd−k−1(X′;Z))
]
. (A4)

As the first application of Künneth formula, we like to use it to
calculate H ∗(X′,M) from H ∗(X′;Z), by choosing R = M′ =
Z. In this case, the condition Tor1

R(M,M′) = Tor1
Z(M,Z) = 0

is always satisfied. M can be R/Z, Z, Zn, etc. So, we have

Hd (X × X′,M)

� [⊕d
k=0H

k(X,M) ⊗Z Hd−k(X′;Z)
]

⊕ [⊕d+1
k=0Tor(Hk(X,M),Hd−k+1(X′;Z))

]
. (A5)

The above is also valid for topological cohomology.
We can further choose X to be the space of one point in

Eq. (A5), and use

Hd (X,M)) =
{
M if d = 0,

0 if d > 0,
(A6)

to reduce Eq. (A5) to

Hd (X,M) � Hd (X;Z) ⊗Z M ⊕ Tor(Hd+1(X;Z),M),
(A7)

where X′ is renamed as X. The above is a form of the universal
coefficient theorem which can be used to calculate H ∗(X,M)
from H ∗(X;Z) and the module M. The universal coefficient
theorem works for topological cohomology where X is a
topological space. In fact, we also have a similar universal
coefficient theorem for homology

Hd (X,M) � Hd (X;Z) ⊗Z M ⊕ Tor(Hd−1(X;Z),M).
(A8)

Using the universal coefficient theorem, we can rewrite
Eq. (A5) as

Hd (X × X′,M) � ⊕d
k=0H

k[X,Hd−k(X′,M)]. (A9)

The above is also valid for topological cohomology. We note
that

H 0(X,M) = M. (A10)

There is also a universal coefficient theorem between
homology and cohomolgy

Hd (X,M) � Hom(Hd (X;Z),M) ⊕ Ext(Hd−1(X;Z),M).
(A11)

Here, Ext operation on modules is given by

Ext1R(M′ ⊕ M′′,M) = Ext1R(M′,M) ⊕ Ext1R(M′′,M),

Ext1R(M,M′ ⊕ M′′) = Ext1R(M,M′) ⊕ Ext1R(M,M′′),

Ext1Z(Z,M) = 0,

Ext1Z(Zn,M) = M/nM,

Ext1Z(Zn,Z) = Zn,

Ext1Z(Zm,Zn) = Z〈m,n〉. (A12)

The Hom operation on modules is given by

HomR(M′ ⊕ M′′,M) = HomR(M′,M) ⊕ HomR(M′′,M),

HomR(M,M′ ⊕ M′′) = HomR(M,M′) ⊕ HomR(M,M′′),

HomZ(Z,M) = M,

HomZ(Zn,M) = {m ∈ M|nm = 0},
HomZ(Zn,Z) = 0,

HomZ(Zm,Zn) = Z〈m,n〉. (A13)

We will use abbreviated Ext and Hom to denote Ext1Z and
HomZ.

APPENDIX B: POINCARÉ DUALITY

Poincaré duality relates Hk(Md,R) and Hd−k(Md,R).
We note that for a closed connected d-dimensional space
Md , H0(Md ;Z) = Z, Hd (Md ;Z) = Z if Md is orientable,
and Hd (Md ;Z) = 0 if Md is nonorientable. Similarly,
H 0(Md ;Z) = Z, Hd (Md ;Z) = Z if Md is orientable, and
Hd (Md ;Z) = Z2 if Md is nonorientable.

Poincaré duality: If M is a closed R-orientable
n-dimensional manifold with fundamental class [M] ∈
Hn(M,R) (here R is a ring), then the map D : Hk(M; R) →
Hn−k(M; R) defined by D(α) = [M] ∩ α is an isomorphism
for all k.

The cup product pairing between Hk(Md,R) and
Hd−k(Md,R) is nonsingular for closed R-orientable manifolds
when R is a field, or when R = Z and torsion in H ∗(M;Z) is
factored out. This implies that the free part of Hk(Md ;Z) and
Hd−k(Md ;Z) has the same dimension.

APPENDIX C: THE FACTOR |H0(M4;Zn)|2|H2(M4;Zn)|
|H1(M4;Zn)|2

To calculate the factor |H 0(M4;Zn)|2|H 2(M4;Zn)|
|H 1(M4;Zn)|2 we first use

Eq. (A11) to show

H 1(M4;Zn)

= Hom(H1(M4;Z);Zn) ⊕ Ext(H0(M4;Z),Zn) (C1)
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= Hom(fH1(M4;Z);Zn) ⊕ Hom(tH1(M4;Z);Zn)

= Z⊕b1
n ⊕ Hom(tH1(M4;Z);Zn), (C2)

and

H 2(M4;Zn)

= Hom(H2(M4;Z);Zn) ⊕ Ext(H1(M4;Z),Zn)

= Hom(fH2(M4;Z);Zn) ⊕ Hom(tH2(M4;Z);Zn)

⊕ Ext(tH1(M4;Z),Zn),

= Z⊕b2
n ⊕ Hom(tH2(M4;Z);Zn) ⊕ Hom(tH1(M4;Z),Zn),

(C3)

where “f” and “t” indicate the free and torsion parts of a
discrete Abelian group and bn is the dimension of fHn(M4;Z)
(i.e., the nth Betti number). Using H 0(M4;Zn) = Z⊕b0

n , we
find that

|H 0(M4;Zn)|2|H 2(M4;Zn)|
|H 1(M4;Zn)|2

= n2b0+b2−2b1
|Hom(tH2(M4;Z);Zn)|
|Hom(tH1(M4;Z);Zn)| . (C4)

We note that, according to Eq. (A11)

H 2(Md ;Z) = Hom(H2(Md ;Z),Z) ⊕ Ext(H1(Md ;Z),Z).

(C5)

Since Hom(Zn,Z) = 0, Ext(Zn,Z) = Zn, and Ext(Z,Z) = 0,
we see that tH 2(Md ;Z) = tH1(Md ;Z). We get

|H 0(M4;Zn)|2|H 2(M4;Zn)|
|H 1(M4;Zn)|2

= n2b0+b2−2b1
|Hom(tH2(M4;Z);Zn)|
|Hom(tH 2(M4;Z);Zn)| . (C6)

For four-dimensional closed orientable manifolds b1 = b3,
b0 = b4, and χ (M4) =∑4

n=0(−)nbn is the Euler number of
M4. Using Poincaré duality H 2(M4;Z) = H2(M4;Z), we can
show that

|H 0(M4;Zn)|2|H 2(M4;Zn)|
|H 1(M4;Zn)|2 = nχ(M4). (C7)

When n = 2 we have a Poincaré duality Hk(Md ;Z2) =
Hd−k(Md ;Z2) for any closed manifold Md regardless if Md

is orientable or not (since Md is always Z2 orientable). Thus,

|H 0(M4;Z2)|2|H 2(M4;Z2)|
|H 1(M4;Z2)|2

= |H 0(M4;Z2)||H 2(M4;Z2)||H 4(M4;Z2)|
|H 1(M4;Z2)||H 3(M4;Z2)| . (C8)

According to Eq. (A11),

Hk(Md ;Z2) = Hom(Hk(Md ;Z),Z2)⊕Ext(Hk−1(Md ;Z),Z2)

= Z⊕bk

2 ⊕ Hom(tHk(Md ;Z),Z2)

⊕ Hom(tHk−1(Md ;Z),Z2). (C9)

This allows us to show

|H 0(M4;Z2)|2|H 2(M4;Z2)|
|H 1(M4;Z2)|2 = 2χ(M4), (C10)

where we have used the fact that tH4(M4;Z) = 0 for both
orientable and nonorientable closed manifolds. On the other
hand, the factor |H 0(M4;Zn)|2|H 2(M4;Zn)|

|H 1(M4;Zn)|2 is in general not of the

form ρχ(M4) for nonorientable manifolds when n > 2.

APPENDIX D: RELATIONS BETWEEN COCYCLES AND
STIEFEL-WHITNEY CLASSES ON A CLOSED MANIFOLD

The cocycles and the Stiefel-Whitney classes on a closed
manifold satisfy many relations. In this appendix, we will show
how to generate those relations.

1. Introduction to Stiefel-Whitney classes

The Stiefel-Whitney classes wi ∈ Hi(Md ;Z2) are defined
for an O(n) vector bundle on a d-dimensional space with
n → ∞. If the O(∞) vector bundle on d-dimensional space
Md happens to be the tangent bundle of Md direct summed
with a trivial ∞-dimensional vector bundle, then the corre-
sponding Stiefel-Whitney classes are referred as the Stiefel-
Whitney classes of the manifold Md .

The Stiefel-Whitney classes of manifold behave well under
the connected sum of manifolds. Let w(M) be the total Stiefel-
Whitney class of a manifold M . If we know w(M) and w(N ),
then we can obtain w(M#N ):

w(M#N ) = w(M) + w(N ) − 1. (D1)

Under the product of manifolds, we have

w(M × N ) = w(M)w(N ). (D2)

The Stiefel-Whitney numbers are nonoriented cobordism
invariant. All the Stiefel-Whitney numbers of a smooth
compact manifold vanish iff the manifold is the boundary of
some smooth compact manifold. Here, the manifold can be
nonorientable.

The Stiefel-Whitney numbers and Pontryagin numbers are
oriented cobordism invariant. All the Stiefel-Whitney numbers
and Pontryagin numbers of a smooth compact orientable
manifold vanish iff the manifold is the boundary of some
smooth compact orientable manifold.

2. Relations between Stiefel-Whitney classes
of the tangent bundle

For generic O(∞) vector bundle, the Stiefel-Whitney
classes are all independent. However, the Stiefel-Whitney
classes for a manifold (i.e., for the tangent bundle) are not
independent and satisfy many relations.

To obtain those relations, we note that, for any O(∞) vector
bundle, the total Stiefel-Whitney class w = 1 + w1 + w2 +
· · · is related to the total Wu class u = 1 + u1 + u2 + · · ·
through the total Steenrod square [92]:

w = Sq(u), Sq = 1 + Sq1 + Sq2 + · · · . (D3)

205142-36



EXACTLY SOLUBLE LOCAL BOSONIC COCYCLE MODELS, . . . PHYSICAL REVIEW B 95, 205142 (2017)

Therefore, wn =∑n
i=0 Sqi(un−i). The Steenrod squares have

the following properties:

Sqi(xj ) = 0, i > j, Sqj (xj ) = xjxj , Sq0 = 1, (D4)

for any xj ∈ Hj (Md ;Z2). Thus

un = wn +
∑

i=1,2i�n

Sqi(un−i). (D5)

This allows us to compute un iteratively, using Wu formula

Sqi(wj ) = 0, i > j, Sqi(wi) = wiwi ,

Sqi(wj ) = wiwj +
i∑

k=1

(j − i − 1 + k)!

(j − i − 1)!k!
wi−kwj+k, i < j,

Sq1(wj ) = w1wj + (j − 1)wj+1, (D6)

and the Steenrod relation

Sqn(xy) =
n∑

i=0

Sqi(x)Sqn−i(y). (D7)

We find

u0 = 1, u1 = w1, u2 = w2
1 + w2,

u3 = w1w2, u4 = w4
1 + w2

2 + w1w3 + w4,

u5 = w3
1w2 + w1w2

2 + w2
1w3 + w1w4,

u6 = w2
1w2

2 + w3
1w3 + w1w2w3 + w2

3 + w2
1w4 + w2w4,

u7 = w2
1w2w3 + w1w2

3 + w1w2w4,

u8 = w8
1 + w4

2 + w2
1w2

3 + w2
1w2w4 + w1w3w4 + w2

4

+ w3
1w5 + w3w5 + w2

1w6 + w2w6 + w1w7 + w8.

(D8)

If the O(∞) vector bundle on d-dimensional space Md

happens to be the tangent bundle of Md , then the corresponding
Wu class and the Steenrod square satisfy

Sqd−j (xj ) = ud−j xj for any xj ∈ Hj (Md ;Z2). (D9)

We can generate many relations for cocycles and Stiefel-
Whitney classes on a manifold using the above result:

(1) If we choose xj to be a combination of Stiefel-Whitney
classes, the above will generate many relations between
Stiefel-Whitney classes.

(2) If we choose xj to be a combination of Stiefel-Whitney
classes and cocycles, the above will generate many relations
between Stiefel-Whitney classes and cocycles.

(3) Since Sqi(xj ) = 0 if i > j , therefore, uixd−i = 0 for
any xd−i ∈ Hd−i(Md ;Z2) if i > d − i. Since Z2 is a field and
according to the Poincaré duality, this implies that ui = 0 for
2i > d.

(4) Sqn . . . Sqm(ui) = 0 if 2i > d. This also gives us
relations among Stiefel-Whitney classes.

3. Relations between Stiefel-Whitney classes and a Z2-valued
1-cocycle in three dimensions

On a three-dimensional manifold, we can find many
relations between Stiefel-Whitney classes: (1) u2 = w2

1 +

w2 = 0. (2) u3 = w1w2 = 0. (3) Sq1(u2) = 0. Using
Sq1(wi) = w1wi + (i + 1)wi+1, we find that Sq1(w2

1 + w2) =
Sq1(w1)w1 + w1Sq1(w1) + Sq1(w2) = w1w2 + w3 = 0. This
gives us three relations

w2
1 = w2, w1w2 = w3 = 0. (D10)

Let aZ2 be a Z2-valued 1-cocycle. We can also find a relation
between the Stiefel-Whitney classes and aZ2 :

w1(aZ2 )2 = Sq1
[
(aZ2 )2

] = 2(aZ2 )3 = 0. (D11)

There are six possible 3-cocycles that can be constructed
from the Stiefel-Whitney classes and the 1-cocycle aZ2 :

(w1)3, w1w2, w3,

(aZ2 )3, w1(aZ2 )2, w2
1a

Z2 . (D12)

From the above relations, we see that only two of them are
nonzero:

(aZ2 )3, w2
1a

Z2 . (D13)

4. Relations between Stiefel-Whitney classes and a Z2-valued
1-cocycle in four dimensions

The relations between the Stiefel-Whitney classes for
four-dimensional manifold can be listed: (1) u3 = w1w2 =
0. (2) u4 = w4

1 + w2
2 + w1w3 + w4 = 0. (3) Sq1(u3) =

0, which implies Sq1(w1w2) = Sq1(w1)w2 + w1Sq1(w2) =
w2

1w2 + w2
1w2 + w1w3 = w1w3 = 0, which can be summa-

rized as

w1w2 = 0, w1w3 = 0, w4
1 + w2

2 + w4 = 0. (D14)

We also have many relations between the Stiefel-Whitney
classes and aZ2 : (1) Sq1[(aZ2 )3] = (aZ2 )4 = w1(aZ2 )3.
(2) Sq1(w2

1a
Z2 ) = w2

1(aZ2 )2 = w3
1a

Z2 . (3) Sq1(w2a
Z2 ) =

(w1w2 + w3)aZ2 + w2(aZ2 )2 = w1w2a
Z2 , which implies

that w3a
Z2 = w2(aZ2 )2. (4) Sq2[(aZ2 )2] = (aZ2 )4 =

(w2
1 + w2)(aZ2 )2. (5) Sq2(w1a

Z2 ) = w2
1(aZ2 )2 =

(w2
1 + w2)w1a

Z2 = w3
1a

Z2 , which is the same as (2). To
summarize,

w2
1(aZ2 )2 = w3

1a
Z2 , (aZ2 )4 = w1(aZ2 )3,

w2(aZ2 )2 = w3a
Z2 , (aZ2 )4 + w2

1(aZ2 )2 + w2(aZ2 )2 = 0.

(D15)

There are nine 4-cocycles that can be constructed from
Stiefel-Whitney classes and a 1-cocycle aZ2 :

(aZ2 )4, w1(aZ2 )3, w2
1(aZ2 )2,

w2(aZ2 )2, w3
1a

Z2 , w3a
Z2 ,

w4
1, w2

2, w4. (D16)

Only four of them are independent:

w4
1, w2

2, w3a
Z2 , w3

1a
Z2 . (D17)

5. Relations between Stiefel-Whitney classes and a Z2-valued
2-cocycle in four dimensions

There are two relations between the Stiefel-Whitney
classes and a Z2-valued 2-cocycle bZ2 : (1) Sq1(w1b

Z2 ) =
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w2
1b

Z2 + w1B2b
Z2 = w2

1b
Z2 , which implies w1B2b

Z2 = 0.
(2) Sq2(bZ2 ) = (bZ2 )2 = (w2

1 + w2)bZ2 . There are seven 4-
cocycles that can be constructed from Stiefel-Whitney classes
and a Z2-valued 2-cocycle bZ2 :

(bZ2 )2, w1B2b
Z2 , w2

1b
Z2 , w2b

Z2 ,

w4
1, w2

2, w4. (D18)

So, the following four 4-cocycles are independent:

w4
1, w2

2, w2b
Z2 , w2

1b
Z2 . (D19)

APPENDIX E: SPIN AND PIN STRUCTURES

Stiefel-Whitney classes can determine when a manifold
can have a spin structure. The spin structure is defined only
for orientable manifolds. The tangent bundle for an orientable
manifold Md is a SO(d) bundle. The group SO(d) has a central
extension to the group Spin(d). Note that π1[SO(d)] = Z2. The
group Spin(d) is the double covering of the group SO(d). A
spin structure on Md is a Spin(d) bundle, such that under the
group reduction Spin(d) → SO(d), the Spin(d) bundle reduces
to the SO(d) bundle. Some manifolds cannot have such a lifting
from SO(d) tangent bundle to the Spin(d) spinor bundle. The
manifolds that have such a lifting are called spin manifolds.
A manifold is a spin manifold iff its first and second Stiefel-
Whitney class vanishes w1 = w2 = 0.

For a nonorientable manifold Nd , the tangent bundle is a
O(d) bundle. The nonconnected group O(d) has two nontrivial
central extensions (double covers) by Z2 with different group
structures, denoted by Pin+(d) and Pin−(d). So the O(d)
tangent bundle has two types of lifting to a Pin+ bundle
and a Pin− bundle, which are called Pin+ structure and
Pin− structure, respectively. The manifolds with such liftings
are called Pin+ manifolds or Pin− manifolds. We see that
the concept of Pin± structure applies to both orientable and
nonorientable manifolds. A manifold is a Pin+ manifold iff
w2 = 0. A manifold is a Pin− manifold iff w2 + w2

1 = 0. If a
manifold Nd does admit Pin+ or Pin− structures, then the set
of isomorphism classes of Pin+ structures (or Pin− structures)
can be labeled by elements in H 1(Nd ;Z2). For example,
RP 4 admits two Pin+ structures and no Pin− structures since
w2(RP 4) = 0 and w2(RP 4) + w2

1(RP 4) �= 0.
From Eq. (D1), we see that M#N is pin+ iff both M and N

are pin+. Similarly, M#N is pin− iff both M and N are pin−.

APPENDIX F: COHOMOLOGY RINGS

In this Appendix, we list some cohomology rings
H ∗(M4;Zn) that are used in the main text of the paper. First,
let us list a few theorems:

The cohomology ring of product space (see [93], p. 216):
Let X and Y be arbitrary spaces. Assume Hk(Y ; R) is a free

and finitely generated R module for all k. Then,

H ∗(X; R) ⊗R H ∗(Y ; R) → H ∗(X × Y ; R) (F1)

is an isomorphism of graded rings. (A free R module is a
module that has a basis or, equivalently, one that is isomorphic
to a direct sum of copies of the ring R.)

The cohomology of connected sum:

Hk(Md#Nd,M) = Hk(Md,M) ⊕ Hk(Nd,M), 0 < k < d.

(F2)

The cup product of connected sum:

Hk(Md#Nd,M)×Hl(Md#Nd,M)
∪→ Hk+l(Md#Nd,M),

0 < k,l,k + l < d :

(a,a′) ∪ (b,b′) = (a ∪ b,a′ ∪ b′), (F3)

where a ∈ Hk(Md,M), b ∈ Hl(Md,M), a′ ∈ Hk(Nd,M),
and b′ ∈ Hl(Nd,M). The above also works for k + l = d we
identify

(αvMd ,βvNd ) ∼ (α + β)vMd #Nd , (F4)

where vMd , vNd , and vMd #Nd are the generators in Hd (Md,M),
Hd (Nd,M), and Hd (Md#Nd,M).

1. H∗(T 4,Zn)

For M4 = S1 × S1 × S1 × S1 = T 4, we have

H ∗(T 4,Zn) = Zn[a1,a2,a3,a4](
a2

1,a
2
2,a

2
3,a

2
4

) , (F5)

where ai ∈ H 1(T 4,Zn) generate the ring. The Bockstein
homomorphism all vanishes:

Bnai = 0, i = 1,2,3,4. (F6)

2. H∗(T 2 × S2,Zn)

For M4 = T 2 × S2 (where T 2 = S1 × S1), we have

H ∗(T 2 × S2,Zn) = Zn[a1,a2,b](
a2

1,a
2
2,b

2
) , (F7)

where ai ∈ H 1(T 2 × S2,Zn) and b ∈ H 2(T 2 × S2,Zn) gener-
ate the ring. We also have

Bnai = Bnb = 0, i = 1,2. (F8)

3. H∗(L2( p); Zn)

L2(p) space is a two-dimensional sphere with p holes
removed and with the boundary of the p holes identified [see
Fig. 9(a)]. It has a CW-complex decomposition as shown in
Fig. 9(b). Since ∂S = pL, ∂L = 0, we can compute explicitly
that

H0(L2(p),Z) = Z, H1(L2(p),Z) = Zp,

H2(L2(p),Z) = 0, (F9)

H 0(L2(p),Z) = Z, H 1(L2(p),Z) = 0,

H 2(L2(p),Z) = Zp, (F10)

and

H0(L2(p),Zn) = Z, H1(L2(p),Zn) = Z〈n,p〉 = {L},

H2(L2(p),Zn) = Z〈n,p〉 =
{

n

〈n,p〉S
}
, (F11)
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LL

L

(b)(a) (c)

FIG. 9. (a) L2(p) (with p = 4) space. (b) L2(p) can be described
by a CW complex with a 0-cell V , a 1-cell L, and a 2-cell S. The filled
dots are identified. The links (12), (23), (34), and (41) are identified..
The boundary of the 2-cell S is p copies of the 1-cell L: ∂S = pL

and L is a cycle ∂L = 0. (c) L2(p) can be described by a singular
complex with two vertices (0) and V , p + 1 links (01), . . . ,(0p) and
L, p triangles (012), . . . ,(0,p − 1,p). The sum of the p triangles
gives us S, the whole L2(p) space.

H 0(L2(p),Zn) = Z, H 1(L2(p),Zn) = Z〈n,p〉 = {a},
H 2(L2(p),Zn) = Z〈n,p〉 = {b}, (F12)

where we have listed the generators of H∗(L2(p),Zn) and
H ∗(L2(p),Zn).

Using the CW complex of L2(p), we can compute the Bock-
stein homomorphism for Zn coefficient. Let ã ∈ Z1(L2(p);Z)
to be a generator of H 1(L2(p);Zp), and b̃ ∈ C2(L2(p);Z) to
be a generator of H 2(L2(p);Z):

〈ã,L〉 = 1, 〈b̃,S〉 = 1. (F13)

We see that p = 〈pã,L〉 = 〈ã,pL〉 = 〈ã,∂S〉 = 〈dã,S〉. Thus,
dã = 0 mod p, confirming that ã is a cocycle in
H 1(L3(p,q);Zp), but ã is not a cocycle in H 1(L3(p,q);Z).
From the above calculation, we also see that dã = pb̃

or 1
p
dã = b̃. Therefore, 1

n
n

〈p,n〉dã = p

〈p,n〉 b̃ or 1
n
d( n

〈p,n〉 ã) =
Bn( n

〈p,n〉 ã) = p

〈p,n〉 b̃. We note that n
〈p,n〉 ã is an integer-valued

cochain that satisfies d n
〈p,n〉 ã = 0 mod n. Thus, a = n

〈p,n〉 ã is

a cocycle and a generator in H 1(L3(p,q);Zn). Also, b = b̃ is
a cocycle and a generator in H 2(L3(p,q);Zn). The Bockstein
homomorphism can be written as

Bna = p

〈p,n〉b. (F14)

We can calculate the cohomology ring H ∗(L2(p);Zn) by
decomposing L2(p) into a singular complex characterized by
the vertices 0,1,2, . . . ,p [see Fig. 9(c)]. Note that 1,2, . . . ,p

corresponds to the same vertex. First a,b [the generators of
H 1(L2(p);Zn) and H 2(L2(p);Zn)] are given by

〈a,(m,m + 1)〉 = n

〈p,n〉 ,

〈a,(0m)〉 = (m − 1)n

〈p,n〉 ,

〈b,(012)〉 = 〈b,(00′2)〉 = 1, 〈b,others〉 = 0,

m = 1, . . . ,p. (F15)

We see that

〈a,L〉 = n

〈p,n〉 ,
〈
b,

n

〈p,n〉S
〉

= n

〈p,n〉 , (F16)

where n
〈p,n〉S is a 2-cycle ∂ n

〈p,n〉S = np

〈p,n〉L = 0 mod n.
Now, we can calculate the cup product

〈a2,(0,m,m + 1)〉 = 〈a,(0,m)〉〈a,(m,m + 1)〉

= (m − 1)n

〈p,n〉
n

〈p,n〉 (F17)

or 〈
a2,

n

〈p,n〉S
〉

=
p∑

m=1

(m − 1)n

〈p,n〉
n2

〈p,n〉2
= n3p(p − 1)

2〈p,n〉3

n=
{

n
2 if p2 > 1, n

2p2 = odd,
0 otherwise,

(F18)

where p2 is the number of prime factor 2 in p. The above
implies that

a2 = n2p(p − 1)

2〈p,n〉2
b

=
{ 〈n,p〉

2 b if p2 > 1, n
2p2 = odd,

0 otherwise.
(F19)

The ring H ∗(L2(p);Zn) is determined by Eqs. (F12) and (F19).

4. H∗[L3( p,q) × S1,Zn]

We know that S3 can be described by two complex numbers
z1,z2 satisfying |z1|2 + |z2|2 = 1. Let p and q be coprime

integers. We can see that the action (z1,z2) → (ei 2π
p z1,e

i
2πq

p z2)
is a free action on S3. Quotienting out such a free action,
the resulting space is the lens space L3(p,q). We see
that L3(2,1) = RP 3. L3(p,q1) and L3(p,q2) are homotopi-
cally equivalent if and only if q1q2 = ±m2 mod p for an
integer m.

L3(p,q) is described by the CW complex in Fig. 10 for
(p,q) = (4,1), which has a 0-cell V (the four vertices 1,2,3,4
are identified and correspond to V ), a 1-cell L [the four links

S x

x

1

3

L

V

T

S

1

3
x22

4

0

0’

FIG. 10. The S3 is parametrized by (x1,x2,x3) = (Rez1,Imz1,Rez2)
1+Imz2

which is the whole R3. The open dots are the points (z1,z2) =
(0,ei2πm/p), m = 0, . . . ,p − 1. The shaded disk is B2

0 . The north and
the south hemispheres are B2

±1. The volume between B2
0 and B2

1 is the
lens space L3(p,q)|(p,q)=(4,1). The lens space L3(p,q) is described by
a CW complex with a 0-cell V , a 1-cell L, a 2-cell S, and a 3-cell T .
The filled dots are identified under the quotient map and correspond
to the 0-cell V . The shaded disk S is the 2-cell. The boundary of the
2-cell S is p copies of the 1-cell L: ∂S = pL and L is a cycle ∂L = 0.
The 3-cell T is the half-ball above the shaded disk.
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C

C

1

2

FIG. 11. The Klein bottle: the top and bottom boundaries are
identified with a twist and the left and right boundaries are identified
without twist. H1(K;Z2) is generated by C1 and C2 cycles.

(12),(23),(34),(41) are identified and correspond to L], a 2-cell
S [which is the union of (012),(023),(034),(041)], and a 3-cell
T [which is the union of (00′12),(00′23),(00′34),(00′41)]. To
describe the lens space, let us first consider p points (z1,z2) =
(0,ei2πm/p), m = 0, . . . ,p − 1 (which become one point after
the quotient). The 2-cell B2

m is formed by the points (z1,z2) =
cos θ (0,ei2πm/p) + sin θ (z1,0), |z1| = 1 (where B2

m and B2
m′

are identified by the quotient map). The volume between B2
m

and B2
m+1 is the lens space L3(p,q) which is also the 3-cell T .

The 0-cell is given by (z1,z2) = (ei2πm/p,0),m = 0, . . . ,p − 1
(which becomes one point after the quotient).

Since ∂S = pL, ∂L = ∂T = 0, we see that

H0(L3(p,q),Z) = Z, H1(L3(p,q),Z) = Zp,
(F20)

H2(L3(p,q),Z) = 0, H3(L3(p,q),Z) = Z,

and, by Poincaré duality,

H 0(L3(p,q),Z) = Z, H 1(L3(p,q),Z) = 0,

H 2(L3(p,q),Z) = Zp, H 3(L3(p,q),Z) = Z. (F21)

Then, using the universal coefficient theorem (A11) and
Eq. (A8), we find that

H0(L3(p,q),Zn) = Zn, H1(L3(p,q),Zn) = Z〈n,p〉,
(F22)

H2(L3(p,q),Zn) = Z〈n,p〉, H3(L3(p,q),Zn) = Zn,

H 0(L3(p,q),Zn) = Zn, H 1(L3(p,q),Zn) = Z〈n,p〉,

H 2(L3(p,q),Zn) = Z〈n,p〉, H 3(L3(p,q),Zn) = Zn. (F23)

H1(L3(p,q),Zn) is generated by L and H2(L3(p,q),Zn) is
generated by n

〈n,p〉S.

The cohomology rings H ∗(L3(p,q);Zp) are given by (see
[93], p. 251)

H ∗(L3(p,q);Zp)

=
{
m0 + m1a + m2b + m3ab|a2 = p

2
(〈p,2〉 − 1)b

}
,

H ∗(L3(p,q);Z) = {m0 + m2b + m3c}. (F24)

We also have Bpa = b.
In the following, we will only consider L3(p,1) ≡ L3(p).

We like to calculate the cohomology ring H ∗(L3(p);Zn) by
decomposing the lens space L3(p) into a simplicial complex
characterized by the vertices 0,0′,1,2, . . . ,p (see Fig. 10). Note
that 0 and 0′ correspond to the same vertex and 1,2, . . . ,p

correspond to the same vertex. Also note that, for example,

the 2-simplices (012) and (0′23) are identified. First, a,b [the
generators of H 1(L3(p);Zn) and H 2(L3(p);Zn)] are given by

〈a,(00′)〉 = 〈a,(m,m + 1)〉 = n

〈p,n〉 ,

〈a,(0m)〉 = (m − 1)n

〈p,n〉 ,

〈b,(012)〉 = 〈b,(00′2)〉 = 1, 〈b,others〉 = 0,

m = 1, . . . ,p. (F25)

We see that

〈a,L〉 = n

〈p,n〉 ,
〈
b,

n

〈p,n〉S
〉

= n

〈p,n〉 , (F26)

where n
〈p,n〉S is a 2-cycle ∂ n

〈p,n〉S = np

〈p,n〉L = 0 mod n.
Now, we can calculate the cup product

〈a2,(0,m,m + 1)〉 = 〈a,(0,m)〉〈a,(m,m + 1)〉

= (m − 1)n

〈p,n〉
n

〈p,n〉 (F27)

or 〈
a2,

n

〈p,n〉S
〉

=
p∑

m=1

(m − 1)n

〈p,n〉
n2

〈p,n〉2
= n3p(p − 1)

2〈p,n〉3

n=
{

n
2 if p2 > 1, n

2p2 = odd,

0 otherwise,
(F28)

where p2 is the number of prime factor 2 in p. The above
implies that

a2 = n2p(p − 1)

2〈p,n〉2
b

=
{ 〈n,p〉

2 b if p2 > 1, n
2p2 = odd,

0 otherwise.
(F29)

We also note that

〈ab,T 〉 = −〈a,(0′0)〉〈b,(012)〉 = n

〈p,n〉 , (F30)

which implies that

ab = n

〈p,n〉c. (F31)

Thus, the cohomology ring H ∗(L3(p);Zn) is given by

H ∗(L3(p);Zn) = {ζ + αa + βb + γ c},

with a2 =
{ 〈n,p〉

2 b if p2 > 1, n
2p2 = odd,

0 otherwise,
(F32)

ab = n

〈p,n〉c,

where ζ,γ ∈ Zn and α,β ∈ Z〈p,n〉. We also haveBna = p

〈p,n〉b.
Notice that

H ∗(S1;Zn) = Zn[a1](
a2

1

) (F33)

is a freeZn module. This allows us to compute the cohomology
ring H ∗(S1 × L3(p);Zn).
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5. H∗(F4; Zn)

In order for the volume-independent partition function
Ztop(M4) on an orientable space-time M4 to be a topological
invariant, we require the Euler number and the Pontryagin
number of M4 to vanish: χ (M4) = P1(M4) = 0. We also like
M4 to be complicated enough so that its second Stiefel-
Whitney class w2 is nonzero. How to construct such an
four-dimensional manifold?

First, let us introduce intersection form QM4 : H 2(M4;Z) ×
H 2(M4;Z) → Z defined by

QM4 (a,b) = 〈a ∪ b,[M4]〉 =
∫

M4
ab. (F34)

The intersection form has the following properties:
(1) Under connected sum,

QM4#N4 = QM4 ⊕ QN4 . (F35)

(2) Poincaré duality implies that the intersection form QM4

is unimodular.
(3) If M4 is spin, then QM4 (a,a) = even for all a ∈

H 2(M4;Z). If M4 is orientable and QM4 is even, then M4

is spin.
(4) The signature of QM4 is one third of the Pontryagin

number: σ (M4) = 1
3P1(M4).

(5) A smooth compact spin 4-manifold has a signature
which is a multiple of 16.

(6) A 4-manifold bounds a 5-manifold if and only if it has
zero signature.

We know that QCP 2 is 1 × 1 matrix: QCP 2 = (1),
while Q

CP
2 = (−1). Thus, Q

CP 2#CP
2 = (1 0

0 −1). This means

CP 2#CP
2

is not spin and has a zero Pontryagin number.
The Euler number χ (M) has the following properties:
(1) χ (Sd ) = 1 + (−)d .
(2) χ (RP d ) = 1+(−)d

2 .

(3) χ (CP 2) = χ (CP
2
) = 3.

(4) χ (M × N ) = χ (M)χ (N ).
(5) χ (Md#Nd ) = χ (Md ) + χ (Nd ) − χ (Sd ).
Using the above result, we find that

F 4 ≡ (S1 × S3)#(S1 × S3)#CP 2#CP
2

(F36)

has

QF 4 =
(

1 0
0 −1

)
, χ (F 4) = P1(F 4) = 0. (F37)

We see that F 4 is not spin.
The cohomology classes for F 4 are

H 1(F 4;Zn) = Z⊕2
n , H 2(F 4;Zn) = Z⊕2

n ,

H 3(F 4;Zn) = Z⊕2
n , H 4(F 4;Zn) = Zn. (F38)

Let a1,a2 be the generators of H 1(F 4;Zn), b1,b2 the generators
of H 2(F 4;Zn), c1,c2 be the generators of H 3(F 4;Zn), and v

be the generator of H 4(F 4;Zn):

H ∗(F 4;Zn) = {a1,a2,b1,b2,c1,c2,v}. (F39)

We find that the nonzero cup products are given by

b2
1 = −b2

2 = a1c1 = a2c2 = v. (F40)

All other cup products vanish.

6. H∗(RP d; Z2)

Next, let us list some cohomology rings with Z2 coefficient
for nonorientable spaces. The cohomology ring H ∗(RP d ;Z2)
is given by

H ∗(RP d ;Z2) = Z2[a]

(ad+1)
(F41)

with a ∈ H 1(RP d ;Z2). RP d is nonorientable if d = even.
The total Stiefel-Whitney class for RP d is given by

w = (1 + a)d+1 (F42)

(see https://amathew.wordpress.com/2010/12/17/the-stiefel-
whitney-classes-of-projective-space/). We see that for RP 4,
w1 = a and w2 = 0. Thus, RP 4 is a pin+ manifold, but not a
pin− manifold.

7. H∗(F4
non; Z2)

We note that RP 4 has an intersection form QRP 4 = (1)
(with Z2 field), σ (RP 4) = 1 mod 2, and χ (RP 4) = 1. So,

F 4
non ≡ RP 4#CP 2#(S1 × S3) (F43)

has σ (F 4
non) = 0 mod 2 and χ (F 4

non) = 0.
The cohomology classes for F 4

non are

H 1
(
F 4

non;Z2
) = Z⊕2

2 , H 2
(
F 4

non;Z2
) = Z⊕2

2 ,

H 3
(
F 4

non;Z2
) = Z⊕2

2 , H 4
(
F 4

non;Z2
) = Z2. (F44)

Let aRP 4
,aS1×S3

be the generators of H 1(F 4
non;Zn),

(aRP 4
)2,bCP 2

of H 2(F 4
non;Zn), (aRP 4

)3,cS1×S3
of

H 3(F 4
non;Zn), and v the generator of H 4(F 4

non;Zn):

H ∗(F 4
non;Zn) = {(aRP 4

)m=1,2,3,aS1×S3
,bCP 2

,cS1×S3
,v
}
.

(F45)

We find that the nonzero cup products are given by(
aRP 4)4 = (bCP 2)2 = aS1×S3

cS1×S3 = v,(
aRP 4)2

,
(
aRP 4)3

. (F46)

All other cup products vanish. The first Stiefel-Whitney class
for F 4

non is given by w1 = aRP 4
. Since RP 4,CP 2, and S1 × S3

are all pin+ manifolds, their connected sum F 4
non is also a

pin+ manifold. Thus, the second Stiefel-Whitney class for
F 4

non is w2 = 0. Since w2 + w2
1 = (aRP 4

)2 �= 0, F 4
non is not a

pin− manifold.

8. H∗(K ; Z2)

The Klein bottle K has the following cohomology class:

H 1(K;Z2) = Z⊕2
2 = {a1,a2}, H 2(K;Z2) = Z2 = {b}.

(F47)
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L3

1L

L1

L2

2LL3

4L

4L
C1

FIG. 12. A nonorientable surface �non
g with genus g = 4. All

the corners are identified and the edges with the same label Li are
glued together along its direction. The Poincaré dual of the cycle C1

is a1 ∈ H 1(�non
g ;Z2): 〈a1,red link〉 = 1 and 〈a1,black link〉 = 0. We

note that �non
1 = RP 2 and �non

2 = Klein bottle.

H 1(K;Z2) is generated by a1 and a2 which are the Poincaré
dual of C1 and C2 (see Fig. 11):

a1 = C∗
1 , a2 = C∗

2 . (F48)

We see that a1a2 = b since C1 and C2 intersect once; a2
2 = 0

since C2 does not self-intersect (i.e., C2 and its displacement
does not intersect); a2

1 = b since C1 self-intersects once (i.e.,
C1 and its displacement intersect once). Therefore, H ∗(K;Z2)
is determined by

a2
1 = a1a2 = b, a2

2 = 0. (F49)

9. H∗(�non
g ; Z2)

The cohomology ring for nonorientable surface �non
g (see

Fig. 12), H ∗(�non
g ;Z2), is given by (see [93], p. 208)

H ∗(�non
g ;Z2

) = Z2[ai]

(a3
i ,a

2
i − a2

j ,aiaj ak,aiaj |i �=j )

= {ζ + αiai + βb|ζ,αi,β ∈ Z2, a2
i = δij b

}
,

(F50)

with ai ∈ H 1(�non
g ;Z2) = Z⊕g

2 , i = 1,2, . . . ,g and b ∈
H 2(�non

g ;Z2) = Z2.
To understand the above result, we note that the cycles

Ci, i = 1, . . . ,g, generate H1(�non
g ;Z2) (see Fig. 12 where

only C1 is drawn). The Poincaré dual of Ci , ai = C∗
i , generates

H 1(�non
g ;Z2). We note that the self-intersection number for Ci

is 1. Thus, a2
i = b. Ci and Cj do not intersect if i �= j . Thus,

aiaj = 0.
To calculate the Stiefel-Whitney class wi , we note that the

orientation reverses as we go along the loop Ci . This implies
that

∮
Ci

w1 = 1 mod 2. Since
∮
Ci

aj is the intersection number
between Ci and Poincaré dual of aj which is Cj , we see
that

∮
Ci

aj = δij . Therefore, w1 =∑g

i=1 ai . In two dimensions
w2 = w2

1 =∑g

i=1 a2
i = [g]2b. Thus, �non

g is a pin+ manifold
if g = even, and it is not a pin+ manifold if g = odd. �non

g is
always a pin− manifold.

We also note that the CW complex of �non
g in Fig. 12 has

V = 2 vertices, L = 3g links, and T = 2g triangles. Thus,
the Euler number χ (�non

g ) = V − L + T = 2 − g. The top
Stiefel-Whitney class is equal to the Euler class mod 2,
regardless of the Z orientability of the manifold. In other
words, every manifold is Z2 orientable. So, the Euler class

(with Z2 coefficients) coincides with the top Stiefel-Whitney
class. This is another way to obtain w2 = [g]2b.

APPENDIX G: GROUP COHOMOLOGY THEORY

1. Homogeneous group cocycle

In this Appendix, we will briefly introduce group coho-
mology. The group cohomology class Hd (G,M) is a Z model
constructed from a group G and a Z module M (i.e., a vector
space over Z). Each element of G also induces a mapping
M → M, which is denoted as

g · m = m′, g ∈ G, m,m′ ∈ M. (G1)

The map g· is a group homomorphism:

g · (m1 + m2) = g · m1 + g · m2. (G2)

The module M with such a G-group homomorphism is called
a G module.

A homogeneous d-cochain is a function νd : Gd+1 → M,
that satisfies

νd (g0, . . . ,gd ) = g · νd (gg0, . . . ,ggd ), g,gi ∈ G. (G3)

We denote the set of d-cochains as Cd (G,M). Clearly,
Cd (G,M) is an Abelian group.

Let us define a mapping d (group homomorphism) from
Cd (G,M) to Cd+1(G,M):

(dνd )(g0, . . . ,gd+1) =
d+1∑
i=0

(−)iνd (g0, . . . ,ĝi , . . . ,gd+1),

(G4)

where g0, . . . ,ĝi , . . . ,gd+1 is the sequence g0, . . . ,gi, . . . ,gd+1

with gi removed. One can check that d2 = 0. The homoge-
neous d-cocycles are then the homogeneous d-cochains that
also satisfy the cocycle condition

dνd = 0. (G5)

We denote the set of d-cocycles as Zd (G,M). Clearly,
Zd (G,M) is an Abelian subgroup of Cd (G,M).

Let us denote Bd (G,M) as the image of the map
d : Cd−1(G,M) → Cd (G,M) and B0(G,M) = {0}. The ele-
ments in Bd (G,M) are called d-coboundaries. Since d2 = 0,
Bd (G,M) is a subgroup of Zd (G,M):

Bd (G,M) = {dνd−1|νd−1 ∈ Cd−1(G,M)} ⊂ Zd (G,M).
(G6)

The group cohomology class Hd (G,M) is then defined as

Hd (G,M) = Zd (G,M)/Bd (G,M). (G7)

We note that the d operator and the cochains Cd (G,M) (for all
values of d) form a so-called cochain complex

· · · d→ Cd (G,M)
d→ Cd+1(G,M)

d→ · · · (G8)

which is denoted as C(G,M). So, we may also write the group
cohomology Hd (G,M) as the standard cohomology of the
cochain complex Hd [C(G,M)].
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2. Inhomogeneous group cocycle

The above definition of group cohomology class can be
rewritten in terms of inhomogeneous group cochains/cocycles.
An inhomogeneous group d-cochain is a function ωd : Gd →
M . All ωd (g1, . . . ,gd ) form Cd (G,M). The inhomogeneous
group cochains and the homogeneous group cochains are
related as

νd (g0,g1, . . . ,gd ) = ωd (a01, . . . ,ad−1,d ), (G9)

with

g0 = 1, g1 = g0a01, g2 = g1a12, . . . gd = gd−1ad−1,d .

(G10)

Now, the d map has a form on ωd :

(dωd )(a01, . . . ,ad,d+1) = a01 · ωd (a12, . . . ,ad,d+1)

+
d∑

i=1

(−)iωd (a01, . . . ,ai−1,iai,i+1, . . . ,ad,d+1)

+ (−)d+1ωd (a01, . . . ,ãd−1,d ). (G11)

This allows us to define the inhomogeneous group d-cocycles
which satisfy dωd = 0 and the inhomogeneous group d-
coboundaries which have a form ωd = dμd−1. Geometrically,
we may view gi as living on the vertex i, while aij as living
on the link connecting the two vertices i to j .
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