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Numerous experiments have reported discrete symmetry breaking in the high-temperature pseudogap phase
of the hole-doped cuprates, including breaking of one or more of lattice rotation, inversion, and time-reversal
symmetries. In the absence of translational symmetry breaking or topological order, these conventional order
parameters cannot explain the gap in the charged fermion excitation spectrum in the antinodal region. Zhao
et al. [L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R. Flint, T. Qi, G. Cao, and D. Hsieh, Nat.
Phys. 12, 32 (2016)] and Jeong et al. [J. Jeong, Y. Sidis, A. Louat, V. Brouet, and P. Bourges, Nat. Commun. 8,
15119 (2017)] have also reported inversion and time-reversal symmetry breaking in insulating Sr2IrO4 similar
to that in the metallic cuprates, but coexisting with Néel order. We extend an earlier theory of topological
order in insulators and metals, in which the topological order combines naturally with the breaking of these
conventional discrete symmetries. We find translationally invariant states with topological order coexisting with
both Ising-nematic order and spontaneous charge currents. The link between the discrete broken symmetries and
the topological-order-induced pseudogap explains why the broken symmetries do not survive in the confining
phases without a pseudogap at large doping. Our theory also connects to the O(3) nonlinear sigma model and
CP1 descriptions of quantum fluctuations of the Néel order. In this framework, the optimal doping criticality of
the cuprates is primarily associated with the loss of topological order.

DOI: 10.1103/PhysRevB.95.205133

I. INTRODUCTION

Experimental studies of the enigmatic high-temperature
“pseudogap” regime of the hole-doped cuprate compounds
have reported numerous possible discrete symmetry-breaking
order parameters [1–13]. There is evidence for lattice rotation
symmetry breaking, interpreted in terms of an Ising-nematic
order [14], and for one or both of inversion and time-reversal
symmetry breaking, usually interpreted in terms of Varma’s
current loop order [15–17]. Both of these orders have the full
translational symmetry of the square lattice and cannot, by
themselves, be responsible for gap in the charged fermionic
spectrum near the “antinodal” points ((π,0) and (0,π )) of the
square lattice Brillouin zone.

An interesting and significant recent development has
been the observation of inversion [11] and time-reversal [13]
symmetry breaking in the iridate compound Sr2Ir1−xRhxO4;
Ref. [18] has shown that this iridate is described by a one-band
Hubbard model very similar to that for the cuprates. The
inversion symmetry breaking is strongest in the insulator
at x = 0 where it coexists with Néel order; at nonzero x,
both orders persist, but the discrete order is present at higher
temperatures. Motivated by the similarities in the light and
neutron-scattering signatures between the cuprate and iridate
compounds, we will present here a common explanation based
upon the quantum fluctuations of antiferromagnetism.

Long-range Néel order (which breaks translational symme-
try) can clearly be the origin of a gap in the charged fermionic
spectrum at the antinodes. In the traditional spin-density wave
theory of the quantum fluctuations of the Néel order [19],
there is a transition to a state without Néel order, with full
translational symmetry, a large Fermi surface, and no antinodal
gap. However, the antinodal gap can persist into the non-Néel
phase [20] when the resulting phase has topological order
[21–25] (see Ref. [26] for the precise definition of topological

order, and the review in Ref. [27]). We shall use topological
order as the underlying mechanism for the pseudogap. More-
over, early studies of spin liquid insulators with Z2 topological
order showed that there can be a nontrivial interplay between
topological order and the breaking of conventional discrete
symmetries. The Z2 spin liquid obtained in Refs. [28,29]
coexisted with Ising-nematic order: this was a consequence
of the p-wave pairing of bosonic spinons. A similar interplay
with time-reversal and inversion symmetries was discussed
by Barkeshli et al. [30], using higher angular momentum
pairing of fermionic spinons. Here we shall use the formalism
of Refs. [27,31,32] to generalize the state [28,29] with Z2

topological order to also allow for the breaking of inversion
and time-reversal symmetries, both in the insulator and the
metal. We will find states with spontaneous charge currents
(see Fig. 2) and topological order, one of which [Fig. 2(a)] also
has the Ising-nematic order observed in experiments [1,3,6,8].

The association between topological order and discrete
broken symmetries implies that the broken symmetries will not
be present in the confining phases at larger doping. This is an
important advantage of our approach over more conventional
excitonic condensation theories of broken symmetries. In
the latter approaches there is no strong reason to connect
the disappearance of the pseudogap with vanishing of the
symmetry order parameter.

We will begin in Sec. II by a semiclassical treatment of the
quantum fluctuations of antiferromagnetism [33–35] using the
O(3) nonlinear sigma model. In the insulator, this approach
has been successfully used to describe the thermal fluctuations
of the Néel order, and also the adjacent quantum phase without
Néel order; the latter was argued to have valence-bond solid
(VBS) order [36,37], and is accessed across a deconfined
quantum critical point [38,39]. Here, we will identify an
order parameter, O, for inversion and time-reversal symmetry
breaking in terms of the fields of the O(3) sigma model.
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It is also useful to formulate the semiclassical treatment
using the CP1 model for bosonic, fractionalized spinons cou-
pled to a U(1) gauge field. In these terms, an order parameter
O for inversion and time-reversal symmetry breaking turns
out to be the cross product of the emergent U(1) electric
and magnetic fields. The CP1 formulation yields an effective
gauge theory in Eq. (2.8) for quantum phases with spontaneous
charge currents, but without Néel order.

Formally, a model expressed in terms of spins alone has
no charge fluctuations, and so has vanishing electromagnetic
charge current, J = 0. However, in practice, every spin model
arises from an underlying Hubbard-like model, in which states
suppressed by the on-site repulsion U are eliminated by a
canonical transformation. If we undo this canonical transfor-
mation, we can expect that a suitable multispin operator will
induce a nonzero J at some order in the 1/U expansion. As
O has the same symmetry signature as J , we can expect that
a state with 〈O〉 nonzero will also have 〈J(r)〉 nonzero. We
will examine states in which 〈O〉 is independent of r in the
continuum limit, so that translational symmetry is preserved.
However, by Bloch’s theorem [40,41], we must have∫

d2r〈J(r)〉 = 0, (1.1)

and so J cannot be r independent. If we want to preserve
translational symmetry, the resolution is that there will be
intra-unit-cell variations in 〈J(r)〉 to retain compatibility with
Bloch’s theorem. In a tight-binding model with one site per
unit cell, we label each unit cell by a site label, i, and a link
label ρ so that the combination (i,ρ) identifies the complete set
of lattice links, with no double counting. So from each lattice
site i, there is a set of vectors vρ connecting i to its neighboring
sites, and both vρ and −vρ are not members of this set (see
Fig. 1). In this setup, Bloch’s theorem states that∑

ρ

〈Jρ〉 = 0, (1.2)

J1

J2
J3J4

FIG. 1. Definitions of currents on the square lattice with first-
and second-neighbor hopping. The filled circles are the sites of the
Cu atoms in the cuprates. Shown above are the four currents Jρ

from the central lattice site. These currents obey Eq. (1.2) when the
translational symmetry of the square lattice is preserved.

where Jρ is the current along the vρ direction. Note that Eq.
(1.2) is a stronger statement than current conservation because
the sum over ρ does not include all links connected to site i,
only half of them. Equation (1.2) is equivalent to the statement
that there are current “loops,” and these are clearly possible
even in a single-band model [42,43]. In the presence of a
r-independent O condensate, we can write by symmetry that
(to linear order in the broken symmetry)

〈Jρp〉 = K
ρ

pp′ 〈Op′ 〉, (1.3)

where p,p′ = x,y are spatial indices, and K
ρ

pp′ is a response
function obtained in the 1/U expansion which respects all
square lattice symmetries. Compatibility with Bloch’s theorem
requires that ∑

ρ

K
ρ

ij = 0, (1.4)

and there are no conditions on the value of 〈O〉.
We will turn to an explicit treatment of the charged

excitations and a computation of Jρ in Sec. III: our results
there do obey Eqs. (1.1) and (1.4). Section III will present
a lattice formulation in which the U(1) gauge field of the
CP1 model is embedded in a SU(2) lattice gauge theory
[27,31,32,44]. This lattice gauge theory has the advantage of
including all Berry phases and charged fermionic excitations,
and also of allowing an eventual transition into a conventional
Fermi-liquid state at high enough doping. Our interest here
will be in insulating and metallic states at lower doping,
which have topological order and a gap to charged fermionic
excitations in the antinodal region. At the same time we
shall show that, with an appropriate effective action, there
can be a background modulated gauge flux under which
gauge-invariant observables remain translationally invariant
but break one or more of inversion, time-reversal, and lattice
rotation symmetries. Our computations will demonstrate the
presence of spontaneous charge currents obeying Eq. (1.2)
in states which break both inversion and time reversal but
preserve translation. The two classes of spontaneous current
patterns we find are shown in Fig. 2. Note that the product
of time reversal and inversion is preserved in these states. The
state in Fig. 2(a) has 〈O〉 ∼ (−1,0), while the state in Fig. 2(b)
has 〈O〉 ∼ (1, − 1). Both states belong to separate quartets of
equivalent states [with 〈O〉 ∼ (±1,0),(0, ± 1) and (±1, ± 1)]
which can be obtained from them by symmetry operations.
Both states also break an Ising-nematic symmetry. In general,
on the square lattice, we can define two Ising-nematic order
parameters, which are invariant under both inversion and time
reversal but not under lattice rotation symmetries. In terms of
O, these order parameters are

N1 = O2
x − O2

y , N2 = OxOy. (1.5)

The state in Fig. 2(a) has only 〈N1〉 �= 0, while the state in
Fig. 2(b) has only 〈N2〉 �= 0. We note that the state in Fig. 1(b)
of Simon and Varma [16] in a two-band model has the same
symmetry as the state in our Fig. 2(b), and also the spontaneous
current states considered in Refs. [42,43]. The state in our
Fig. 2(a) appears to not have been considered earlier: it has
the same Ising-nematic order observed in experiments in the
cuprates [1,3,6,8].
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FIG. 2. Currents on the links in two classes of states with broken
time-reversal and inversion symmetries. The states have the full
translational symmetry of the square lattice, and the magnitude of
the current is noted on some links. The current vanishes on the
dashed lines. In (a), the currents have the magnitudes |J1| = √

2I ,
|J2| = 0, |J3| = I , |J4| = I and the order parameter O ∼ (−1,0).
In (b), the currents have the magnitudes |J1| = I , |J2| = I , |J3| = 0,
|J4| = √

2I and the order parameter O ∼ (1, − 1). The state in
(a) has Ising-nematic order N1 nonzero, while the state in (b) has
Ising-nematic order N2 nonzero [see Eq. (1.5)]. Experiments on the
cuprates [1,3,6,8] observe the Ising-nematic order N1.

Finally, we note that our results are also easily extended to
states with long-range antiferromagnetic order by condensing
the spectator bosonic spinons.

II. O(3) NONLINEAR SIGMA AND CP1 MODELS

The familiar O(3) model describes quantum fluctuations of
the unit vector �n(r,τ ), representing the local antiferromagnetic
order, with action over space, r , and imaginary time, τ :

S�n = 1

2g

∫
d2rdτ (∂μ�n)2, (2.1)

where μ extends over the three space-time indices, and g is
a coupling constant. For our purposes, we need the symmetry
transformation properties of the operator �n and its canonically
conjugate angular momentum �L; the latter is also interpreted
as the conserved ferromagnetic moment [34]. We list these
transformations properties in Table I.

Table I also shows the symmetry transformations of charge
current J . Formally, a model expressed in terms of spins alone
has no charge fluctuations, and so we will have J =0. However,

TABLE I. Symmetry signatures of various fields under time
reversal (T ), translation by a square lattice spacing along the x

(Tx) and y (Ty) directions, and reflections about a square lattice site
involving x → −x (Ix) or y → −y (Iy).

T Tx Ty Ix Iy

�n − − − + +
�L − + + + +
ex + − − − +
ey + − − + −
b − − − − −
Jx − + + − +
Jy − + + + −

in practice, every spin model arises from an underlying
Hubbard-like model, in which states suppressed by the on-site
repulsion U are eliminated by a canonical transformation. If
we undo this canonical transformation, we can expect that
a suitable multispin operator will couple linearly to J at
some order in the 1/U expansion; naturally, we need this
multispin operator to have the same symmetry signature as J .
We therefore use Table I to find the simplest such combination
of �n and �L; the needed operator turns out to be

O = �L · (�n × ∇�n). (2.2)

We will therefore be interested in states in which 〈O〉 is
nonzero and independent of r . In magnetically ordered states,
〈O〉 is nonzero for a “canted spiral” in which the spins precess
around the base of a cone along a fixed spatial direction [45]:
a nonzero �n × ∇�n corresponds to a spin spiral, which must
cant to introduce a nonzero �L. However, our interest here is in
states in which 〈O〉 is nonzero without long-range magnetic
order, in which 〈�n〉 = 0 and 〈 �L〉 = 0. For example, we can add
to S�n an effective potential V (O) which is invariant under all
symmetries, and a suitable V (O) will induce an O condensate.
In Sec. III, we will present specific lattice models for which
such condensates arise. In any such state with an O condensate,
we can also expect that 〈J(r)〉 is also nonzero and obeys
Eqs. (1.3) and (1.4).

Let us now turn to the CP1 model. This is expressed in terms
of bosonic spinons, zα , with α =↑ , ↓ and |z↑|2 + |z↓|2 = 1,
related to the antiferromagnetic order by

�n = z∗
α �σαβzβ, (2.3)

where �σ are the Pauli matrices. The action for the CP1 model
has an emergent U(1) gauge field aμ = (aτ ,a):

Sz = 1

g

∫
d2rdτ |(∂μ − iaμ)zα|2. (2.4)

We define the associated emergent electric and magnetic fields,
as usual, by

e = ∂τ a − ∇aτ , b = ẑ · (∇ × a), (2.5)

where ẑ is a unit vector orthogonal to the square lattice in the
x-y plane. These gauge-invariant fields are connected to the
topological charge of the O(3) order parameter �n via

e = 1
2 �n · (∂τ �n × ∇�n), b = 1

2 �n · (∂x �n × ∂y �n). (2.6)

We can now use Eq. (2.6) to deduce the symmetry signatures
of e and b, and the results were shown in Table I. Finally, as
in the O(3) formulation, we now search for a combination of
e and b which has the same symmetry signature as the charge
current; the simplest possibility is

O = e × (b ẑ). (2.7)

Note that the operators in Eqs. (2.2) and (2.7) are not equal
to each other: they are distinct representations with the same
symmetry signature. The connection between O and the charge
current J in Eq. (1.3) also applies to Eq. (2.7). Also at this
order, O is equal to the conserved Poynting vector of the gauge
field, but we do not expect possible higher-order terms in O to
yield a conserved quantity. Also, as for the O(3) model, we can
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add a suitable potential V (O) to the CP1 action Sz in Eq. (2.4)
and induce a phase with an O condensate.

The advantage of the CP1 formulation is that we can now
write down an effective action for the phase without Néel
order, where the zα spinons are gapped. We integrate out
the zα spinons and generate an effective action for the U(1)
gauge field aμ in the state where O is condensed; using gauge
invariance and symmetries, the imaginary time action has the
form

Sa =
∫

d2rdτ

[
γ1

2
(∂τ ai − ∂iaτ )2 + γ2

2
(∂xay − ∂yax)2

+ i
i(∂τ ai − ∂iaτ )(∂xay − ∂yax)

]
, (2.8)

where γ1,2 are coupling constants. The important feature is
the last term, which has a coefficient proportional to 〈O〉:

� ∝ ẑ × 〈O〉; (2.9)

this term leads to a relatively innocuous modification of the
gauge field propagator from the familiar relativistic form. By
itself, the U(1) gauge theory Sa is unstable to confinement
by the proliferation of monopoles and the appearance of VBS
order [36]. However, topological order can be stabilized if there
are Fermi surfaces of U(1) charged fermions [46,47] which
suppress monopoles. Alternatively, Z2 topological order can
be stabilized [28,29,48] by condensing a Higgs scalar with
U(1) charge 2. We will present both mechanisms in the model
of Sec. III. The resulting state has coexisting topological order
and spontaneous charge currents.

III. SU(2) LATTICE GAUGE THEORY

This section will extend the SU(2) gauge theory of Refs.
[27,31,32,44] to obtain lattice model realizations of the physics
sketched in Sec. II. The SU(2) gauge theory was initially
proposed as a convenient reformulation of particular theories
of topological order in insulators [28,29,36,37] and metals
[47,49,50], which also allowed one to recover the large
Fermi-surface Fermi liquid at large doping. For our purposes,
it also turns out to be a convenient setting in which to realize
the states discussed in Sec. II. The theory explicitly includes
charged fermionic excitations, and so it is possible to obtain a
gap near the antinodes, and also directly compute the charged
currents.

We start with electrons ciα on the square lattice with
dispersion

Hc = −
∑
i,ρ

tρ
(
c
†
i,αci+vρ ,α + c

†
i+vρ ,αci,α

)

−μ
∑

i

c
†
i,αci,α + Hint. (3.1)

As discussed above Eq. (1.2), we label half the links from site i

by the index ρ and the vector vρ : to avoid double counting, the
vectors vρ do not contain any pair that adds to zero. With first,
second, and third neighbors, vρ ranges over the six vectors x̂,
ŷ, x̂ + ŷ, −x̂ + ŷ, 2x̂, and 2 ŷ.

We represent the interactions between the electrons in a
“spin-fermion” form [19] using an on-site field ��(i), � =

x,y,z, which is conjugate to the spin moment on site i:

Hint = −λ
∑

i

��(i)c†i,ασ �
αβci,β + V�, (3.2)

where σ � are the Pauli matrices. We leave the effective action
for � in V� unspecified—different choices for V� allow us to
tune between the phases discussed below.

The key to obtaining insulators and metals with topological
order (and hence a pseudogap without breaking translational
symmetry) is to transform the electrons to a rotating reference
frame [27,31,32,44] along the local magnetic order, using a
SU(2) rotation Ri and (spinless) fermions ψi,s with s = ±:(

ci↑
ci↓

)
= Ri

(
ψi,+
ψi,−

)
, (3.3)

where

R
†
i Ri = RiR

†
i = 1. (3.4)

Note that this representation immediately introduces a SU(2)
gauge invariance [distinct from the global SU(2) spin rotation]:(

ψi,+
ψi,−

)
→ Vi

(
ψi,+
ψi,−

)
, (3.5)

Ri → Ri V
†
i , (3.6)

under which the original electronic operators remain invariant,
ciα → ciα; here Vi(τ ) is a SU(2) gauge transformation acting
on the s = ± index. So the ψs fermions are SU(2) gauge
fundamentals, carrying the physical electromagnetic global
U(1) charge, but not the SU(2) spin of the electron: they are
the fermionic “chargons” of this theory, and the density of
the ψs is the same as that of the electrons. The bosonic R

fields also carry the global SU(2) spin (corresponding to left
multiplication of R) but are electrically neutral: they are the
bosonic “spinons.” We will relate them below to the spinons,
zα , of the CP1 model in Eq. (2.4). A useful summary of the
gauge and global symmetry quantum numbers of the various
fields is in Table II.

Inserting the parametrization in Eq. (3.3) into Hint, we can
write Eq. (3.2) as

Hint = −λ
∑

i

H a(i) ψ
†
i,s σ a

ss ′ ψi,s ′ + VH . (3.7)

TABLE II. Quantum numbers of the matter fields in the SU(2)
lattice gauge theory. The transformations under the SU(2)’s are
labeled by the dimension of the SU(2) representation, while those
under the electromagnetic U(1) are labeled by the U(1) charge. The
spin correlations are characterized by � in Eq. (3.2). The Higgs field
is the transform of � into a rotating reference frame via Eq. (3.8).

Field Symbol Statistics SU(2)gauge SU(2)spin U(1)em charge

Electron c Fermion 1 2 −1
Spin magnetic � Boson 1 3 0

moment
Chargon ψ Fermion 2 1 −1
Spinon R or z Boson 2̄ 2 0
Higgs H Boson 3 1 0
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(A) Antiferromagnetic 
metal

(B) Fermi liquid with 
large Fermi surface

R = 0, Ha = 0

R = 0, Ha = 0R = 0, Ha = 0

R = 0, Ha = 0

LGW-Hertz criticality
of antiferromagnetism

Higgs criticality:

gauge theory with 
large Fermi surface

(D) SU(2) ACL eventually 
unstable to pairing and 

FIG. 3. Phase diagram of the SU(2) lattice gauge theory adapted
from Ref. [27]. The x and y axes are parameters controlling the
condensates of H and R, respectively. There is long-range antiferro-
magnetic order only in phase A. The Landau-Ginzburg-Wilson-Hertz
theory [19] describing transition between the conventional phases A
and B is believed to provide a suitable framework for the Fe-based
superconductors [51]. The hole-doped cuprate superconductors are
proposed to follow the route A-C-D-B with increasing doping.
Our interest here is in the pseudogap metal phase C. The optimal
doping criticality [52] is the transition from C to D, where the
Higgs condensate vanishes in the presence of a large Fermi surface
of fermions carrying SU(2) gauge charges. Phase D describes the
overdoped regime and is proposed to underlie the extended regime
of criticality found in a magnetic field [53] and the non-BCS
superconductivity [54].

We have introduced here the on-site Higgs field Ha(i), where
a = x,y,z and σa are the Pauli matrices. This is the spin
magnetic moment transformed into the rotating reference
frame, and is related to ��(i) via

Ha(i) = 1
2��(i)Tr[σ �Ri σ

aR
†
i ] (3.8)

and the inverse relation

��(i) = 1
2Ha(i)Tr[σ �Ri σ

aR
†
i ]. (3.9)

These relations can also be written as

σaHa(i) = R
†
i σ ���(i) Ri. (3.10)

The Higgs field transforms as an adjoint under the SU(2) gauge
transformation, but does not carry spin or charge (see Table II):

Ha(i) → 1
2Hb(i)Tr[σaVi σ

bV
†
i ], (3.11)

or equivalently

σaHa(i) → Vi σ bHb(i) V
†
i . (3.12)

We recall in Fig. 3 an earlier mean-field phase diagram [27]
obtained by condensing R or H or both. Our interest here
will be primarily in phase C, which has Z2 topological order
because the condensation of the Higgs field breaks the SU(2)
invariance down to Z2.

We focus here on the effective Hamiltonian for the
chargons, the ψ fermions in phase C. This is motivated by our
aim of eventually computing the charge currents. To obtain the
Hamiltonian, we insert the parametrization in Eq. (3.3) into the

hopping terms in Hc, and decouple the resulting quartic terms.
Such an effective Hamiltonian has the form

Hψ = −
∑
i,ρ

(
wρψ

†
i,s U

ρ

ss ′ (i) ψi+vρ ,s ′ + H.c.
)

− λ
∑

i

H a(i) ψ
†
i,s σ a

ss ′ ψi,s ′ − μ
∑

i

ψ
†
i,sψi,s . (3.13)

The magnitudes of the bare hoppings of the ψ fermions are
determined by the real numbers wρ ; for simplicity, we fix these
hopping parameters at their bare values wρ = tρ . We have also
included a SU(2) matrix on every link, Uρ(i), which represents
the gauge connection used by the ψ fermions to hop between
sites. This clearly transforms under the gauge transformation
in Eqs. (3.5) and (3.6) via

Uρ(i) → ViU
ρ(i)V †

i+vρ
. (3.14)

The previous analyses of this model [27,31,32,44] only
examined the unit SU(2) matrix case Uρ = I. Below, we will
describe other choices for Uρ , and show that they can lead
to states with spontaneous charge currents: this is the main
proposal in this paper for the SU(2) lattice gauge theory.

We will work with a translationally invariant Ansatz [55]
for the SU(2) gauge-charged fields, Uρ(i) and Ha(i), which
can be taken to be independent of i. However, to make
contact with earlier formulations in which the SU(2) is broken
down to a U(1) or Z2 gauge theory [27,31,32], it is useful
to sometimes perform a gauge transformation to a spatially
dependent Ansatz. The spatially dependent form cannot be
gauge transformed back to the translationally invariant form
using only the U(1) or Z2 gauge transformations, and so the
spatial dependence is not optional in the U(1) or Z2 gauge
theories. We choose the space dependence of the SU(2) gauge
fields in the following form:

Uρ(i) = Vi

[
exp

(
iθρ�

a
ρσ

a
)

exp

(
− i

2
( Q · vρ)σ z

)]
V

†
i+vρ

,

σ aHa(i) = Vi σ
b�b V

†
i , (3.15)

where

Vi = exp

(
− i

2
( Q · r i)σ

z

)
. (3.16)

The background gauge and Higgs fields are fully specified
by the wave vector Q, the three real numbers �a , the angle
θρ , and the unit vector �a

ρ [
∑

a=x,y,z(�a
ρ)2 = 1] on each ρ link.

Note that the r i dependence is purely in fields performing the
gauge transformation so all gauge-invariant combinations will
be translationally invariant. In component form, we can write
Eq. (3.15) as

Hx(i) ± iHy(i) = (�x ± i�y)e±i Q·r i ,

H z(i) = �z,

Uρ(i) = cos(θρ) + i sin(θρ)

× [
�z

ρσ
z + (

�x
ρ − i�y

ρ

)
e−i Q·r i σ+

+ (
�x

ρ + i�y
ρ

)
ei Q·r i σ−]

, (3.17)

where σ+ = (σx + iσ y)/2.
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The remaining task before us is to describe the physical
properties of the phases obtained for different values of
the parameters �a , θρ , and �a

ρ , which are determined by
minimizing a suitable free energy. We will do this first for
the previously studied phases in Sec. III A, and then in Sec.
III B for the new phases obtained here. We will find that
almost all Ansätze break the SU(2) gauge symmetry to a
smaller gauge group: this Higgs phenomenon is accompanied
by the appearance of topological order and the gapping of the
fermionic spectrum to yield a pseudogap state.

Before turning to this task, we note the transformations of
the ψi , Ri , Ha(i), and Uρ(i) under symmetries in Table I.
The simplest choice is to assign the transformations so that
they commute with SU(2) gauge transformations. Then the
transformations under spatial symmetries (Tx , Ty , Ix , and Iy)
are equal to the identity in SU(2) space, and simply given by
the transformations on the spatial indices. More nontrivial are
the transformations under time reversal, T ; these we assign as

T : ψ → −iσ y ψ, R → R, H → −H, U → U,

(3.18)

along with the antiunitary complex conjugation.
We close this discussion by pausing to recall the reasoning

[44,56,57] for the presence of Z2 topological order in the
Higgs state C in which the SU(2) gauge invariance has broken
down to Z2, and why such a state can have small Fermi
pockets and a pseudogap even in the presence of translational
symmetry. To break SU(2) down to Z2, the configuration
of Higgs and link fields, �a and �a

ρ , must transform under
global SU(2) transformations like a SO(3) order parameter.
Because π1[SO(3)] = Z2, there are vortex line defects with
single-valued Higgs and link fields. Such a defect must also
correspond to a single-valued vortex configuration of the
antiferromagnetic order. Now we imagine undoing the vortex
configuration by choosing R such that the ψ fermions observe
a locally constant background in Hψ . Then we will find that R

is double valued, with R → −R upon encircling a loop around
the vortex. Consequently, the ψ fermions acquire a Berry
phase of π around the vortex, and the ψ fermions and vortex
excitations (the “visons” [58]) are relative semions. These
vortices will be suppressed in the Higgs-condensed ground
state, and in such a ground state we can globally transform
to a rotating reference frame in which the ψ fermions are
described by Hψ . The Q dependent configuration of Higgs
and link fields in Eq. (3.17) can then reconstruct the ψ Fermi
surface into pockets.

A. Previously studied phases

1. Insulators with Néel or VBS order

These are obtained from the saddle point with Q = (π,π )
and �a = (�,0,0), while all the θρ = 0 so that Uρ = I. The
Higgs field has a two site unit cell, and it is polarized in the x

direction with Ha(i) = ηi(�,0,0) where ηi = ±1 on the two
sublattices.

The dispersion of the ψ fermions is the same as that of
electrons in the presence of Néel order, and we obtain the
needed fermionic gap in the antinodal regions of the Brillouin
zone. Note, however, that Eq. (3.9) implies that the appearance

of physical Néel order requires the condensation of R. We
assume � is large, and choose the chemical potential to lie
within the band gap which has magnitude |�|. Consequently,
the ψ fermions form a band insulator, and the charge gap is
of order |�| which we assume is of the order of the U of the
underlying Hubbard model.

We now argue that fluctuations about this “band insulator”
saddle point are described by the CP1 model of Eq. (2.4).
A key observation is that presence of the Higgs condensate
Ha(i) = ηi(�,0,0) breaks the SU(2) gauge invariance down to
U(1). Such a Higgs condensate is invariant under residual U(1)
gauge transformations about the x axis. So we parametrize the
the fluctuations of the link fields by

Uρ = exp(iσ x a · vρ); (3.19)

then a transforms like the spatial component of a U(1) gauge
field under the residual gauge transformation. To obtain the
spinons zα in Eq. (2.4), we need to parametrize R in terms zα

so that Eq. (3.6) implies that zα have unit gauge charge under
the gauge transformation V = exp(iσ xζ ), where ζ generates
the gauge transformation. This is obtained from

R = 1√
2

(
z↑ + z∗

↓ −z∗
↓ + z↑

z↓ − z∗
↑ z∗

↑ + z↓

)
, (3.20)

under which zα → zαe−iζ .
We note here a subtlety in identifying the zα and a

above with the fields of the CP1 model of Eq. (2.4): the
symmetry assignments discussed near Eq. (3.18) for the SU(2)
gauge theory do not map under Eq. (3.19) to the symmetry
assignments in Table I and Ref. [59]. The difference is present
for transformations Tx , Ty , and T , under which the Higgs
field � → −� in the SU(2) formulation for Q = (π,π ).
In the CP1 formulation, it is implicitly assumed that the
Higgs field is invariant under all transformations. To remedy
this, we need to combine the SU(2) gauge transformation
V = exp[−i(π/2)σ z] with the operations of Tx , Ty , and T
in the SU(2) gauge theory.

Beyond the fluctuations described by the CP1 model, we
have to consider the nonperturbative role of monopoles in
the U(1) gauge field [36,37]. In the earlier works, the spin
liquid was described using Schwinger bosons with a unit boson
density per site. In the presence of monopoles, this background
density of bosons contributed a net Berry phase [37]. In the
present formulation, we have a background of a filled band
of the ψ fermions. The monopole Berry phase computation
of Ref. [37] (Sec. III A) carries over with little change to the
fermion case, and we obtain the same monopole Berry phases.

The remaining analysis of the CP1 model augmented with
monopole Berry phases is as before [36–39]. The phase with
〈zα〉 �= 0 has Néel order, while the strong-coupling phase
〈zα〉 = 0 is initially a U(1) spin liquid which eventually
confines at the longest scales to a VBS; the transition between
these phases is described by the critical CP1 model.

2. Insulators with spiral spin order or Z2 topological order

The saddle point is similar to that in Sec. III A 1, except
that Q is incommensurate. So we have �a = (�,0,0), while
all the θρ = 0 so that Uρ = I. Equation (3.15) implies that the
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spatial dependence of the Higgs field is specified by

Ha(i) = �( cos( Q · r i), sin( Q · r i),0). (3.21)

For generic Q, there is no residual U(1) gauge invariance
left by such a condensate. Instead, the only residual gauge
invariance is Z2, associated with the choice Vi = ±1. Conse-
quently, the spin liquid described by this Higgs condensate has
Z2 topological order. Again, to obtain an insulator we assume
that the chemical potential is within the gap of the ψ bands.

The phases obtained by Eq. (3.21) are precisely those
described in Refs. [28,29,60], and the earlier analyses can be
applied directly here. The phase with R condensed has spiral
spin order, while the phase with R gapped is a Z2 spin liquid.

3. Metals with topological order

A key advantage of the present SU(2) gauge theory
formulation is that the results obtained in Secs. III A 1 and
III A 2 are immediately generalized from insulators to metals.
One only has to change the chemical potential μ so that one
of the ψ bands is partially occupied, and we obtain a Fermi
surface of ψ chargons.

For the U (1) gauge theory in Sec. III A 1, the ψ Fermi
surface can suppress the monopoles, and the U(1) topological
order survives in an “algebraic charge liquid” (ACL) [47]. The
Z2 topological order was already stable in the insulator in
Sec. III A 2, and it continues to survive in the presence of the
ψ Fermi surface.

It is also possible that the ACL becomes a “fractionalized
Fermi liquid” [21–23]. This appears when the ψ fermions
bind with the R spinons to form “small” Fermi surfaces of
electronlike quasiparticles [24,25,47,49] while retaining the
topological order.

B. States with SU(2) gauge fields on links

We turn to our results on the SU(2) lattice gauge theory. We
will examine saddle points with nonzero Higgs condensate
〈H 〉 �= 0 (as above) and also a nontrivial background gauge
flux Uρ �= I. We will find that such saddle points can break
time-reversal and inversion symmetries in gauge-invariant
observables, and that is sufficient to induce charge currents.
Ising-nematic order can also be present, as found previously,
but it can also coexist with spontaneous charge currents. This
subsection will report results in the gauge Q = 0. Recall that
the value of Q is merely a gauge choice in the full SU(2) gauge
theory [but not in U(1) or Z2 gauge theory formulations]. In
this gauge, the Higgs field is i independent with Ha(i) = �a .

Formally, we should integrate out the fermions inHψ in Eq.
(3.13), and then minimize the resulting action functional for
the Higgs and gauge fields. However, this is computationally
demanding, and the structure assumed in Hψ is phenomeno-
logical anyway. So we will be satisfied by minimizing a
phenomenological gauge-invariant functional of the Higgs
and gauge fields, consisting of short-range terms that can be
constructed out of a single plaquette. In metallic states, the
fermion determinant can also induce longer-range terms with
a power-law decay, but we will not include those here: in our
simple treatment, we assume that the dominant energy arises
from the short-range terms.

The effective potential also has terms contributing to a
Higgs potential VH which arise from V� in Eq. (3.2) via Eq.
(3.9). As we will not specify VH , we assume that this potential
has already been minimized to yield the values of �a . So we
will only consider the remaining free energy, F , which is a
function only of the Uρ .

The following gauge-invariant link variables are useful
ingredients in constructing the free energy:

Lρ = �a�b Tr(σaUρσ bUρ†). (3.22)

These link variables are even under the time-reversal operation
described in Eq. (3.18). In terms of these link variables, we
can define the nematic order parameters in Eq. (1.5) by

N1 = L1 − L2, N2 = L3 − L4. (3.23)

In writing the free energy, it is useful to change notation and
write the link variables via

Uρ(i) → Uij , with rj = r i + vρ. (3.24)

We minimized the free energy:

F = K1(L1 + L2) + K8(L1 − L2)2 + K9
(
L3 − L4

)2

+
∑
�ij
k

{K3 Tr(UijUjkUki) + K4 [Tr(UijUjkUki)]
2

+K5 Tr(UijUjkσ
aUkiσ

b)�a�b

−K6 Tr(Uijσ
aUjkUkiσ

b)�a�b}
+

∑
ij

k �

K7 Tr(UijUjkUk�U�i). (3.25)

In the above expressions we assume that all terms obtained
from the pictured symbols by square lattice symmetry op-
erations have been summed over. This free energy depends
upon nine parameters K1−9, and a priori they are free to take
arbitrary values. We used the residual SU(2) gauge degree
of freedom to set �a = (�,0,0), and then with four possible
values of the link variable ρ, the free energy depends upon 12
real numbers which determine the Uρ .

We characterized the free-energy minima by their values of
the nematic order parameters N1 and N2. We also need gauge-
invariant observables which are odd under time reversal; for
this we evaluated the combinations defined on right triangles,
ijk:

Pijk = i Tr(σaUijUjkUki)H
a(i). (3.26)

The spatial patterns of the Pijk , along with the values of
Tr(UijUjkUki), yield much information on the nature of time
reversal and inversion symmetry breaking. Note that the
Pijk are nonzero only if the Higgs field is nonzero—this
is a consequence of the transformation in Eq. (3.18). So
time-reversal symmetry can only be broken in states in which
the SU(2) gauge invariance is also broken.

Another important characterization of the states is provided
by the values of the physical charge current. We used the
values of the link variables obtained by the minimization of
F , and inserted them into the Hamiltonian Hψ in Eq. (3.13).
We then determined the current on each link by evaluating the
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ji k

l m n

Omj = iTr (σaUmjUjkUkm) Ha(m)
− iTr (σaUjmUmnUnj) Ha(j)
+ iTr (σaUmjUjiUim) Ha(m)
− iTr (σaUjmUmlUlj) Ha(j)

Omk = i Tr (σaUmjUjkUkm) Ha(m)
− i Tr (σaUkjUjmUmk) Ha(k)
+ i Tr (σaUmnUnkUkm) Ha(m)
− i Tr (σaUknUnmUmk) Ha(k)

FIG. 4. Expressions for the time and inversion symmetry-
breaking order parameter O in terms of the variables of the SU(2)
gauge theory. We use the same notation as in Eq. (3.24) for the link
values of Uρ(i) and O with Oij = O · vρ when rj = r i + vρ .

expectation value of the current operator

Jρ(i) = −ivρ

[
wρψ

†
i,s U

ρ

ss ′ (i) ψi+vρ ,s ′ − H.c.
]

(3.27)

in the fermion state specified by the Hamiltonian Hψ at a low
temperature. As shown in Appendix A, for the background
field configurations in Eq. (3.17), 〈Jρ(i)〉 turns out to be inde-
pendent of i for general values of the variational parameters
�a , θρ , �a

ρ , and Q in the Hamiltonian. This is as expected from
our arguments that Eq. (3.17) implies that all gauge-invariant
observables should be translationally invariant. Moreover, we
find that the value of 〈Jρ〉 always obeys Bloch’s theorem in
Eq. (1.2); this is true in our numerics, and a general proof is in
Appendix A.

It is also useful to examine local gauge-invariant operators
which have the same symmetry signatures as the physical
current Jρ . Such operators will be realizations of the op-
erator O characterizing states with broken inversion and
time-reversal symmetry. We obtained expressions using the
symmetry transformations described near Eq. (3.18), and one
set of operators is presented in Fig. 4. A derivation based upon
a large |Ha(i)| expansion is presented in Appendix C, along
with other sets of possible operators. For the translationally
invariant solution and Q = 0 gauge being considered here,
Fig. 4 yields these expressions for the order parameters Oρ

along the directions vρ :

O1 = i Tr(σaU 1U 2†U 4)�a − i Tr(σaU 1†U 2†U 3)�a + i Tr(σaU 1U 2U 3†)�a − i Tr(σaU 1†U 2U 4†)�a,

O2 = i Tr(σaU 2U 1U 3†)�a − i Tr(σaU 2†U 1U 4)�a + i Tr(σaU 2U 1†U 4†)�a − i Tr(σaU 2†U 1†U 3)�a,

O3 = i Tr(σaU 2U 1U 3†)�a − i Tr(σaU 1†U 2†U 3)�a + i Tr(σaU 1U 2U 3†)�a − i Tr(σaU 2†U 1†U 3)�a,

O4 = i Tr(σaU 2U 1†U 4†)�a − i Tr(σaU 1U 2†U 4)�a + i Tr(σaU 1†U 2U 4†)�a − i Tr(σaU 2†U 1U 4)�a. (3.28)

These will be connected to Jρ via an expression like Eq. (1.3).
Note that the Oρ can only be nonzero when the Higgs
condensate is nonzero, because only the Higgs field is odd
under time reversal in Eq. (3.18). An explicit demonstration
that a nonzero charge current requires a nonzero Higgs field is
in Appendix B.

Turning to the minimization of F in Eq. (3.25), we did
not perform an exhaustive search of different classes of states
over the nine parameters, K1−9 in F . Rather we explored a
few values to yield representative minima, and will describe
a few of the typical states in the subsections below. All of
the minimization was performed with the Higgs field oriented
along the x direction, �a = (�,0,0).

1. Symmetric state

This state preserves all square lattice symmetries and time
reversal. We obtained such a minimum at K1 = 1, K2 = −1,
K3 = 2, K4 = 2, K5 = 2, K6 = 2, K7 = 0.1, K8 = 0, K9 = 0.
In the Q = 0 gauge, the link fields take the values

U 1 = i sin(θ ) σx − i cos(θ ) σy,

U 2 = i sin(θ ) σx + i cos(θ ) σy,

U 3 = −1,

U 4 = 1, (3.29)

where θ = 0.344π . All the Oρ , N1, and N2 order parameters,
and the currents Jρ , vanish in this state. The SU(2) gauge
invariance is broken down to Z2 because the Uρ and �a have
no common orientation, and so this state has Z2 topological
order.

2. Ising-nematic order

This state preserves time reversal and inversion, but breaks a
square lattice rotation symmetry. We obtained such a minimum
at K1 = 0.5, K2 = 0.5, K3 = −1, K4 = 0.25, K5 = 0, K6 =
0, K7 = 0, K8 = 0, K9 = 5. In the Q = 0 gauge the link fields
take the values

U 1 = −i σ z,

U 2 = cos(θ1) + i sin(θ1) σ z,

U 3 = cos(θ2) + i sin(θ2) σ z,

U 4 = − cos(θ2) − i sin(θ2) σ z, (3.30)
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where θ1 = 0.672π and θ2 = 0.427π . All the Oρ , and the
currents Jρ , vanish in this state. However, the nematic order
N1 �= 0, while N2 = 0. Note that the Uρ are oriented along
a common z direction, while the Higgs field �a is oriented
along the distinct x direction. So SU(2) gauge invariance is
broken down to Z2, and Z2 topological order is present. In the
insulator, this state has the same properties as the “(π,q) SRO”
state of Refs. [28,29].

3. State with broken time reversal

Now we present a state which breaks time reversal but
not inversion. So this state has no spontaneous currents, and
Oρ = 0 and Jρ = 0. Nevertheless, time reversal is broken as
signaled by the nonzero values of some of the Pijk . Roughly
speaking, such a state has spontaneous currents along different
directions in the gauge group, but the net electromagnetic
current vanishes. We obtained such a minimum at K1 = 0.5,
K2 = 0.5, K3 = 1, K4 = 0.667, K5 = 0, K6 = 0, K7 = 1,
K8 = 5, K9 = 5. In the Q = 0 gauge the link fields take the
values

U 1 = − cos(θ1) − i sin(θ1) σ z,

U 2 = cos(θ1) + i sin(θ1) σy,

U 3 = cos(θ2) + i sin(θ2) (σy + σ z)/
√

2,

U 4 = − cos(θ2) + i sin(θ2) (σy − σ z)/
√

2, (3.31)

where θ1 = 0.446π and θ2 = 0.497π . Again, SU(2) gauge
invariance is broken down to Z2, and Z2 topological order is
present.

4. States with spontaneous charge currents

Finally, we turn to a description of the states presented in
Fig. 2. First, we present a state with the symmetry of Fig. 2(a).
Such a state was obtained for K1 = 0.5, K2 = 0.5, K3 = −1,
K4 = 0.25, K5 = 0, K6 = 0, K7 = 0, K8 = 2, K9 = 5. In the
Q = 0 gauge the link fields take the values

U 1 = cos(θ1) + i sin(θ1) [cos(φ1)σx + sin(φ1)σ z],

U 2 = i [cos(φ2)σx + sin(φ2)σ z],

U 3 = − cos(θ2) + i sin(θ2) [cos(φ1)σx + sin(φ1)σ z],

U 4 = cos(θ2) + i sin(θ2) [cos(φ1)σx + sin(φ1)σ z], (3.32)

where θ1 = 0.410π , φ1 = 0.5063π , φ2 = 0.558π , θ2 =
0.387π . This state has the Oρ and Jρ nonzero, along with
a nonzero Ising-nematic order N1 �= 0, but N2 = 0. So it has
the full generic symmetry structure of Fig. 2(a). The gauge
field configuration shows that SU(2) is broken down to Z2,
and so Z2 topological order is present. States in this class were
the most common in our search over the parameters K1−9

among those that broke time-reversal symmetry.
Among states with a residual U(1) gauge invariance, we

found global minima with the symmetry of Fig. 2(a) only
when we restricted the search to states in which the Higgs
and link fields were collinear in the gauge SU(2) space. We
can parametrize the fluctuations about such a saddle point
by multiplying the Uρ by the factor in Eq. (3.19), and then
we obtain a theory of a gapless U(1) photon aμ. Because of
the presence of the breaking of inversion and time-reversal

symmetries, this action will take the form in Eq. (2.8),
including the term proportional to �. As in Sec. III A 1, we
have to consider the nonperturbative effects of monopoles:
such a state can be stable against monopole proliferation only
in the presence of gauge-charged Fermi surfaces.

Next, we present a state with the symmetry of Fig. 2(b).
Such a state was obtained for K1 = 0.5, K2 = 0.5, K3 = 1,
K4 = 0.667, K5 = 0, K6 = 0, K7 = 0, K8 = 5, K9 = −1. In
the Q = 0 gauge the link fields take the values

U 1 = − cos(θ1) − i sin(θ1) σ z,

U 2 = cos(θ1) + i sin(θ1) σ z,

U 3 = cos(θ2) + i sin(θ2) σ z,

U 4 = cos(θ3) − i sin(θ3) σx, (3.33)

where θ1 = 0.451π , θ2 = 0.503π , θ3 = 0.379π . The order
parameters Oρ and the currents Jρ are nonzero, and are
consistent with the pattern in Fig. 2(a). There is also a nonzero
Ising-nematic order N2 �= 0, but N1 = 0. The noncollinear
alignment of the gauge and Higgs fields indicates the presence
of Z2 topological order.

IV. CONCLUSIONS

We have presented computations showing that emergent
background gauge connections, and associated Berry phases,
arising from the local antiferromagnetic spin correlations
can induce spontaneous charge currents, while preserving
translational symmetry. The main requirement on the gauge
theory is that gauge-invariant observables break time reversal
and inversion, but preserve translation. At the same time, the
topological order associated with the emergent gauge fields
can account for the antinodal gap in the charged fermionic
excitations.

The specific model we used for a stable pseudogap metal
had Z2 topological order. We employed a SU(2) lattice
gauge theory with a Higgs field to realize such a phase.
Going beyond earlier work on this theory, we allowed the
SU(2) gauge fields on the links to acquire nontrivial values
in the saddle point of the Higgs phase. These link fields
had two important consequences. First, it became possible
to obtain Z2 topological order even under conditions in
which the proximate magnetically ordered phase had collinear
spin correlations at (π,π ); earlier realizations [27–29,31,32]
required noncollinear spiral spin correlations. Second, the
gauge-invariant combinations of the SU(2) gauge fluxes
and the Higgs field could break time-reversal and inversion
symmetries without breaking translational symmetry. This
allowed the appearance of spontaneous charge currents and
Ising-nematic order in the Higgs phase. Linking the discrete
broken symmetries to the presence of the Higgs condensate
also explains why the broken symmetries do not survive in the
confining phases at large doping.

An attractive features of our results is that the charge
currents, and the antinodal gap, continue largely unmodified
across transitions to states with long-range antiferromagnetic
order, but without topological order. This is consistent with
recent experiments [11,13] on Sr2Ir1−xRhxO4 showing coex-
istence of Néel order and inversion and time-reversal breaking
over a certain range of doping and temperature.
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The possible patterns of symmetry breaking in the transla-
tionally invariant states with broken time reversal and inversion
(but not their product) are illustrated in Fig. 2. Both states
also break a lattice rotation symmetry, and so they also have
Ising-nematic order. The state in Fig. 2(b) has the same pattern
of symmetry breaking as states considered earlier [16,42,43].
However, the state in Fig. 2(a) does not appear to have been
described previously in the literature. The Fig. 2(a) state has
the attractive feature that its Ising-nematic order is precisely
that observed in other experiments [1,3,6,8]. The onset of
Ising-nematic order and time-reversal and inversion symmetry
breaking could happen at the same or distinct temperatures, as
we also found states in Sec. III B 2 with Ising-nematic order
but no charge currents. However, if a particular symmetry is
broken in the pseudogap phase (phase C in Fig. 3), it must be
restored when the Higgs condensate vanishes in the overdoped
regime (phases D and B in Fig. 3).

The existing experiments [11,13] do not contain the
polarization analysis needed to distinguish between the states
in Figs. 2(a) and 2(b), and we hope such experiments will be
undertaken.

We placed our results in the context of a global phase
diagram for antiferromagnetism and superconductivity in two
dimensions in Fig. 3. In particular, we noted that this phase
diagram [27,31,32] is in accord with experiments exploring the
hole-doped cuprates over a range of carrier density. Badoux

et al. [52] observe pseudogap metal at low T and large doping,
without any charge-density wave order: this is a candidate
for our phase C. We note recent theoretical works [61,62]
which studied electrical and thermal transport across the phase
transition C → D in Fig. 3, and found results in good accord
with observations [52,63–65]. Cooper et al. [53] observe an
extended overdoped regime of linear-in-T resistivity when
the superconductivity is suppressed by a magnetic field: our
phase D could be such a critical phase. And Božović et al.
[54] see strong deviations from BCS theory in the doping
and temperature dependence of the superfluid stiffness in the
overdoped regime: this could also be described by phase D.
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APPENDIX A: MOMENTUM SPACE

This appendix presents a few expressions from Sec. III in momentum space. These expressions were used for our numerical
computation.

The momentum space form of the electron dispersion in Eq. (3.1) is

Hc = −2
∑
k,ρ

tρ cos(k · vρ)c†k,αck,α − μ
∑

k

c
†
k,αck,α + Hint. (A1)

The Hamiltonian for the ψ fermions is obtained from Eqs. (3.13) and (3.17) (we have set λ = −1):

Hψ =
∑

k

ψ
†
k,+

{
−μ + �z − 2

∑
ρ

wρ

[
cos(θρ) cos(k · vρ) − �z

ρ sin(θρ) sin(k · vρ)
]}

ψk,+

+
∑

k

ψ
†
k+ Q,−

(
−μ − �z − 2

∑
ρ

wρ

{
cos(θρ) cos[(k + Q) · vρ] + �z

ρ sin(θρ) sin[(k + Q) · vρ]
})

ψk+ Q,−

+
∑

k

ψ
†
k,+ψk+ Q,−

(
�x − i�y +

∑
ρ

wρ sin(θρ)
(
�x

ρ − i�y
ρ

)
[−iei(k+ Q)·vρ + ie−ik·vρ ]

)
+ H.c. (A2)

The average kinetic energy and current on each bond can be evaluated from

− 〈wρψ
†
i Uρ(i) ψi+vρ

〉 = −wρ

[
cos(θρ) + i�z

ρ sin(θρ)
]∑

k

eik·vρ 〈ψ†
k,+ψk,+〉

−wρ

[
cos(θρ) − i�z

ρ sin(θρ)
]∑

k

ei(k+ Q)·vρ 〈ψ†
k+ Q,−ψk+ Q,−〉

− iwρ sin(θρ)
(
�x

ρ − i�y
ρ

) ∑
k

ei(k+ Q)·vρ 〈ψ†
k,+ψk+ Q,−〉

− iwρ sin(θρ)
(
�x

ρ + i�y
ρ

) ∑
k

eik·vρ 〈ψ†
k+ Q,−ψk,+〉. (A3)

Note that the result is explicitly independent of the site i. The kinetic energy is twice the real part of the result, while the current,
Jρ in Eq. (3.27), is −vρ times the imaginary part.
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From the expression in momentum space, it is straightforward to see that the value of 〈Jρ〉 always obeys Bloch’s theorem.
The Hamiltonian Hψ can be rewritten in momentum space in terms of a two-component spinor χk as follows:

Hψ =
∑

k

χ
†
k hk χk, where χk =

(
ψk,+

ψk+ Q,−

)
. (A4)

The minimal coupling to an external electromagnetic gauge field A corresponds to a transformation k → k − A in the momentum
space Hamiltonian hk. The operator for the net current J in any given direction is the negative of the derivative with respect to A
at A = 0, which can be recast as a derivative with respect to k:

∑
ρ

〈Jρ〉 =
∑

ρ

∫
d2k

(2π )2
〈Jρ(k)〉 =

∫
d2k

(2π )2

〈
χ
†
k

∂hk

∂k
χk

〉
=

∫
d2k

(2π )2

∂

∂k
〈χ †

khkχk〉 = 0, (A5)

where the last step uses the Feynman-Hellman theorem and periodicity in the Brillouin zone.

APPENDIX B: RELATION BETWEEN LOOP CURRENTS AND THE HIGGS CONDENSATE

We show that a nonzero current necessarily requires a Higgs condensate. To do so, we need an operator which reverses the
current, and is a symmetry of the Hamiltonian only if the Higgs condensate is absent. Consider the following antiunitary operator
T that leaves the Higgs field unchanged:

T ψs,k T −1 = (−iτ y)s,s ′ ψs ′,−k, T i T −1 = −i, T Hi T
−1 = Hi. (B1)

Note that T is not equivalent to the physical time reversal T defined earlier in Eq. (3.18), which always leaves Hψ invariant.
Rather, as we show below, T leaves the Hamiltonian invariant only if the Higgs condensate is absent.

Under T , we find the following transformation of the Hamiltonian Hψ :

T HψT −1 = Hψ −
∑

k

χ
†
k,s�̂s,s ′ χk,s ′ , where �̂ = 2

(
�z �−
�+ −�z

)
= 2 �bτb. (B2)

Therefore, the Hamiltonian Hψ commutes with T when �̂ = 0. One can also show that the charge current operator Jρ(i) is odd
under T , i.e.,

T Jρ(i) T −1 = −Jρ(i). (B3)

Therefore, when �̂ = 0, we can use the symmetry of Hψ under T to find that

〈Jρ(i)〉 = 〈T Jρ(i)T −1〉 = −〈Jρ(i)〉 ⇒ 〈Jρ(i)〉 = 0. (B4)

The physical content of the above equation is that current loop order cannot arise if all the SU(2) gauge bosons are deconfined,
but can possibly arise when a Higgs condensate reduces the gauge group to U(1) or Z2.

APPENDIX C: REAL-SPACE PERTURBATION THEORY FOR THE CURRENT IN THE PRESENCE OF A LARGE HIGGS
FIELD

We consider the limit where the Higgs field Ha(i) is much larger compared to the hopping matrix elements of the ψ± fermions,
characterized by wρUi,i+vρ

. In the |Hi | → ∞ limit, the Hamiltonian has only on-site terms, and therefore there is no current on
the links. In this section, we perform a perturbation series expansion in 1/|Hi | to find an expression for the current. Recall that
the charge gap of the SU(2) lattice gauge theory is determined by |Hi |, and so this is similar to a 1/U expansion in the underlying
Hubbard model.

We define a lattice Green’s function in imaginary time in the standard fashion:

Gij (τ ) = −〈Tτ (ψi(τ )ψ†
j (0))〉. (C1)

The Matsubara Green’s function in the bare limit, G0
i,n, is diagonal in real space (we set λ = −1):

G0
i,n = (

iωn − Ha
i σ a

)−1 = iωn + Ha
i σ a

(iωn)2 − H 2
i

, (C2)

where we have set μ = 0 for convenience (it does not modify our conclusion). The Dyson equation for the Green’s function in
real space is given by

Gij,n = G0
i,n δij +

∑
k

G0
i,nwkiUkiGkj,n = G0

i,n δij + G0
i,nwjiUjiG

0
j,n +

∑
k

G0
i,nwkiUkiG

0
k,nwjkUjkG

0
j,n + . . .

≡ G0
i,n δij + G

(1)
ij,n + G

(2)
ij,n + . . . , (C3)
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where wij = wρ is the hopping along the link 〈i,j 〉 = 〈i,i + vρ〉. Recall that the current operator on the link 〈i,i + vρ〉 is given by

Ji,i+vρ
= −ivρwρ

(
ψ

†
i Ui,i+vρ

ψi+vρ
− H.c.

)
. (C4)

Therefore, we can write the its expectation value in terms of the Green’s function defined above as follows:〈
Ji,i+vρ

〉 = −ivρwρ

[
Tr

(
Ui,i+vρ

Gi+vρ ,i

) − Tr
(
Ui+vρ ,iGi,i+vρ

)]
(τ → 0−). (C5)

The lowest-order term in 1/|Hi | corresponds to Gij = G0
i δij , which gives zero current consistent with our expectations. To the

next order in 1/|Hi |, we find that the forward and backward currents exactly cancel and therefore the current is equal to zero to
this order as well (via the cyclic property of the trace):〈

J
(1)
i,i+vρ

〉 = −ivρwρ

[
Tr

(
Ui,i+vρ

G
(1)
i+vρ ,i

) − Tr
(
Ui+vρ ,iG

(1)
i,i+vρ

)]
= −ivρwρ

[
Tr

(
Ui,i+vρ

G0
i+vρ

Ui+vρ
G0

i

) − Tr
(
Ui+vρ ,iG

0
i Ui,i+vρ

G0
i+vρ

)] = 0. (C6)

This exemplifies the importance of requiring non-nearest-neighbor coupling for a nonzero current on the nearest-neighbor
bonds, albeit in a large Higgs field limit.

The next term in the perturbation series, coming from G(2), gives us a nonzero current. To be more specific, let us label the
sites as in Fig. 4, and compute the current from m to j . It involves all triangles consisting of m, j , and a third site connected to
both by a nonzero hopping (for simplicity we consider only nearest-neighbor and next-nearest-neighbor hoppings):〈

J (2)
j,m

〉 = ivjmw2
1w2 Tr

[
UjmG0

m

(
UmlG

0
l Ulj + UmiG

0
i Uij + UmnG

0
nUnj + UmkG

0
kUkj

)
G0

j

]
−ivjmw2

1w2 Tr
[
UmjG

0
j

(
UjlG

0
l Ulm + UjiG

0
i Uim + UjnG

0
nUnm + UjkG0

kUkm

)
G0

m

]
, (C7)

where w1 and w2 are the nearest- and next-nearest-neighbor hopping, respectively. Note that the second term is just the Hermitian
conjugate of the first term. We now convert to Matsubara Green’s functions and evaluate the frequency summation (for simplicity
we assume that Hi are different on each site). The eigenstates at site i have energy ±|Hi |, therefore in the T = 0 limit only the
negative-energy eigenstates contribute to the current.

Since the contributions of all triangular plaquettes to the current are similar, we only evaluate the contributions to the current
by the first term in Eq. (C7) and its Hermitian conjugate (corresponding to the triangular plaquette �j lm):

1

β

⎧⎨
⎩

∑
iωn

Tr
[
UjmG0

mUmlG
0
l UljG

0
j

] − Tr
[
UjmG0

mUmlG
0
l UljG

0
j

]⎫⎬⎭
= Tr

[
Ujm

(−|Hm| + Ha
mσa

−2|Hm|
)

Uml

(−|Hm| + Ha
l σ a

H 2
m − H 2

l

)
Ulj

(−|Hm| + Ha
j σ a

H 2
m − H 2

j

)]

+ (j → m → l → j ) + (j → l → m → j ) − H.c. (C8)

Using the unitarity of U and Uαβ = U
†
βα , we can show quite generally that Tr(UjmUmlUlj ) = Tr(UjlUlmUmj ), so the term without

any Higgs field Ha
α σ a for some site α cancels with the contribution from the second line in Eq. (C7). The terms with two Higgs

fields of the form Ha
α σ a also cancel out with their Hermitian conjugates for the same reason. Therefore, we are left with two

kinds of terms, both of which fall off as |Hi |−2. The contribution to the current from this particular triangular plaquette can be
written as

J�j lm
∼ i

[(
Ha

m Tr(UjmσaUmlUlj ) + Ha
l Tr(UjmUmlσ

aUlj ) + Ha
j Tr(UjmUmlUljσ

a)
)
f (|H |)

+Ha
mHb

l Hc
j Tr(UjmσaUmlσ

bUljσ
c)g(|H |) − H.c.

]
, (C9)

where f (|H |) and g(|H |) are scalar functions of the Higgs fields (invariant under all symmetry operations), given by

f (|H |) = 1

2(|Hm| + |Hl|)(|Hm| + |Hj |)(|Hm| + |Hl|) ,

g(|H |) = − |Hm| + |Hl| + |Hj |
2|Hm||Hl||Hj |(|Hm| + |Hl|)(|Hm| + |Hj |)(|Hm| + |Hl|) . (C10)

We chose a particular set of terms, coming from �j lm and the three other triangles related to it by reflection symmetries, as
our order parameter Ojm in Fig. 4. The other three contributions to the current on the link 〈j,m〉 in Eq. (C7) may be obtained
by replacing the third vertex l of the triangle by that of the triangle under consideration (i,k, and n). The net result for the
current therefore contains the expressions presented in Fig. 4, along with three other expressions which can also serve as valid
representations of O.
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Sidis, P. Steffens, X. Zhao, P. Bourges, and M. Greven, Hidden
magnetic excitation in the pseudogap phase of a High − Tc

superconductor, Nature (London) 468, 283 (2010).
[8] M. J. Lawler, K. Fujita, J. Lee, A. R. Schmidt, Y. Kohsaka, C.

K. Kim, H. Eisaki, S. Uchida, J. C. Davis, J. P. Sethna, and
E.-A. Kim, Intra-unit-cell electronic nematicity of the High-Tc

copper-oxide pseudogap states, Nature (London) 466, 347
(2010).

[9] Y. Lubashevsky, L. D. Pan, T. Kirzhner, G. Koren, and N.
P. Armitage, Optical Birefringence and Dichroism of Cuprate
Superconductors in the THz Regime, Phys. Rev. Lett. 112,
147001 (2014).

[10] L. Mangin-Thro, Y. Sidis, A. Wildes, and P. Bourges, Intra-unit-
cell magnetic correlations near optimal doping in YBa2Cu3O6.85,
Nat. Commun. 6, 7705 (2015).

[11] L. Zhao, D. H. Torchinsky, H. Chu, V. Ivanov, R. Lifshitz, R.
Flint, T. Qi, G. Cao, and D. Hsieh, Evidence of an odd-parity
hidden order in a spin-orbit coupled correlated iridate, Nat. Phys.
12, 32 (2016).

[12] L. Zhao, C. A. Belvin, R. Liang, D. A. Bonn, W. N. Hardy, N. P.
Armitage, and D. Hsieh, A global inversion-symmetry-broken
phase inside the pseudogap region of YBa2Cu3Oy , Nat. Phys.
13, 250 (2017).

[13] J. Jeong, Y. Sidis, A. Louat, V. Brouet, and P. Bourges, Time-
reversal symmetry breaking hidden order in Sr2(Ir,Rh)O4, Nat.
Commun. 8, 15119 (2017).

[14] S. A. Kivelson, E. Fradkin, and V. J. Emery, Electronic liquid-
crystal phases of a doped Mott insulator, Nature (London) 393,
550 (1998).

[15] C. M. Varma, Non-Fermi-liquid states and pairing instability of
a general model of copper oxide metals, Phys. Rev. B 55, 14554
(1997).

[16] M. E. Simon and C. M. Varma, Detection and Implications of
a Time-Reversal Breaking State in Underdoped Cuprates, Phys.
Rev. Lett. 89, 247003 (2002).

[17] M. E. Simon and C. M. Varma, Symmetry considerations for
the detection of second-harmonic generation in cuprates in the
pseudogap phase, Phys. Rev. B 67, 054511 (2003).

[18] F. Wang and T. Senthil, Twisted Hubbard Model for Sr2IrO4:
Magnetism and Possible High Temperature Superconductivity,
Phys. Rev. Lett. 106, 136402 (2011).

[19] J. A. Hertz, Quantum critical phenomena, Phys. Rev. B 14, 1165
(1976).

[20] A. V. Chubukov and S. Sachdev, Chubukov and Sachdev reply,
Phys. Rev. Lett. 71, 3615 (1993).

[21] T. Senthil, S. Sachdev, and M. Vojta, Fractionalized Fermi
Liquids, Phys. Rev. Lett. 90, 216403 (2003).

[22] T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and
non-Fermi liquids near heavy-fermion critical points, Phys. Rev.
B 69, 035111 (2004).

[23] A. Paramekanti and A. Vishwanath, Extending Luttinger’s
theorem to Z2 fractionalized phases of matter, Phys. Rev. B
70, 245118 (2004).

[24] M. Punk, A. Allais, and S. Sachdev, Quantum dimer model for
the pseudogap metal, Proc. Natl. Acad. Sci. USA 112, 9552
(2015).

[25] M. Punk and S. Sachdev, Fermi surface reconstruction in
hole-doped t − J models without long-range antiferromagnetic
order, Phys. Rev. B 85, 195123 (2012).

[26] Topological order is defined by the presence of ground-state
degeneracy of a system on a torus. More precisely, on a torus of
size L, the lowest-energy states have an energy difference which
is of order exp(−αL) for some constant α. Topological order can
also be present in gapless states, including those with Fermi
surfaces [21,22]. In such states, the nontopological gapless
excitations have an energy of order 1/Lz (for some positive z)
above the ground state on the torus, and so can be distinguished
from the topologically degenerate states. Topological order is
required for metals to have a Fermi-surface volume distinct from
the Luttinger volume [22], and hence to have a “pseudogap”.

[27] S. Sachdev and D. Chowdhury, The novel metallic states of
the cuprates: Fermi liquids with topological order and strange
metals, Prog. Theor. Exp. Phys. 2016, 12C102 (2016).

[28] N. Read and S. Sachdev, Large N Expansion for Frus-
trated Quantum Antiferromagnets, Phys. Rev. Lett. 66, 1773
(1991).

[29] S. Sachdev and N. Read, Large N expansion for frustrated and
doped quantum antiferromagnets, Int. J. Mod. Phys. B 5, 219
(1991).

[30] M. Barkeshli, H. Yao, and S. A. Kivelson, Gapless spin liquids:
Stability and possible experimental relevance, Phys. Rev. B 87,
140402(R) (2013).

[31] S. Sachdev, M. A. Metlitski, Y. Qi, and C. Xu, Fluctuating spin
density waves in metals, Phys. Rev. B 80, 155129 (2009).

[32] D. Chowdhury and S. Sachdev, Higgs criticality in a two-
dimensional metal, Phys. Rev. B 91, 115123 (2015).

[33] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Low-
temperature Behavior of Two-Dimensional Quantum Antifer-
romagnets, Phys. Rev. Lett. 60, 1057 (1988).

[34] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Two-
dimensional quantum Heisenberg antiferromagnet at low tem-
peratures, Phys. Rev. B 39, 2344 (1989).

205133-13

https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1103/PhysRevLett.88.137005
https://doi.org/10.1103/PhysRevLett.96.197001
https://doi.org/10.1103/PhysRevLett.96.197001
https://doi.org/10.1103/PhysRevLett.96.197001
https://doi.org/10.1103/PhysRevLett.96.197001
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1126/science.1152309
https://doi.org/10.1038/nature07251
https://doi.org/10.1038/nature07251
https://doi.org/10.1038/nature07251
https://doi.org/10.1038/nature07251
https://doi.org/10.1103/PhysRevLett.100.127002
https://doi.org/10.1103/PhysRevLett.100.127002
https://doi.org/10.1103/PhysRevLett.100.127002
https://doi.org/10.1103/PhysRevLett.100.127002
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature09477
https://doi.org/10.1038/nature09477
https://doi.org/10.1038/nature09477
https://doi.org/10.1038/nature09477
https://doi.org/10.1038/nature09169
https://doi.org/10.1038/nature09169
https://doi.org/10.1038/nature09169
https://doi.org/10.1038/nature09169
https://doi.org/10.1103/PhysRevLett.112.147001
https://doi.org/10.1103/PhysRevLett.112.147001
https://doi.org/10.1103/PhysRevLett.112.147001
https://doi.org/10.1103/PhysRevLett.112.147001
https://doi.org/10.1038/ncomms8705
https://doi.org/10.1038/ncomms8705
https://doi.org/10.1038/ncomms8705
https://doi.org/10.1038/ncomms8705
https://doi.org/10.1038/nphys3517
https://doi.org/10.1038/nphys3517
https://doi.org/10.1038/nphys3517
https://doi.org/10.1038/nphys3517
https://doi.org/10.1038/nphys3962
https://doi.org/10.1038/nphys3962
https://doi.org/10.1038/nphys3962
https://doi.org/10.1038/nphys3962
https://doi.org/10.1038/ncomms15119
https://doi.org/10.1038/ncomms15119
https://doi.org/10.1038/ncomms15119
https://doi.org/10.1038/ncomms15119
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1038/31177
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevB.55.14554
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1103/PhysRevLett.89.247003
https://doi.org/10.1103/PhysRevB.67.054511
https://doi.org/10.1103/PhysRevB.67.054511
https://doi.org/10.1103/PhysRevB.67.054511
https://doi.org/10.1103/PhysRevB.67.054511
https://doi.org/10.1103/PhysRevLett.106.136402
https://doi.org/10.1103/PhysRevLett.106.136402
https://doi.org/10.1103/PhysRevLett.106.136402
https://doi.org/10.1103/PhysRevLett.106.136402
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevB.14.1165
https://doi.org/10.1103/PhysRevLett.71.3615
https://doi.org/10.1103/PhysRevLett.71.3615
https://doi.org/10.1103/PhysRevLett.71.3615
https://doi.org/10.1103/PhysRevLett.71.3615
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevLett.90.216403
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.69.035111
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1103/PhysRevB.70.245118
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1073/pnas.1512206112
https://doi.org/10.1103/PhysRevB.85.195123
https://doi.org/10.1103/PhysRevB.85.195123
https://doi.org/10.1103/PhysRevB.85.195123
https://doi.org/10.1103/PhysRevB.85.195123
https://doi.org/10.1093/ptep/ptw110
https://doi.org/10.1093/ptep/ptw110
https://doi.org/10.1093/ptep/ptw110
https://doi.org/10.1093/ptep/ptw110
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1103/PhysRevLett.66.1773
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1142/S0217979291000158
https://doi.org/10.1103/PhysRevB.87.140402
https://doi.org/10.1103/PhysRevB.87.140402
https://doi.org/10.1103/PhysRevB.87.140402
https://doi.org/10.1103/PhysRevB.87.140402
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.80.155129
https://doi.org/10.1103/PhysRevB.91.115123
https://doi.org/10.1103/PhysRevB.91.115123
https://doi.org/10.1103/PhysRevB.91.115123
https://doi.org/10.1103/PhysRevB.91.115123
https://doi.org/10.1103/PhysRevLett.60.1057
https://doi.org/10.1103/PhysRevLett.60.1057
https://doi.org/10.1103/PhysRevLett.60.1057
https://doi.org/10.1103/PhysRevLett.60.1057
https://doi.org/10.1103/PhysRevB.39.2344
https://doi.org/10.1103/PhysRevB.39.2344
https://doi.org/10.1103/PhysRevB.39.2344
https://doi.org/10.1103/PhysRevB.39.2344


SHUBHAYU CHATTERJEE AND SUBIR SACHDEV PHYSICAL REVIEW B 95, 205133 (2017)

[35] F. D. M. Haldane, O(3) Nonlinear σ Model and the Topological
Distinction between Integer- and Half-Integer-Spin Antifer-
romagnets in Two Dimensions, Phys. Rev. Lett. 61, 1029
(1988).

[36] N. Read and S. Sachdev, Valence-Bond and Spin-Peierls Ground
States of Low-Dimensional Quantum Antiferromagnets, Phys.
Rev. Lett. 62, 1694 (1989).

[37] N. Read and S. Sachdev, Spin-Peierls, valence-bond solid, and
Néel ground states of low-dimensional quantum antiferromag-
nets, Phys. Rev. B 42, 4568 (1990).

[38] T. Senthil, A. Vishwanath, L. Balents, S. Sachdev, and M. P. A.
Fisher, Deconfined Quantum Critical Points, Science 303, 1490
(2004).

[39] T. Senthil, L. Balents, S. Sachdev, A. Vishwanath, and M. P.
A. Fisher, Quantum criticality beyond the Landau-Ginzburg-
Wilson paradigm, Phys. Rev. B 70, 144407 (2004).

[40] D. Bohm, Note on a Theorem of Bloch Concerning Possible
Causes of Superconductivity, Phys. Rev. 75, 502 (1949).

[41] Y. Ohashi and T. Momoi, On the Bloch Theorem Concerning
Spontaneous Electric Current, J. Phys. Soc. Jpn. 65, 3254
(1996).

[42] T. D. Stanescu and P. Phillips, Nonperturbative approach to full
Mott behavior, Phys. Rev. B 69, 245104 (2004).

[43] E. Berg, C.-C. Chen, and S. A. Kivelson, Stability of Nodal
Quasiparticles in Superconductors with Coexisting Orders,
Phys. Rev. Lett. 100, 027003 (2008).

[44] S. Sachdev, E. Berg, S. Chatterjee, and Y. Schattner, Spin density
wave order, topological order, and Fermi surface reconstruction,
Phys. Rev. B 94, 115147 (2016).

[45] Y. Yoshida, S. Schröder, P. Ferriani, D. Serrate, A. Kubetzka,
K. von Bergmann, S. Heinze, and R. Wiesendanger, Conical
Spin-Spiral State in an Ultrathin Film Driven by Higher-Order
Spin Interactions, Phys. Rev. Lett. 108, 087205 (2012).

[46] M. Hermele, T. Senthil, M. P. A. Fisher, P. A. Lee, N. Nagaosa,
and X.-G. Wen, Stability of U(1) spin liquids in two dimensions,
Phys. Rev. B 70, 214437 (2004).

[47] R. K. Kaul, Y. B. Kim, S. Sachdev, and T. Senthil, Algebraic
charge liquids, Nat. Phys. 4, 28 (2008).

[48] X. G. Wen, Mean-field theory of spin-liquid states with finite
energy gap and topological orders, Phys. Rev. B 44, 2664
(1991).

[49] R. K. Kaul, A. Kolezhuk, M. Levin, S. Sachdev, and T. Senthil,
Hole dynamics in an antiferromagnet across a deconfined
quantum critical point, Phys. Rev. B 75, 235122 (2007).

[50] R. K. Kaul, M. A. Metlitski, S. Sachdev, and C. Xu, Destruction
of Néel order in the cuprates by electron doping, Phys. Rev. B
78, 045110 (2008).

[51] R. M. Fernandes and A. V. Chubukov, Low-energy microscopic
models for iron-based superconductors: A review, Rep. Prog.
Phys. 80, 014503 (2017).

[52] S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B.
Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R.
Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust, Change
of carrier density at the pseudogap critical point of a cuprate
superconductor, Nature (London) 531, 210 (2016).

[53] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S.
M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H.
Takagi, C. Proust, and N. E. Hussey, Anomalous Criticality in
the Electrical Resistivity of La2−xSrxCuO4, Science 323, 603
(2009).
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