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Assessment of long-range-corrected exchange-correlation kernels for solids: Accurate exciton
binding energies via an empirically scaled bootstrap kernel
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In time-dependent density-functional theory, a family of exchange-correlation kernels, known as long-range-
corrected (LRC) kernels, have shown promise in the calculation of excitonic effects in solids. We perform a
systematic assessment of existing static LRC kernels (empirical LRC, Bootstrap, and jellium-with-a-gap model)
for a range of semiconductors and insulators, focusing on optical spectra and exciton binding energies. We find
that no LRC kernel is capable of simultaneously producing good optical spectra and quantitatively accurate
exciton binding energies for both semiconductors and insulators. We propose a simple and universal, empirically
scaled Bootstrap kernel that yields accurate exciton binding energies for all materials under consideration, with
low computational cost.
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I. INTRODUCTION

The optical properties of insulators and semiconductors in
the energy range close to the gap are strongly influenced by
excitons. The accurate and efficient calculation of excitonic
properties is an important task of computational materials
science, since it is a key requirement in the design of novel
photovoltaic materials of desired properties. For example, low
exciton binding energies in perovskite solar cells promote
the electron-hole separation and thereby enhance power
conversion efficiencies [1].

Many-body perturbation theory is a standard theoretical
method for excitonic effects in solids: accurate exciton binding
energies Eb and optical absorption spectra of semiconductors
and insulators are obtained by solving the Bethe-Salpeter
equation (BSE) [2–4]. However, the BSE is computationally
too expensive to be applied to large systems. Time-dependent
density-functional theory (TDDFT) [5–7] provides alterna-
tives to the BSE, which are computationally much cheaper.

The main challenge for TDDFT lies in finding approxi-
mations to the exchange-correlation (xc) kernel fxc, which
yield accurate excitonic properties. The random-phase ap-
proximation (RPA) (fxc = 0), the local-density approximation
(LDA), and generalized gradient approximations (GGAs) fail
to capture excitonic effects in solids due to their inade-
quate long-range behavior. The so-called “nanoquanta kernel”
[8–11], constructed by reverse-engineering the BSE, yields
very good optical spectra of solids and thus provides an
important proof of principle; however, it is computationally
as expensive as the BSE.

Hybrid xc functionals (mixtures of semilocal xc functionals
with a fraction of nonlocal Fock exchange) are very widely
used in TDDFT. The B3LYP hybrid functional [12] gives
reasonably good optical spectra for systems whose gap is not
too large [13,14]. For organic molecular crystals, the so-called
optimally tuned range-separated hybrids produce excellent
results [15]. A scaled exact exchange approach was recently
shown to yield good excitonic binding energies for a wide
variety of materials [16]. However, the nonlocal exchange
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contribution adds to the computational cost of the hybrid
methods; it is therefore desirable to work with purely local
xc functionals.

A simple nonlocal model kernel, which is known as the
long-range-corrected (LRC) kernel [8,17,18],

f LRC
xc = − α

q2
, (1)

where q is the momentum transfer in the first Brillouin zone
(BZ), can account for bound excitons in solids, but it requires
a material-dependent parameter α, a positive scalar. A number
of nonempirical xc kernels proposed in the literature, namely
the Bootstrap [19], RPA-Bootstrap [20], and jellium-with-gap-
model (JGM) kernels [21], report that the long-range part in
them gives the most important contribution to their results
for optical spectra in solids. Thus, in spite of their diversity,
these kernels can essentially be viewed as somewhat more
sophisticated LRC kernels, as explicitly stated in Refs. [19]
and [21]. Hence, in this paper we refer to all of the above
xc kernels [17–21] as the family of LRC-type kernels. These
kernels have been applied to simple bulk semiconductors and
insulators, with some degree of success. However, there also
were reports of conflicting results, giving rise to some recent
controversies in the literature [22,23].

Testing the performance of the various LRC-type kernels
is a complex task that depends on many choices. For instance,
the xc kernel, which is formally a matrix in reciprocal
space, can be implemented as head-only, diagonal, or a full
matrix. Local-field effects can be fully or partially included
or completely ignored. The calculated optical spectra depend
on the input band structure (LDA with or without scissors
correction, GGA, LDA+U, hybrids, or GW) and on the method
(such as all-electron versus pseudopotential-based). And, last
but not least, the selection of the materials is important. Given
the large number of choices that have to be made, an unbiased
assessment and a comparison between different LRC methods
is challenging, and conflicting results can arise.

In this paper, we will perform a systematic assessment of
the various existing static LRC-type kernels (i.e., we do not
assess dynamical LRC-type kernels such as those proposed
in Refs. [24], [25]), for a variety of materials ranging from
small-gap semiconductors to large-gap insulators, comparing
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calculated optical spectra and exciton binding energies to
experimental data. The main finding is that the existing
LRC-type kernels, while often producing good-looking optical
spectra for semiconductors, all fail to yield consistently good
exciton binding energies. We propose an empirical scaling
approach, to be used in conjunction with the RPA-Bootstrap
method, which gives accurate Eb for all materials under
study, but the resulting optical spectra may have unsatisfactory
distributions of oscillator strength.

This paper is organized as follows. In Sec. II, we give an
overview of the formal framework of linear-response TDDFT,
comparing two approaches to describe optical properties of
solids: the Dyson-equation approach and the Casida equation.
We then review the existing static LRC-type xc kernels and
the different choices for their implementation. We also discuss
some computational details. Section III then presents our
results. We demonstrate the sensitivity of the optical spectra
to the choice of the α-parameter and then propose a scaled
RPA-Bootstrap kernel which gives accurate exciton binding
energies. Section IV contains our conclusions.

II. BACKGROUND AND METHODOLOGY

A. Linear-response TDDFT for solids: Dyson equation versus
Casida equation approach

There are several ways to calculate optical absorption
spectra of periodic systems using linear-response TDDFT
[6]. The most common approach is based on the interacting
density-density response function χGG′(q,ω), where G and
G′ are reciprocal lattice vectors, and ω is the frequency. The
response function is obtained from the following Dyson-type
equation:

χGG′(q,ω) = χ
(0)
GG′(q,ω) +

∑
G1G2

χ
(0)
GG1

(q,ω)

× [VG1 (q)δG1G2 + fxc,G1G2 (q)]χG2G′(q,ω), (2)

where χ (0) is the noninteracting response function and
VG(q) = 4π/|q + G|2 is the Coulomb interaction. It is con-
venient to write V = V0 + V̄ , where V0 is the long-range
(G = 0) part of the Coulomb interaction, and V̄ is the Coulomb
interaction without the long-range part. fxc,GG′(q) is the xc
kernel in the adiabatic approximation, i.e., independent of ω.
χ (0) is explicitly given by [26]

χ
(0)
GG′(q,ω)

= 2

V
∑
nmk

(fmk+q − fnk)

× 〈mk + q|ei(k+G)·r|nk〉〈nk|e−i(k+G′)·r′ |mk + q〉
Emk+q − Enk − (ω + iη)

,

(3)

where k lies within the first BZ, n and m are band indices,
Enk and Emk+q are the associated Kohn-Sham single-particle
energies, f = 1(0) for occupied (unoccupied) states, the
factor of 2 accounts for the spin (we here only consider
non-spin-polarized systems), V is the crystal volume, and
η is an infinitesimal. In the optical limit (q → 0), the head

(G = G′ = 0) of χ (0) at ω = 0 becomes [27]

χ
(0)
00 (q → 0,0) = −4q2

V
∑
vck

|〈ck|p̂ + i[VNL,r̂]|vk〉|2
(Eck − Evk)3

, (4)

where v and c are valence and conduction band indices,
respectively, p̂ is the momentum operator, r̂ is the position
operator, and VNL is the nonlocal part of the pseudopotential.
The q2-dependence will be important for the construction of
the Bootstrap kernels; see below. It is also important that
χ

(0)
00 (q → 0,0) is always negative.

The optical spectrum is obtained from the imaginary part
of the macroscopic dielectric function εM:

εM(ω) = lim
q→0

1

ε−1
00 (q,ω)

(5)

= lim
q→0

1

1 + V0(q)χ00(q,ω)
, (6)

where ε−1 is the inverse dielectric function [3]. We shall refer
to this method as the Dyson approach; it has a moderate
computational cost and is therefore the method of choice
for calculating optical spectra. However, the drawback of the
Dyson-equation approach is that fine details of the spectra,
in particular the binding energies of weakly bound excitons,
cannot be obtained, because the spectral broadening, which
is applied after calculating εM(ω) at each ω point to produce
a continuous and smooth optical spectrum, washes out any
subtle features of the order of a few meV (see also Sec. II C).

As an alternative that is strictly equivalent to the Dyson
equation, optical spectra and exciton binding energies can be
obtained from the Casida equation [28]:(

A B
B∗ A∗

)(
Xn

Yn

)
= ωn

(−1 0
0 1

)(
Xn

Yn

)
, (7)

where A and B are excitation and de-excitation matrices,
respectively, Xn and Yn are nth eigenvectors, and ωn is the
nth excitation energy. The matrix elements of A and B are
given by

Avck,v′c′k′ = (Eck − Evk)δvv′δcc′δkk′ + F Hxc
vck,v′c′k′ , (8)

Bvck,v′c′k′ = F Hxc
vck,v′c′k′ , (9)

where F Hxc = F H + F xc is the Hartree-exchange-correlation
(Hxc) matrix [5]. The matrix dimension of the Casida Eq. (7)
is proportional to the number of k-points, which makes it
computationally quite demanding (see Sec. II C for more
details).

In the optical limit, F H and F xc are given by

F H
vck,v′c′k′ = 2

V
∑
G �=0

4π

|G|2 〈ck|eiG·r|vk〉〈v′k′|e−iG·r|c′k′〉, (10)

F xc
vck,v′c′k′ = 2

V lim
q→0

∑
GG′

fxc,GG′ (q)〈ck|ei(q+G)·r|vk〉

×〈v′k′|e−i(q+G′)·r|c′k′〉. (11)

For the elements of F xc in Eq. (11) to remain finite (i.e.,
neither vanishing nor diverging) in the q → 0 limit, the head
(G = G′ = 0) of fxc should be proportional to q−2, the wings
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(G = 0,G′ �= 0 or vice versa) should be proportional to q−1,
and the body (G,G′ �= 0) should be independent of q (see
Refs. [29] and [30] for more details). In other words, the most
general form is

lim
q→0

fxc,GG′(q) =

⎛
⎜⎜⎜⎝

κ00
q2

κ01
q

κ02
q · · ·

κ10
q κ11 κ12 · · ·

κ20
q κ21 κ22 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠, (12)

where the κGG′ are constants (in general, they are functionals
of the density). We will discuss various approximations of the
xc kernel in the following subsection.

The excitation energy spectrum ωn of the Casida equation,
Eq. (7), for periodic solids with a gap has discrete levels,
which correspond to bound excitons, and a continuous part,
which corresponds to the unbound particle-hole excitations.
For the adiabatic xc kernels considered here, only one excitonic
level is found, which can be identified as the lowest bound
exciton (to obtain an excitonic Rydberg series with a scalar
xc kernel requires the kernel to be frequency-dependent)
[31,32]. We calculate the exciton binding energy as that energy
which separates this discrete level from the onset of the
continuum. Since no artificial spectral broadening is involved,
exciton binding energies can be calculated in principle with
arbitrary precision. However, the Casida-equation approach
is computationally expensive because it requires building and
diagonalizing a large matrix.

Note that by using a very small broadening width and a
very fine frequency grid, one may be able to obtain Eb of semi-
conductors from the Dyson-equation optical spectrum, but the
broadening width and the frequency grid spacing always cause
an error that may be greater than Eb of interest. (The truncation
of Dyson-equation and Casida-equation matrices, which are
in principle infinite dimensional, also results in error, but this
error is more closely related to the convergence behavior than
to the difference between Dyson and Casida approaches; see
Sec. II C.) Note also that Ref. [20] proposed a method to “read”
Eb from the real part of εRPA

M (ω), but this approach works
only for head-only kernels and only for wide-gap insulators
(i.e., one cannot obtain small Eb on the order of a few meV),
and it has a moderate precision (∼ 0.1 eV). By contrast, the
Casida equation works for all forms of the xc kernel and for
all materials, and it has a high precision (∼ 0.01 meV).

A widely used approach to simplify the Casida equation
is the so-called Tamm-Dancoff approximation (TDA), which
decouples excitations and de-excitations by setting B to zero
in Eq. (7). However, we have found [33] that the TDA
underestimates LRC Eb of insulators significantly (i.e., by
more than 100%) (e.g., TDA and full Casida equations using
the RPA-Bootstrap kernel without the scissors shift yield
Eb = 666 and 2400 meV, respectively, for solid Ne), so we
will only use the full Casida equation in this work.

The local-field effect (LFE) is determined by the number
of G vectors included and has different forms in the Dyson
and Casida equations. In the Dyson approach, the LFE means
including not only the head, but also the wings and body of
the matrix in G,G′, which leads to ε00 �= 1/ε−1

00 . The Dyson
equation is used to calculate optical spectra and Bootstrap-

type kernel parameters (more about this later). In the Dyson
equation for optical spectra, the LFE is not a matter of choice
and should be included. However, in the Dyson equation for
Bootstrap-type kernel parameters, the LFE is a matter of choice
because of the freedom of defining Bootstrap-type kernels. In
this work, we will include the LFE when calculating Bootstrap-
type kernel parameters, following the convention adopted in
the literature [19].

In the Casida equation, the LFE means including not only
the head, but also other terms in the summation of F Hxc matrix
elements in Eqs. (11) and (16). Mathematically, the LFE in the
Dyson equation is exactly transformed into the summation
in the Casida equation. Therefore, if the LFE is included
in the Dyson equation, it should be included in the Casida
equation, too.

B. LRC-type xc kernels

In reciprocal space, the xc kernels fxc,GG′(q) are matrices
in G and G′; see Eq. (12). In the following, we list the
xc kernels we have tested, paying particular attention to
distinguish between head-only, diagonal, or full matrix forms.
In all expressions, the optical limit (q → 0) is understood.

1. Empirical LRC kernel

The empirical LRC kernel was originally designed as a
kernel for optical spectra of semiconductors [8]. The diagonal
and the head-only versions of the empirical LRC kernel are
defined, respectively, as

f LRC(d)
xc = − α

4π
V =

⎛
⎜⎜⎜⎜⎝

− α
q2 0 0 · · ·

0 − α

G2
1

0 · · ·
0 0 − α

G2
2

· · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠ (13)

and

f LRC(h)
xc = − α

4π
V0 =

⎛
⎜⎜⎜⎝

− α
q2 0 0 · · ·

0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎠. (14)

Here, α is an empirical parameter, given by [17]

αLRC = C1

ε∞
− C2, (15)

where C1 = 4.615, C2 = 0.213, and ε∞ is the high-frequency
dielectric constant. Note that here we use ε−1

RPA instead of the
experimental 1/ε∞, where ε−1

RPA is greater than 1/ε∞ by ∼
10%. Also note that the empirical LRC kernel used calculated
lattice parameters, while we take experimental ones. Due to
these differences, empirical parameters C1 and C2 should be
refitted to our choices, but it turns out that such differences
make little effect on LRC results for semiconductors (see
below).
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In general, when a head-only or diagonal LRC kernel is used, F Hxc simplifies to

F Hxc
vck,v′c′k′ = 2

V

⎛
⎝∑

G �=0

4π − ᾱ

|G|2 〈ck|eiG·r|vk〉〈v′k′|e−iG·r|c′k′〉 − α0
〈ck|p̂ + i[VNL,r̂]|vk〉

Eck − Evk

〈c′k′|p̂ + i[VNL,r̂]|v′k′〉∗
Ec′k′ − Ev′k′

⎞
⎠, (16)

where α = α0 and ᾱ = 0 for the head-only kernel f LRC(h)
xc , and

α = α0 = ᾱ for the diagonal kernel f LRC(d)
xc . Note that head-

only or diagonal LRC kernels reduce the exciton Hamiltonian
building time drastically because this removes the double loop
over G,G′ in Eq. (11).

It turns out that the body of f LRC(d)
xc has a negligible effect

on optical spectra of semiconductors such as Si [17]: this
is because ᾱ ≈ 0.2 � 4π in Eq. (16). However, f LRC(h)

xc and
f LRC(d)

xc can produce very different results for insulators, and
one needs to state clearly which version, (h) or (d), of the xc
kernel is used.

2. Bootstrap kernels

The original Bootstrap kernel is a parameter-free xc kernel
for optical spectra of semiconductors and insulators [19]. The
original Bootstrap kernel is defined as

f B
xc,GG′(q,ω) = V

1/2
G (q)ε−1

GG′(q,0)V 1/2
G′ (q)

1 − εRPA,00(q,0)
, (17)

where ε−1 is the self-consistent (i.e., bootstrapped) inverse
dielectric function. In matrix form, the bootstrap kernel is
given by

f B
xc =

⎛
⎜⎜⎜⎜⎜⎝

β00

q2
β01

|q||G1|
β02

|q||G2| · · ·
β10

|G1||q|
β11

G2
1

β12

|G1||G2| · · ·
β21

|G2||q|
β21

|G2||G1|
β22

G2
2

· · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

, (18)

where

βGG′ = 4πε−1
GG′(q,0)

1 − εRPA,00(q,0)
. (19)

Neglecting the wings and body of f B
xc, which can be viewed as

neglecting the LFE, yields a head-only Bootstrap kernel:

f B(h)
xc =

⎛
⎜⎜⎜⎜⎝

β00

q2 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

. . .

⎞
⎟⎟⎟⎟⎠. (20)

Comparing f B(h)
xc with f LRC(h)

xc , we define the LRC α-parameter
for the Bootstrap kernel as

αB = 4πε−1
00 (0,0)

εRPA,00(0,0) − 1
. (21)

Whereas f LRC(d)
xc and f LRC(h)

xc give quite different results for
insulators, we have found that f B

xc and f B(h)
xc make a relatively

small difference (i.e., on the order of ∼ 10%) for both
semiconductors and insulators (see Table I in Supplemental
Material [34]), which is consistent with the findings of Refs.
[19] and [20]. In Ref. [21] the same trend was found in the
JGM kernel (see below). Therefore, in view of the reduced
computational effort, we use the head-only form for all kernels
in the following unless stated otherwise. The only exception is
when we verify the results of Dyson-equation optical spectra
obtained from f B

xc using Casida-equation calculations (see
Table I in Supplemental Material[34]). We emphasize again
that we only consider the q → 0 limit here; at finite q, the
matrix character of the Bootstrap kernel appears to play a
more significant role [35].

We also consider two simpler variations of the Bootstrap
kernel. The first one, referred to as the 0-Bootstrap kernel
[36], is the head-only Bootstrap kernel Eq. (20) without the
built-in self-consistency (i.e., “0” means no iteration, similar
to the G0W0 version of the GW approach) for optical spectra
of semiconductors and insulators. The LRC α-parameter for
the 0-Bootstrap kernel is thus given by

α0B = 4πε−1
RPA,00(0,0)

εRPA,00(0,0) − 1
. (22)

Note that α0B > αB by about 10% because ε−1
RPA,00(0,0) is

greater than ε−1
00 (0,0) by about 10%.

The second simplified Bootstrap kernel is the RPA-
Bootstrap kernel [20], which is a head-only kernel with

αRPAB = 4πε−1
RPA,00(0,0)

1/ε−1
RPA,00(0,0) − 1

(23)

for exciton binding energies of insulators. Note that
αRPAB > α0B by about 10% because 1/ε−1

RPA,00(0,0) − 1 <

εRPA,00(0,0) − 1 by about 10%. Note also that without the LFE
(i.e., when ε00 = 1/ε−1

00 ), the 0-Bootstrap and RPA-Bootstrap
kernels become identical.

3. Jellium with a gap model

The JGM kernel is a parameter-free kernel for optical
spectra of semiconductors and insulators [21]. The JGM kernel
is defined as

f JGM
xc (q; n,Eg) = 4π

q2

(
B(n) + Eg

1 + Eg

)
[ek′

n,Eg
q2 − 1]

− 4π

k2
F

q2

(q2 + 1)

C(n)

1 + Eg
, (24)

with

k′
n,Eg

= kn + E2
g

4πnq2

(
1 + Eg

B(n) + Eg

)
. (25)

Here, Eg is the band gap, n is the electron density, and kF is the
Fermi wave vector; kn, B(n), and C(n) are defined in Ref. [37].
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f JGM
xc,GG′(q; Eg) is defined as a full matrix, obtained from the

Fourier transform in reciprocal space and the symmetrization
in G,G′; however, we here use it in the head-only form. We
obtain αJGM values very similar to Ref. [21] (e.g., 0.21 and
0.22, respectively, for GaAs). Whereas other LRC-type kernels
depend on dielectric constants, the JGM kernel depends on
band gaps.

C. Computational aspects

We used the Abinit code [38], which is based on Troullier-
Martins (TM) norm-conserving pseudopotentials, for calcu-
lating the Kohn-Sham band structures, including scissors
corrections, as well as GW band gaps within the LDA.
Experimental lattice parameters were used for all materials.
We used the dp code [39] for calculating optical spectra from
the imaginary part of the dielectric function. We calculated
exciton binding energies from the Casida equation with our
own homemade code.

Optical spectra were obtained with a Lorentzian broadening
of 0.15 eV for GaAs and 0.2 eV for all other materials, which
is a common choice in the excitonic literature. The Lorentzian
broadening has a physical meaning, i.e., it simulates the
lifetime broadening, so it should not be used as an adjustable
parameter to improve the appearance of calculated optical
spectra. In principle, the broadening can be calculated from the
imaginary parts of GW eigenvalues [40], and there will also
be contributions to the broadening from phonons and disorder,
but such calculations are beyond the scope of this paper. Note
that for a Lorentzian broadening smaller than 0.15 eV, which
is an optimal value that makes calculated and experimental E2

peaks have similar heights, the E1 peak height in the excitonic
region of the RPA and LRC spectra of GaAs is artificially
enhanced, and the RPA and LRC E2 peaks appear higher than
the experimental one; thus, such a small broadening should
not be used (see the top panel of Fig. 2 for E1 and E2 peaks).

We used experimental band gaps, E
exp
g , rather than GW

band gaps, EGW
g , as fundamental gaps, marking the onsets

of the continuous part of the optical spectra. The reason
is that there are differences on the order of 1 eV between
GW and experimental band gaps in wide-gap insulators. As
shown below, these differences are comparable to the exciton
binding energies, which are obtained from the difference
between fundamental and optical gaps, in the materials under
consideration, and can therefore cause an artificial cancellation
of the two errors in Eg and Eb when one compares the excitonic
peak position in the calculated optical spectrum using EGW

g
with the experimental optical spectrum.

In the Dyson equation for optical spectra, we used a 16 ×
16 × 16 Monkhorst-Pack k-point mesh, 4 valence bands, and
20 conduction bands. We found that TDDFT-LRC shows a
slower convergence with respect to the number of conduction
bands (Nc) than the BSE (e.g., for LiF, Nc = 6 is enough
for the BSE [2], while Nc � 12 is needed for both Dyson
and Casida equations). An insufficient number of conduction
bands causes blueshifts of the excitonic peak (i.e., decreases
the exciton binding energy) and reduces its oscillator strength
in the LRC spectrum of wide-gap insulators significantly. This
slow convergence also occurs for the real part of εLRC

M (ω = 0)
(i.e., the LRC dielectric constant).

In the Dyson equation for Bootstrap-type kernel parameters,
we used a 20 × 20 × 20 (20 × 20 × 10) �-centered k-point
mesh, 4 (8) valence bands, 20 (20) conduction bands, and 59
(73) G vectors for GaAs, β-GaN, MgO, LiF, solid Ar, and
solid Ne (α-GaN and AlN).

In the Casida equation, we used a 28 × 28 × 28 �-centered
k-point mesh, 3 valence bands, 2 conduction bands, and 59 G
vectors for GaAs. The corresponding parameters for the other
materials are: 16 × 16 × 16, 3, 6, 59 for β-GaN and MgO;
16 × 16 × 8, 6, 9, 73 for α-GaN and AlN; and 8 × 8 × 8, 3,
24, 59 for LiF, solid Ar, and solid Ne.

To calculate αJGM, we used a 8 × 8 × 8 (8 × 8 × 4) �-
centered k-point mesh and 59 (73) G vectors for GaAs, β-GaN,
MgO, LiF, solid Ar, and solid Ne (α-GaN and AlN).

All computational parameters listed here were chosen after
performing systematic convergence tests.

D. Effect of the scissors shift on LRC results

The exact xc kernel can be written in the form fxc = f
qp
xc +

f ex
xc [5,41], where the “quasiparticle” part, f

qp
xc , is responsible

for correcting the Kohn-Sham gap, and f ex
xc is the excitonic

part. In the standard TDDFT approach for semiconductors
and insulators [3,6,42], the quasiparticle part of fxc is ignored,
and any corrections to the Kohn-Sham gap are made directly
in the input band structure, usually by means of GW or hybrid
functionals; the remaining part of the xc kernel, f ex

xc , is then
approximated.

A standard and inexpensive method for correcting LDA
band structures is by applying the so-called scissors shift
[43,44]. There are several ways of applying the scissors shift
to Dyson and Casida equations in Eqs. (3), (4), (11), and (16)
and LRC-type kernels. The scissors shift can be applied to
only the conduction bands (i.e., replacing Eck by Eck + �)
or to the momentum operator as well (i.e., replacing p̂ by
p̂renorm = {(Eck + � − Evk)/(Eck − Evk)}p̂, where p̂renorm is
the renormalized momentum operator) [43,45], where � is the
difference between the experimental (or GW) and DFT band
gaps.

Excitonic effects within the LRC approximation are quite
sensitive to the particular implementation of the scissors shift.
For example, Table I shows α and Eb of GaAs and solid Ne
obtained from the RPA-Bootstrap kernel using different types
of the scissors shift. We find that the scissors shift affects the
LRC results significantly.

In the following, we choose not to apply the scissors shift
to Eck and p̂, i.e., we calculate exciton binding energies from
the Casida equation using the uncorrected LDA band structure
as input. Optical spectra, obtained from the Dyson-equation

TABLE I. LRC kernel parameters α and exciton binding energies
Eb (in meV) obtained from the RPA-Bootstrap kernel using different
types of the scissors shift.

Scissors shift GaAs Ne
Eck → Eck + � p̂ → p̂renorm α Eb α Eb

Yes Yes 0.116 0.601 37.5 6000
Yes No 0.284 0.246 66.7 7420
No No 0.073 0.344 30.9 2400
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approach, are also calculated based on the uncorrected LDA
band structure, and then rigidly shifted to align them with
the experimental band gap. We have chosen this approach for
several reasons.

First, the scissors shift is not related to excitons. The scissors
shift is a matter of choice for the study of excitonic effects in
solids. Our aim is to make the simplest choices (e.g., the LDA
and the head-only kernel) and to focus on identifying the origin
of conflicting results in existing kernels and designing a new
kernel. Note that we applied the scissors shift to Eck and p̂ to
reproduce the results of existing kernels, which are provided
in the Supplemental Material [34].

Second, we were concerned about the unphysically strong
influence of the scissors shift on the LRC results. The scissors
shift increases ε−1

00 by ∼ 10%; this small increase in ε−1
00 affects

the LRC results for wide-gap insulators significantly when
the LRC-type kernel depends on the dielectric constant (see
below). In other words, f ex

xc = f ex
xc (f qp

xc ), but this is not what
f

qp
xc and f ex

xc are meant to be. The big change in the LRC results
due to the scissors shift is not associated with excitons.

Third, it allows us to eliminate one source of conflicting
results. Some kernels use EGW

g in the scissors shift, compare
their optical spectra with experiment, and reproduce or
predict the excitonic peak position for wide-gap insulators by
interpreting the ∼ 1 eV error in EGW

g as Eb [19,25]. In addition,
the small difference between E

exp
g and EGW

g (or EGW
g obtained

from different potential methods) makes a small difference
in the scissors-shifted dielectric constant, which can cause a
big difference in the LRC results for wide-gap insulators. By
not using the scissors shift, we can avoid these unnecessary
complications.

Last, by not using the scissors shift we can avoid expensive
EGW

g calculations for unknown materials when we need only
Eb. When EGW

g is not calculated and the dielectric constant is
calculated from density-functional perturbation theory (DFPT)
[26,46], which is computationally much cheaper than the
sum-over-states (SOS) method Eq. (6) because conduction
bands are not needed, large-scale or high-throughput screening
exciton calculations become possible.

III. RESULTS AND DISCUSSION

A. Comparison of LRC α-parameters

In the following, we will discuss our results for the excitonic
properties of the bulk semiconductors GaAs, α-GaN, and β-
GaN, the narrow-gap insulators AlN and MgO, and the wide-
gap insulators LiF, solid Ar, and solid Ne. The experimental
exciton binding energies are obtained from Refs. [47–54]. We
point out again that all results shown below were obtained
without using the scissors shift.

Let us begin with an assessment of the LRC α-parameters
for various materials. Figure 1 compares αLRC, αJGM, αB, α0B,
and αRPAB with the α-parameter αexp, which, when used in the
head-only LRC kernel Eq. (14), reproduces the experimental
exciton binding energy for each material under consideration.
We see that α varies from ∼ 0.1 (αRPAB for GaAs) to ∼ 30
(αRPAB for solid Ne). All calculated α-parameters are smaller
than the experimentally fitted ones.
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FIG. 1. LRC kernel α-parameters for various materials, compared
with the α-parameter fitted to reproduce the experimental exciton
binding energy (see text).

B. Sensitivity of optical spectra to changes in α

Next, we examine the effects of the head-only LRC kernel
on optical absorption spectra. Figure 2 shows calculated optical
spectra of GaAs and solid Ne obtained from the Dyson
equation using the LRC kernel with α = AαRPAB, where A is a
scaling factor, and compares them with experiment [47,52]. We
chose GaAs and solid Ne because they are extreme examples
of semiconductors with weakly bound Wannier-Mott excitons
and insulators with strongly bound Frenkel excitons. In the
case of GaAs, the optical spectrum shows two prominent peaks
above the band gap; E1 can be interpreted as a continuum
exciton. The bound exciton below the gap is very weak and not
visible on the scale of this plot because Eb is much smaller than
the line broadening. To see the bound Wannier-Mott exciton
of GaAs, high-resolution spectroscopy at low temperatures is
needed [55]. On the other hand, for solid Ne the excitonic peak
is very prominent and far from the gap, and it is easy to obtain
Eb from the spectrum.

In the top panel of Fig. 2, we show calculated optical spectra
of GaAs for a range of A between 0.8 and 4.0. We find that
the spectra are rather insensitive to the scaling: a 10% change
in α has only a very small effect: in other words, α has a big
margin for semiconductors. The RPA spectrum of GaAs is
already quite similar to experiment, apart from the height of
the E1-peak. To obtain the experimental height of the E1-peak,
a scaling factor of A ≈ 4 (i.e., α ≈ 0.3) is needed; however,
this also increases the peak width, and the valley between the
E1 and the E2 peak becomes too high.

The bottom panel of Fig. 2 shows the calculated spectra
of solid Ne for a much smaller range of A, between 0.8 and
1.1. Here, the spectra are very sensitive to the change in α:
a 10% change shifts excitonic peaks by about 1 eV: in other
words, α has a small margin for insulators. Clearly, the RPA
spectrum of Ne is completely different from experiment, and
the LRC kernel reshapes it significantly. Using A ≈ 1.1 puts
the excitonic peak at the right position; however, the peak
height and width is now drastically overestimated.

The low sensitivity of LRC results for semiconductors
to changes in α explains why there are so many LRC-type
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FIG. 2. Experimental and calculated optical absorption spectra of
GaAs (top) and solid Ne (bottom). For the LRC kernel, α = AαRPAB

is used, where αRPAB = 0.073 and 30.9 for GaAs and solid Ne,
respectively. Note that A = 0.8 and 0.9 approximately correspond to
Bootstrap and 0-Bootstrap kernels, respectively. The E1 and E2 peaks
in the spectrum of GaAs are at critical points, where conduction and
valence bands are parallel to each other.

kernels. LRC-type kernels only slightly modify RPA spectra
of semiconductors, which are already very close to experiment,
and α has a big margin for semiconductors. Thus, all LRC-type
kernels produce similar and seemingly good optical spectra of
semiconductors even when they use different choices and yield
very different α values (e.g., αLRC ≈ 0.2 and αB ≈ 0.1 for Si
and GaAs).

The high sensitivity of LRC results for insulators to changes
in α is consistent with the finding of Ref. [20]. The idea of the
RPA-Bootstrap kernel is to increase Eb for wide-gap insulators
from ∼ 0.1 to ∼ 1 eV by increasing αB by ∼ 20% for all
materials. However, the ∼ 20% increase in αB does not fix
the problem of the Bootstrap kernel of not reproducing an
excitonic peak in the optical spectrum of semiconductors, such
as Si, because of the low α-sensitivity of LRC results for
semiconductors.

We also point out that the LRC results show a similar
sensitivity trend to diagonal versus head-only LRC kernels
and full versus TDA Casida equations (i.e., insensitive for
semiconductors but sensitive for insulators) [33].
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FIG. 3. Scaling factors AB, A0B, and Aexp (see text) of Bootstrap-
type kernels for various materials.

These two examples already indicate a general limitation
of the LRC kernel that applies to all materials: it is impossible
to obtain the correct position and the correct height and width
of an excitonic peak in the LRC spectrum, for both semicon-
ductors and insulators. We will provide more evidence for this
conclusion and give more examples below. To reproduce a
given excitonic feature for both semiconductors and insulators
(e.g., the peak height or the peak position), it is clear that a
nonuniform scaling factor for Bootstrap-type kernels will be
needed: the scaling factor should be close to 1 for insulators
but much greater than 1 for semiconductors. Any method that
nearly uniformly scales Bootstrap-type kernels for all materials
[such as using different dielectric constants (e.g., bootstrapped
versus not, scissors-shifted versus not, macroscopic versus
microscopic, or RPA versus LDA, all of which are different
from each other by ∼ 10%) in the numerator and/or the
denominator of Eqs. (17), (21), (22), and (23) or using different
band structures] is likely to fail to produce satisfactory results
across the board.

C. Nonuniformly scaled bootstrap kernel

In Fig. 1 we compared the α values from head-only LRC-
type kernels for various materials and found that for wide-gap
insulators, αRPAB shows the most similar trend to αexp (e.g.,
Bootstrap and 0-Bootstrap kernels yield Eb of solid Ar that is
smaller than that of LiF). We therefore choose it as the basis
for constructing a new, scaled Bootstrap xc kernel.

Let us first define f B(h)
xc = ABf RPAB

xc and f 0B
xc = A0Bf RPAB

xc .
The values of AB and A0B are plotted in Fig. 3 as a function
of ε−1

RPA for various materials; we find that AB ≈ 0.8 and
A0B ≈ 0.9 for all materials (i.e., Bootstrap-type kernels are
nearly uniformly scaled to each other). On the other hand, if
we define f

exp
xc = Aexpf

RPAB
xc (i.e., αexp = AexpαRPAB) as the

head-only LRC xc kernel, which reproduces the experimental
exciton binding energy, we can see that Aexp varies strongly as
a function of material, from ∼ 1.1 (solid Ne) to ∼ 5 (GaAs).
This nonuniform variation is consistent with our observations
from the optical spectra of GaAs and solid Ne; see Fig. 2.

The values of Aexp show a rather smooth behavior as a
function of ε−1

RPA, which suggests that a scaled Bootstrap kernel
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TABLE II. Fitting parameters for the scaling factor A.

x a1 a2 a3 a4 b1 b2 b3 b4

ε−1
LDA(DFPT) 25.9 − 0.159 0.161 1.16 6.89 1.11 0.166 1.16

ε−1
RPA(SOS) 11.6 − 0.00239 0.148 1.10 5.56 1.25 0.155 1.11

can be defined via a fit to the experimental data:

f sB
xc = A(x)f RPAB

xc = −A(x)
4πx

(1/x − 1)q2
, (26)

where x = ε−1
RPA (alternatively, choosing x = ε−1

LDA would have
been possible as well). Note that both SOS and DFPT methods
yield the same x value [26]. Among many ε−1, we used
ε−1

RPA(SOS) and ε−1
LDA(DFPT) in this work because they can be easily

obtained from the Abinit code. Among the two ε−1, we used
ε−1

RPA(SOS) to obtain Eb and optical spectra in this work unless
stated otherwise.

We found two fitting functions, which describe well the
nonuniformity of Aexp,

A(x) = a1

e(x−a2)/a3 + 1
+ a4, (27)

= b1e
−xb2 /b3 + b4. (28)

The fitting parameters ai and bi , where i = 1,2,3,4, are
summarized in Table II. Note that these fitting parameters are
appropriate for the specific choices made here: experimental
lattice constant, TM pseudopotential method, LDA band struc-
ture, head-only LRC kernel, LFE, and no scissors shift. If other
choices are made, such as all-electron method or scissors shift,
one needs to refit the parameters ai and bi . This calibration is
inevitable due to the high sensitivity of the LRC results for
wide-gap insulators. We found that the two fitting functions
yield almost the same result for A (and thus α and Eb) except
for ε∞ � 10 (see Table III). Among the two fitting functions,
we chose to use Eq. (28) to obtain Eb and optical spectra.

Figure 4 and Table III show experimental and calculated
Eb of various materials. Whereas other kernels underestimate
Eb for all materials by ∼ 10 times, the scaled Bootstrap
kernel yields accurate and consistent Eb. The most significant
deviations are for AlN (where all other kernels give zero
exciton binding energy) and for solid Ar (where even the BSE
underestimates Eb by ∼ 0.3 eV [56]).
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FIG. 4. Comparison of experimental and calculated exciton bind-
ing energies Eb for various materials, using LRC-type xc kernels.
The solid straight line indicates perfect agreement between theory
and experiment.

Figure 5 shows experimental and calculated optical spectra
of GaAs, MgO, LiF, and solid Ne. We included LiF because
it is one of two extreme examples of wide-gap insulators.
We also included MgO because the LRC spectrum of MgO
is very different from experiment at all α values, so it is
impossible to determine an optimal α value for MgO by varing
α (i.e., no α exists that reproduces the correct excitonic peak
height or position) [17]. Here, we report the LRC spectrum
of MgO when α ≈ αexp. Bootstrap-type kernels with similar
α values produce very similar optical spectra of GaAs (a
semiconductor) and MgO (a narrow-gap insulator), but very
different ones of LiF and solid Ne (wide-gap insulators). As
discussed earlier, this is due to the different sensitivity of LRC
spectra to semiconductors and insulators.

Our scaled Bootstrap kernel, which is designed to reproduce
E

exp
b , yields excitonic peaks with overestimated (i.e., higher

and wider) oscillator strengths in optical spectra of GaAs and
MgO, while other Bootstrap-type kernels, which underesti-
mate Eb by ∼ 10 times, barely produce excitonic peaks. This
indicates that the LRC kernel cannot produce correct exciton
binding energies and optical spectra at the same time for all
materials (i.e., for semiconductors and insulators). Our finding
is consistent with the LRC spectrum of ZnO, in which the

TABLE III. Experimental and calculated exciton binding energies Eb (in meV).

GaAs α-GaN β-GaN AlN MgO LiF Ar Ne

Exp. 3.27 20.4 26.0 48.0 80.0 1600 1900 4080
scaled Boot ε−1

LDA(DFPT) Eq. (27) 3.30 23.1 21.4 97.4 90.1 1790 1230 5220
scaled Boot ε−1

LDA(DFPT) Eq. (28) 3.30 23.0 21.4 97.4 92.3 1790 1230 5190
scaled Boot ε−1

RPA(SOS) Eq. (27) 3.24 22.2 22.1 90.4 97.2 1710 1220 5410
scaled Boot ε−1

RPA(SOS) Eq. (28) 3.24 22.1 22.0 90.6 102 1720 1210 5350
RPA-Boot 0.344 1.06 1.01 0.00 2.12 94.7 96.0 2400

0-Boot 0.293 0.919 0.829 0.00 1.72 43.2 13.7 612
Boot 0.278 0.735 0.649 0.00 1.20 14.8 9.14 101
JGM 0.141 0.438 0.279 0.00 0.397 12.1 17.1 5.96
LRC 0.670 1.33 1.32 0.00 0.855 1.89 1.54 1.06
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FIG. 5. Experimental and calculated optical absorption spectra of GaAs, MgO, LiF, and solid Ne. The origins of the different results for
LiF between Refs. [19] and [20] (see also Ref. [7]) and this work are explained in the Supplemental Material [34].

calculated excitonic peak is much higher and wider than the
experimental one [57].

We emphasize that our kernel is empirical, but universal in
that it works for all materials and all choices. In contrast, the
RPA-Bootstrap kernel, one of parameter-free kernels, works
only for wide-gap insulators under special conditions such as
experimental lattice parameters, the head-only kernel, and the
scissors shift. In principle, a parameter-free LRC-type kernel
cannot be universal for all choices due to the high sensitivity of
LRC results for wide-gap insulators; thus, a tradeoff between
parameter-free and universal is unavoidable.

Our scaling approach is not just another Bootstrap-type
kernel or a correction to the RPA-Bootstrap kernel: it is
a method to predict Eb of unknown materials using the
experimental Eb of a few known materials as input. The
RPA-Bootstrap kernel is merely used as a fitting function,
which was chosen to demonstrate the problems of popular
Bootstrap-type kernels [19,20,25] and to suggest a simple way
to fix them. One has the full freedom to use any other LRC-type
fitting functions for our method.

IV. CONCLUSIONS

In this paper, we have carried out a systematic numerical
assessment of the family of static long-range-corrected (LRC)
xc kernels for solids. The main challenge faced by TDDFT for

the optical spectral properties of semiconductors and insulators
is to reproduce the excitonic peaks at the right position
and with the correct strength. We have used two methods:
the Dyson-equation approach, which yields optical spectra,
and the Casida-equation approach, which allows a precise
determination of exciton binding energies. The two methods
are equivalent, i.e., they give, in principle, the same excitonic
peak positions, but in their practical implementations they are
very different: from the Dyson equation approach, and the
resulting macroscopic dielectric function, one cannot extract
the binding energies of weakly bound excitons. Hence, the
Casida approach is a very useful method, complementing the
standard Dyson approach.

We have studied a group of materials, ranging from
small-gap semiconductors to large-gap insulators, with exciton
binding energies between a few meV and several eV. For
these materials, we have tested the empirical LRC kernel,
several flavors of the Bootstrap kernel, and the jellium-with-
a-gap model. Most of these methods produce decent looking
optical spectra for semiconductors, but the exciton binding
energies are consistently underestimated. We proposed a new
xc kernel, obtained via a material-dependent scaling of the
RPA-Bootstrap kernel. The scaled Bootstrap kernel is designed
to produce accurate exciton binding energies for all materials
under study, at very low computational cost. However, there
is a price to pay: it turns out that it is impossible to obtain
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accurate exciton binding energies and good optical spectra at
the same time for all materials using any LRC method—if the
exciton peak is at the right place, the oscillator strength (i.e.,
the peak height and width) tends to be exaggerated for both
semiconductors and insulators.

In general, assessing the performance of xc kernels for
excitonic properties is a delicate task, because there are many
choices involved. Here, we chose to use LDA band structures
obtained with a pseudopotential code, we included local-field
effects, and we implemented the xc kernels in their head-only
forms. These choices will affect the numerical results: whereas
the spectra of semiconductors are relatively insensitive to the
strength α of the head of the LRC kernel, the spectra of
insulators are very sensitive. Hence, it is crucial that all choices
made are clearly identified, in order to facilitate comparison
between results obtained by different research groups.

The main outcome of our work is that we have developed
a method that can produce accurate exciton binding energies
at a low computational cost. In practice, the parameters for
the scaling function should be refitted for each particular
implementation, using a small test set of small- and large-gap
materials. It should then be possible to obtain accurate exciton
binding energies for other, more complicated materials. Such
calculations are currently in progress.

The ultimate goal is to develop TDDFT approaches that
yield both accurate exciton binding energies and spectral
shapes. As we have seen, the LRC method is too restricted
to achieve both. TDDFT is in principle exact; however, going

beyond the LRC approach is very challenging: we will need
to better understand the role of the wings and body of the xc
kernel. To see why this is so, notice that purely short-range
xc kernels can produce excitons if the xc kernel is used in
full matrix form, and if the kernels are sufficiently strong [an
extreme example is the so-called contact exciton [18], but even
the adiabatic LDA (ALDA) can produce excitons if it is scaled
up by several orders of magnitude]. Thus, in view of the results
presented in this paper, one concludes that a new form of the
xc kernel is necessary, in which the short-range and long-range
behaviors may be equally important: both must be taken into
account and built into the full matrix form of the xc kernel. In
addition, the frequency dependence of the xc kernel may have
to be taken into account, in particular if the goal is to produce
an excitonic Rydberg series. Alternatives beyond pure TDDFT,
such as hybrid functionals, are therefore very promising. Such
methods are currently under development.
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