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Possible nematic spin liquid in spin-1 antiferromagnetic system on the square lattice: Implications
for the nematic paramagnetic state of FeSe
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The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and
possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand
its novel properties, we study the ground state of a highly frustrated spin-1 system with bilinear-biquadratic
interactions using an unbiased large-scale density matrix renormalization group. Remarkably, with increasing
biquadratic interactions, we find a paramagnetic phase between Néel and stripe magnetic ordered phases. We
identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences, including
vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a persistent
nonzero lattice nematic order in the thermodynamic limit. The established quantum phase diagram naturally
explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and the phase
transition with increasing pressure. This identified paramagnetic phase provides a possibility to understand the
novel properties of FeSe.
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I. INTRODUCTION

In spin-1/2 antiferromagnets, the interplay between quan-
tum fluctuations and geometric frustration may generate
exotic paramagnetic states such as quantum spin liquid [1,2].
With rapidly suppressed quantum fluctuations, it is usually
believed that the higher spin system such as spin-1 would
favor magnetic order. Interestingly, some spin-1 systems may
have additional biquadratic interaction, and the competing
interactions can also lead to unusual paramagnetic states
such as the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [3,4]
and quadrupolar state [5,6]. While these states have been
found in both theoretical models and realistic systems, the
studies on spin liquid are limited in contrived models [7]
and effective field theories [8–11]. The exotic spin liquid has
not been found in any realistic microscopic model. Recent
exploration of this question [8–11] is further stimulated
by spin-1 triangular antiferromagnets NiGa2S4 [12] and
Ba3NiSb2O9 [13], which behave like gapless spin liquids in
experiments.

In recent studies on iron-based superconductors [14–16],
the iron chalgogenide FeSe [17] is attracting much attention
because of its paramagnetic normal state, which differs from
the conventional magnetic ordered normal states of cuprates
[18] and iron pnictides [14–16]. Besides, FeSe possesses an
electronic nematic order after a tetragonal-to-orthorhombic
structural transition at Ts � 90 K [19–22]. Although the
primary origin of this nematic order is still unclear [23–34],
neutron scattering measurements indicate the important role
of spin degree of freedom [24,25]. These novel properties
have triggered wide interests in the magnetic ground state
of FeSe [35–45]. Neutron experiment finds a large effective
spin of S � 0.74 [25], which strongly supports the relevance
of the spin-1 model as a starting point for understanding
the magnetism of FeSe. Along this line, first-principles
calculations [36,37,44,46] find that in FeSe the magnetic
interactions are highly frustrated and biquadratic interaction

plays an important role [36,37,44]. This naturally leads us to
the spin model

H = Ji,j

∑
(i,j )

�Si · �Sj + Ki,j

∑
(i,j )

(�Si · �Sj )2, (1)

which contains further-neighbor interactions and is also con-
sidered to be relevant to other iron superconductors [47–50].
Semiclassical calculations for this model find various magnetic
ordered phases to interpret the observed magnetic orders in
iron pnictides and FeTe [36,42,47–52]. Recent mean-field
studies propose an antiferroquadrupolar (AFQ) state for FeSe
[39,40], which exhibits a nematic order accompanied by
the quadrupolar fluctuations at wave vector �q = (0,π )/(π,0).
While mean-field approach can efficiently detect magnetic
and quadrupolar ordered phases, it may not accurately pre-
dict the paramagnetic states generated from the frustrated
competing interactions in Hamiltonian (1). Such possibilities
for FeSe may include the paramagnetic state that might be
continuously connected to decoupled spin-1 chains [38,53]
and nematic spin liquid [54–56]. To accurately determine
the phase diagram of such a strongly frustrated system
and uncover quantum phases, unbiased studies are highly
desired.

In this article we study the ground state of the frustrated
spin-1 model (1) on the square lattice with first- (J1,K1) and
second-neighbor (J2,K2) interactions using unbiased density
matrix renormalization group (DMRG) [57]. We set J1 = 1.0
as the energy scale. Considering stripe spin fluctuations in FeSe
[23–25] and the first-principles simulation results [36,37], we
fix J2 = 0.7 and set K1 < 0. For such a parameter setup, K2 <

0 only enhances ferroquadrupolar (FQ) order [41]; thus we
consider K2 > 0. In the semiclassical phase diagram obtained
from the site-factorized wave function calculation [58], this
system possesses a stripe antiferromagnetic (AFM) and a Néel
AFM phase separated by the dash-dot line in Fig. 1(a). In
DMRG calculations, through finite-size scaling of magnetic
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FIG. 1. Different quantum phases in the spin-1 J1-J2-K1-K2

model on the square lattice. (a) Quantum phase diagram for J2 = 0.7
in the K1-K2 plane. With varying K1 and K2, the system has a
stripe and a Néel AFM phase. Between these two phases, we find a
paramagnetic (PM) phase with lattice rotational symmetry breaking,
which is between the red dash lines. The blue dash-dot line is the
semiclassical phase boundary between the stripe and Néel AFM
phase. (b)–(d) Magnetic order parameter m2(�q) in momentum space
for the different phases. In the stripe (b) and Néel phase (c), m2 has a
peak at �q = (0,π ) and (π,π ), respectively. In the paramagnetic phase,
m2 is featureless as shown in (d).

order parameters, we find a paramagnetic regime sandwiched
by the magnetic ordered phases as shown in Fig. 1(a). We
identify this phase as a candidate of nematic quantum spin
liquid by observing vanished spin and quadrupolar orders, no
lattice translational symmetry breaking, and nonzero lattice
nematic order in the thermodynamic limit. The neighbor-
ing stripe phase can naturally explain the enhanced stripe
spin fluctuations in neutron scattering measurement of FeSe
[24,25]. This identified paramagnetic phase not only provides
a possibility to understand the exotic normal state of FeSe,
but also sheds more light on quantum spin liquid in spin-1
magnetic systems.

In our DMRG calculations, we study the rectangular
cylinder (RC) system with periodic boundary in the y direction
and open boundaries in the x direction. We denote the cylinder
as RCLy − Lx , where Ly and Lx are the number of sites
in the y and x directions; the width of the cylinder is
L = Ly [see the inset of the RC4-4 cylinder in Fig. 1(a)].
By implementing spin rotational SU(2) symmetry [59], we
study cylinder system with L up to 10 by keeping up to
20 000 U (1)-equivalent states with truncation error below
1 × 10−5 in most calculations. Our simulations allow us to
obtain accurate quantum phase diagram based on different
measurements.

π π π

FIG. 2. K1 and K2 dependence of magnetic order parameters for
the J1-J2-K1-K2 square model with J2 = 0.7 on the RC6-12 cylinder.
(a) and (b) Néel order parameter m2(π,π ) and stripe order parameter
m2(0,π ), respectively.

II. MAGNETIC AND QUADRUPOLAR ORDERS

First of all, we show the biquadratic coupling dependence
of magnetic order parameters on the RC6-12 cylinder in Fig. 2.
For this system, we have J2 = 0.7. With growing K2, the stripe
AFM order at small |K1| side is suppressed and Néel order
develops. In the large |K1| regime, the Néel order persists with
increased K2. The global picture of Fig. 2 is consistent with
the quantum phase diagram Fig. 1(a).

To further study magnetic order, we calculate spin structure
factor m2(�q) = 1

N2

∑
i,j 〈�Si · �Sj 〉ei �q·(�ri−�rj ) (N is the total numer

of sites) from the spin correlations 〈�Si · �Sj 〉 of the L × L sites
in the middle of the RCL − 2L cylinder, which efficiently
reduces edge effects of open cylinder [60–62]. In the stripe
and Néel AFM states, m2(�q) has the characteristic peak at
�q = (0,π )/(π,0) and (π,π ), respectively; these are shown in
Figs. 1(b) [the stripe state selects the peak at (0,π ) because of
the cylinder geometry] and 1(c). In the intermediate regime,
m2(�q) is featureless as shown in Fig. 1(d). Compared with the
semiclassical phase boundary, one finds that our DMRG phase
boundaries shift dramatically to the small K2 side, where the
semiclassical calculations may overestimate the stripe order.
In Figs. 3(a) and 3(b) we show m2(0,π ) and m2(π,π ) for
K1 = 0.0 with growing K2 and L = 4–10. The appropriate
finite-size scaling suggests that the stripe order vanishes at
K2 � 0.34, and the Néel order develops at K2 � 0.4, leaving
an intermediate regime with no magnetic order. The log-log
plots of magnetic orders versus system width are shown in
Figs. 3(c) and 3(d), where both orders appear to vanish in
a power-law manner in the intermediate regime. Thus we
establish a paramagnetic phase in this regime, possibly with
critical magnetic fluctuations. To demonstrate the stability of
the intermediate phase, we examine the extended parameter
regime with J2 = 0.75,0.8 and we also identify the interme-
diate phase by tuning biquadratic coupling (see Appendix A),
which supports a stable nonmagnetic phase. Next, we will
demonstrate various measurement results to characterize the
physics in the intermediate phase.

Since biquadratic interaction is present in the system,
we investigate the quadrupolar order Qi [5,6], where Qi =
(Q3z2−r2

i ,Q
x2−y2

i ,Q
xy

i ,Q
yz

i ,Qzx
i ) is a rank-two tensor op-

erator with five components Q3z2−r2

i = [2(Sz
i )2 − (Sx

i )2 −
(Sy

i )2]/
√

3, Q
x2−y2

i = (Sx
i )2 − (Sy

i )2, Q
xy

i = Sx
i S

y

i + S
y

i Sx
i ,
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FIG. 3. Finite-size scaling of magnetic order parameters. (a) and
(b) Size extrapolations of stripe order m2(0,π ) and Néel or-
der m2(π,π ) versus 1/L, respectively. We have the system
with J2 = 0.7,K1 = 0.0 on the RCL − 2L cylinders with L =
4–10. Dashed lines are polynomial fits up to fourth order.
(c) and (d) Log-log plots of the two magnetic orders versus width L.

Q
yz

i = S
y

i Sz
i + Sz

i S
y

i , and Qzx
i = Sz

i S
x
i + Sx

i Sz
i . In Fig. 4(a)

we show that the quadrupolar correlation in the intermediate
regime exhibits a stripe AFQ pattern. To detect stripe AFQ
order, we calculate quadrupolar structure factor Q2(�q) =

1
N2

∑
i,j 〈Qi · Qj 〉ei �q·(�ri−�rj ) defined in a way similar to m2(�q). In

Fig. 4(b) we show the stripe AFQ order parameter Q2(π,0) on
the RC6-12 cylinder in the K1-K2 plane, where the finite-size
Q2(π,0) is enhanced in the intermediate regime. However, the
size extrapolation in Fig. 4(c) shows that Q2(π,0) approaches
zero for L → ∞, indicating the vanishing AFQ order in the
thermodynamic limit.

III. NEMATIC ORDER

Next, we study lattice symmetry breaking by measuring
the nearest-neighbor J1 bond energy 〈�Si · �Sj 〉. In Fig. 5(a)
we show the bond energy for K1 = 0.0,K2 = 0.36 on the
RC8-16 cylinder, which is quite translationally uniform in
the bulk of cylinder. Note that the open boundary conditions
in the x direction of the cylinder system usually induce a
bond translational symmetry breaking, and the corresponding
dimer order (the bond energy difference along the x direction
〈�Si · �Si+1〉 − 〈�Si+1 · �Si+2〉) decays from the edge to the bulk.
For a valence-bond crystal (VBC) phase, the dimer order decay
length would increase fast while in a non-VBC phase the decay
length is finite in the thermodynamic limit [63]. In our DMRG
calculations, we find that the bond dimer order always decays

π,0
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FIG. 4. The absence of stripe AFQ order. (a) Stripe (π,0) AFQ
correlation 〈Qi · Qj 〉 for J2 = 0.7,K1 = 0.0,K2 = 0.36 on the RC8-
16 cylinder. The solid green circle in the middle denotes the reference
site. The solid blue and shaded red circles denote the positive
and negative AFQ correlations, respectively. (b) K1,K2 dependence
of stripe AFQ order parameter Q2(π,0) on the RC6-12 cylinder.
(c) Finite-size scaling of Q2(π,0) up to width L = 10.

quite fast with a very short decay length on our studied system
size, indicating the preserved lattice translational symmetry.

Importantly, one can see a strong nematicity between
horizontal and vertical bond energy. We define a bond nematic
order as σ1 ≡ 〈�Si · �Si+x̂〉 − 〈�Si · �Si+ŷ〉 with the bond energy in
the bulk of the cylinder. Note that here the bond energy is not
translationally invariant only for few columns on the edge. σ1

versus 1/L is presented in Fig. 5(b) for different K2. We show
the cylinder length dependence of σ1 in the inset of Fig. 5(b),
which indicates the extremely small finite-size effects of σ1

versus Lx . In the stripe AFM phase for K2 � 0.34, σ1 scales
to finite value with 1/L, supporting the rotational symmetry
breaking of stripe magnetic ordered phase. For K2 > 0.4, σ1

decreases fast and tends to vanish, which strongly indicates
a transition to a phase without lattice rotational symmetry
breaking. This transition is compatible with the developing
Néel order at K2 � 0.4 found in Fig. 3(b). Interestingly, in
the intermediate phase, we find that the nematic order also
decreases slowly and approaches a finite value for L →
∞, indicating lattice rotational symmetry breaking in this
intermediate phase.

We remark that the finite nematic order observed in the
intermediate phase is not induced by cylinder geometry but
intrinsic. For the geometry induced nematic order such as the
order in the neighboring Néel phase without a C4 symmetry
breaking, one can see that the order decays very fast to vanish
with growing cylinder width, in contrast to the scaling behavior
in the intermediate phase. As a numerical method, we would
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FIG. 5. Lattice symmetry breaking in the intermediate phase.
(a) J1 bond energy 〈�Si · �Sj 〉 for K1 = 0.0,K2 = 0.36 on the RC8-16
cylinder. Here we only show the middle 8 × 8 sites. (b) Finite-size
scaling of bond nematic order σ1. The inset shows the cylinder length
dependence of σ1 for K2 = 0.36 and different Ly .

like to point out that for detecting lattice symmetry breaking,
edge bond pinning has been shown effective in quantum
Monte Carlo [63] and DMRG simulations [61,62,64]. In the
recent DMRG calculations for the spin-1/2 J1-J2 triangular
Heisenberg model [65–67], a strong nematic order is also
found, which is considered as an evidence of a spontaneous
rotational symmetry breaking of the identified spin liquid
phase.

IV. SPIN GAP

The vanishing magnetic order and spontaneous lattice
rotational symmetry breaking suggest the intermediate phase
as a possible AKLT state [38] or a nematic spin liquid. To
further characterize this phase, we calculate the finite-size
spin-1 excitation gap, defined as the energy difference between
the lowest energy states in total spin-1 and spin-0 sectors for
a given system size [62,68,69]. We demonstrate spin gap with
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FIG. 6. Spin gap �T in the different phases. (a) �T versus K2

for J1 = 0.7,K1 = 0.0 on different cylinders. (b) Finite-size scaling
of spin gap �T in different phases. To avoid edge excitations, spin
gap is obtained by sweeping the middle L × L sites with total spin
S = 1 based on the ground state of the long RCL − Lx cylinders with
Lx = 24 and L = 4,6,8.

increasing K2 in Fig. 6(a), where it exhibits a kink at K2 =
0.34. While the ground-state energy varies smoothly with
growing K2 (see Appendix A), the kink of spin gap indicates
an energy level crossing in the spin-1 sector, which could
be compatible with the phase transition found in Fig. 3(a).
At K2 = 0.4, both ground-state energy and spin gap exhibit
no singularity on our studied system size, which suggest a
possible continuous phase transition. The vanishing nematic
order for K2 � 0.4 and the spin gap singularity at K2 = 0.34
support the intermediate phase found in the finite-size scaling
of magnetic orders.

In Fig. 6(b) we show finite-size scaling of the spin gap
in different phases. In both stripe and Néel phases, spin gap
is smoothly scaled to zero, which agrees with the gapless
spin excitations from continuous spin rotational symmetry
breaking. In the paramagnetic phase, the spin gap also
approaches zero appropriately, which seems to be inconsistent
with a spin gapped AKLT-like state [38] but leaves a possibility
of a gapless nematic spin liquid.

V. DMRG RESULTS ON THE TILT CYLINDER

As a supplementary of our finite-size calculations, we also
test the tilted cylinder (TC) that is obtained by a π/4 rotation of
the rectangular lattice. A schematic figure of the TC cylinder
is shown in Fig. 7. The cylinder width for the TC cylinder is
Wy = √

2Ly . It should be noticed that different from RC, the
bond π/2 rotational symmetry is not broken by geometry on
the TC cylinder.

First of all, we calculate the spin order on the TC cylinder.
We find the consistent (0,π ) and (π,π ) magnetic orders in the
small K2 and large K2 regimes, respectively. However, in the
intermediate K2 regime where we find a nonmagnetic state on
the RC cylinder, DMRG calculations obtain a state with strong
spin correlations on the TC cylinder. As shown in Fig. 8, while
the spin correlations on the RC cylinder decay exponentially
to vanish, those on the TC cylinder decay quite slowly, which
does not support a nonmagnetic state.
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FIG. 7. A schematic figure for the 45-deg tilted cylinder (TC) on
the square lattice. Here the cylinder width is Ly = 4 and the length
is Lx = 12, which is denoted as TC4-12. For the TC cylinder, the
cylinder width is

√
2Ly .

To understand the different results on the two geometries,
we compare the bulk energy on both systems. As shown in
Fig. 9, in the two magnetic order phases, the bulk energies on
both geometries approach each other with increasing cylinder
width, indicating the consistent energy in large size limit. How-
ever, in the intermediate regime, the TC cylinder appears to
have a higher energy than the RC cylinder. The close energies
of the two states may imply the gapless nature of the low-lying
excitations, which is consistent with the vanishing gap in the
intermediate phase. The lower energy of the nonmagnetic state
supports it as the stronger candidate of the true ground state. We
also remark that in our DMRG calculations on the TC cylinder,
convergence is very challenging and the DMRG truncation
error is much bigger than the RC cylinder with the similar
Wy , which suggests that the TC cylinder may not be a proper
geometry for studying the intermediate phase.

VI. DISCUSSION AND SUMMARY

Motivated by the exotic nematic paramagnetic normal state
of iron chalcogenide superconductor FeSe, we study a spin-1
J1-J2-K1-K2 system on the square lattice using a density ma-
trix renormalization group. By implementing spin rotational
SU(2) symmetry, we study cylinder geometry with system
width up to 10 legs, which significantly reduces finite-size
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ate K2 regime for J2 = 0.7,K1 = 0.0 on the RC6 and TC4 cylinders.
The red squares denote the RC6 cylinder, and the blue circles denote
the TC4 cylinder.

0 0.1 0.2
1/W

y

-0.64

-0.6

-0.56

-0.52

-0.48

0 0.1 0.2
1/W

y

-1.8

-1.76

-1.72

-1.68

en
er

gy

0 0.1
1/W

y

-0.32

-0.28

-0.24

-0.2

-0.16(a) K
2

= 0.0 (b) K
2

= 0.36 (c) K
2

= 0.5

FIG. 9. Bulk energy versus cylinder width Wy on the RC and
TC cylinders. The system has J2 = 0.7,K1 = 0.0 and different K2.
For (a) K2 = 0.0, the system is in the (0,π ) magnetic order phase.
For (b) K2 = 0.36, the system is in the intermediate regime. For
(c) K2 = 0.5, the system is in the (π,π ) magnetic order phase. The
blue circles are the bulk energy for the RC6, RC8, and RC10 cylinders.
The red squares denote the energy for the TC4 and TC6 cylinders.
For the RC cylinder, cylinder width Wy = Ly ; for the TC cylinder,
Wy = √

2Ly . In the two magnetic order phases, the energies on the
two geometries approach each other. However, in the intermediate
regime, the TC cylinder appears to have the higher energy than the
RC cylinder on our studied system size.

effects of order parameter scaling. With increased biquadratic
interactions K1,K2, we find a paramagnetic phase between
stripe and Néel magnetic ordered phases, which preserves all
spin rotational and lattice translational symmetries but breaks
lattice rotational symmetry.

The nematic paramagnetic state in this J1-J2-K1-K2 system
provides a possibility to understand the magnetic ground state
of FeSe. The current findings naturally match the observations
of FeSe in neutron scattering [24,25] and high pressure
experiments [31–33], where the paramagnetic state of FeSe
with substantial stripe spin fluctuations is identified to sit close
to the stripe magnetic phase and may undergo a phase transition
to the stripe magnetic ordered phase at high pressure. As FeSe
is a bad metal that is in proximity of a Mott insulator, it would
be interesting to consider the effects of itinerant electrons
on the nematicity of the localized moments in further study.
Our DMRG results suggest this paramagnetic state may be
a nematic quantum spin liquid. Spin liquid states in spin-1
system have been discussed for the triangular antiferromagnets
[8–11] related to materials NiGa2S4 [12] and Ba3NiSb2O9

[13], but have not been found in unbiased calculations besides
our work. Our work provides insight for the interplay between
spin Heisenberg and biquadratic interactions, and sheds more
light on interesting phases in spin-1 system.
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APPENDIX A: J1- J2-K1-K2 SQUARE MODEL

In Fig. 10 we show the K2 coupling dependence of the
ground-state energy and entanglement entropy in the bulk
of cylinder for J2 = 0.7,K1 = 0.0 on different cylinders. In
the main text, we show that the system has an intermediate
phase for 0.34 � K2 � 0.4. Here we find that both the ground-
state energy and the entropy appear smooth near the phase
boundaries, which indicates possible continuous transitions.
Generally, a direct phase transition from Néel to stripe AFM
phase would be first order in Landau’s paradigm. The smooth
transition behaviors could be compatible with an intermediate
paramagnetic phase between the two magnetic ordered phases.

To demonstrate the stability of the intermediate phase,
we also extend the studied parameter regime to J2 = 0.75
and 0.8. Following the setup for J2 = 0.7, we fix K1 = 0.0
and tune K2. In Figs. 11 and 12 we show the magnetic
spin dipole structure factor S(q) = 1

N

∑
i,j eiq·(ri−rj )〈Si · Sj 〉

on the RC8-16 cylinder. For J2 = 0.75, one can find that
the spin structure factor is featureless for 0.48 � K2 � 0.6;
and for J2 = 0.8, the structure factor is featureless for
0.6 � K2 � 0.75. In the nonmagnetic intermediate regime for
J2 = 0.75,0.8, we also examine the quadrupolar order (not
shown here), which exhibits the same (π,0) AFQ fluctuations
as we find for J2 = 0.7 in the intermediate phase. In Fig. 13
we also show the finite-size scaling of the nematic order
σ1 ≡ 〈�Si · �Si+x̂〉 − 〈�Si · �Si+ŷ〉 in the intermediate regime for
J2 = 0.75 and 0.8. Consistently, the size scaling also indicates
the finite nematic order. Therefore, our results indicate that
the nonmagnetic nematic intermediate phase is stable by
tuning J2.

APPENDIX B: J1- J2-K1 SQUARE MODEL

Magnetic orders. We show the magnetic order parameters
on the RC6-12 cylinder for 0.5 � J2 � 1.0,0.5 � |K1| � 1.0
in Fig. 14. We find that the stripe AFM order develops very
fast above a critical J2. This phase transition is denoted by the
red dash line in Fig. 14. For the Néel phase, we can find that
the blue regime with weak Néel order before the transition
to stripe phase in Fig. 14(a) is enlarged with increasing |K1|,
which may indicate an intermediate regime.

FIG. 11. Spin structure factor S(�q) for J2 = 0.75,K1 = 0.0 and
different K2 on the RC8-16 cylinder. The structure factor is obtained
by the Fourier transform from the spin correlations of the middle
8 × 8 sites. For K2 = 0.4, S(�q) has the stripe characteristic peak at
�q = (0,π ). For 0.48 � K2 � 0.6, S(�q) is featureless, consistent with
the nonmagnetic intermediate phase.

To determine whether there is an intermediate phase,
we make finite-size scaling of magnetic order parameters.
In Fig. 15 we show the size scaling of Néel and stripe
order parameters for K1 = −0.8 with increased J2. Here,
as the convergence challenge in DMRG calculations in the
intermediate regime, we only show the data up to L = 8.
Through the appropriate extrapolation, we find that the Néel
order vanishes at J2 � 0.75 and the stripe order develops
at J2 � 0.88, which give us the transition points shown in
Fig. 14(a) and identify an intermediate paramagnetic phase.

Ferroquadrupolar phase. Next we study ferroquadrupolar
(FQ) order in the intermediate phase. In Fig. 16(a) we show the
J2,K1 coupling dependence of the FQ order parameter Q2(0,0)
on the RC6-12 cylinder. We can find the strong enhancement of
Q2(0,0) in the large J2,|K1| regime, which is consistent with
the intermediate regime identified by studying magnetic orders
in Fig. 14. In Fig. 16(b) we show the finite-size scaling of the
FQ order, which unambiguously shows the finite FQ order in
the thermodynamic limit. Thus, the vanished magnetic order
and finite FQ order identify this intermediate regime as a FQ
phase.

Preserved lattice symmetry. We also calculate the nearest-
neighbor bond energy 〈�Si · �Sj 〉 to detect lattice symmetry
breaking. We find that the bond energy is quite uniform in the
bulk of the cylinder, indicating the translational invariance. In
Fig. 16(c) we demonstrate the size scaling of the bond nematic
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FIG. 12. Spin structure factor S(�q) for J2 = 0.8,K1 = 0.0 and
different K2 on the RC8-16 cylinder. We obtain the data following
the way described in the caption of Fig. 11. Here, for J2 = 0.8, we
also find the featureless S(�q) for 0.6 � K2 � 0.75.

order σ1 for K1 = −0.8. Similar to the main text, the nematic
order σ1 is defined as the difference between the horizontal and
vertical bond energy as σ1 = 〈�Si · �Si+x̂〉 − 〈�Si · �Si+ŷ〉. While
σ1 is strong and scales to finite value in the stripe AFM phase
for J2 � 0.88, it decays very fast to vanish in both the Néel
and FQ phases.
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FIG. 13. Size dependence of lattice nematic order σ1 for the
parameter points in the intermediate phase regime for J2 =
0.75,0.8,K1 = 0.0.

FIG. 14. Néel AFM order parameter m2(π,π ) (a) and stripe AFM
order parameter m2(0,π ) (b) versus J2 and K1 interactions for the
J1-J2-K1 square model on the RC6-12 cylinder. In both figures, the
red dash line denotes the phase transition to the stripe AFM order.
The red dots in (a) denote the phase transition from Néel to the
intermediate ferroquadrupolar phase, which are determined from the
finite-size scaling of magnetic order parameters as shown in Fig. 15.

APPENDIX C: ORIGIN OF BIQUADRATIC INTERACTION

We briefly discuss the origin of biquadratic coupling
in our model. Generally speaking, there are two different
mechanisms to generate biquadratic interaction. One is spin-
phonon coupling or lattice distortion effect. The other one
is microscopic description of the isotropic non-Heisenberg
Hamiltonian extracted at the fourth order of perturbation from
a Hubbard Hamiltonian.
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FIG. 15. Finite-size scaling of magnetic order parameters for the
J1-J2-K1 square model on the RCL − 2L cylinders with L = 4,6,8.
(a) and (b) Néel and stripe magnetic order parameters m2(π,π ) and
m2(0,π ) versus 1/L, respectively. Lines are polynomial fits.

1. Phonon coupling

As a phenomenological origin, one might think of the
coupling between spin and lattice degrees of freedom that
results from the exchange integrals on the atomic positions
in a crystal. Since the exchange integrals are linear functions
of the displacement coordinates, while the elastic energy of
the deformation shows quadratic behavior, a frustrated system
may gain energy by distorting the lattice. Alternatively, the
competition between the lattice distortion and the associated
energy gain may lead to a quadratic coupling. This effect is
discussed in detail for the case of a single tetrahedral molecule
with four spins [71]. If we assume that the exchange integral
for a pair of neighborhood spins Si and Sj depends only on
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FIG. 16. FQ phase in the J1-J2-K1 model. (a) J2,K1 dependence
of FQ order parameter Q2(0,0) on RC6-12 cylinder. (b) Finite-size
scaling of Q2(0,0) in different phases. (c) Finite-size scaling of lattice
nematic order σ1 for K1 = −0.8 and different J2.

the interatomic distance rij (a reasonable assumption for direct
exchange), the elastic energy associated with a bond distortion
can be written as κδr2

ij /2, where δrij is the variation of the
bond length and κ is the elastic constant. Thus we reach the
so-called bond-phonon model:

H bp = J
∑
ij

(1 − αδrij )Si · Sj + κδr2
ij /2, (C1)

where α is the spin-lattice coupling constant. Considering δrij

as independent parameters, we may integrate them out and
find an effective spin Hamiltonian:

H = J
∑
〈i,j〉

Si · Sj + K
∑
〈i,j〉

(Si · Sj )2, (C2)

where K = −Jα/2κ is a dimensionless constant. Here, based
on the bond-phonon model, we get a quadratic interaction in
addition to the original Heisenberg spin exchange coupling,
despite that this derivation is a semiclassic description [72].

2. Microscopic origin from the Hubbard model

We will derive an effective Hamiltonian for an iron-
based superconductor based on simple arguments. Since
iron-based superconductors have six electrons occupying the
nearly degenerate 3d Fe orbitals, the system is intrinsically
multiorbital in a microscopic Hamiltonian. Band structure
calculations on iron-based superconductors have shown the
primary Fe orbitals are dxz, dyz, and dxy . Based on the
further approximation that the role of the dxy can be re-
placed by a next-near-neighbor hybridization between dxz

and dyz orbitals, we get a two-dimensional square lattice
with two degenerated dxz and dyz orbitals per site, which is
proposed as a minimal two-band model for an iron-based
superconductor [73]. The itinerant electrons of the degen-
erated dxz and dyz orbitals are described by a tight-binding
Hamiltonian

H = Ht + Hintra + Hinter + HHund. (C3)

The itinerant electrons of the degenerate dxz and dyz orbitals
are described by a tight-binding Hamiltonian

Ht =
∑

(ij ),(αβ),σ

tij,αβc
†
i,α,σ cj,β,σ + H.c., (C4)

where c
†
i,α,σ creates an electron with spin σ at site i on

orbital α = dxz(yz). For simplicity we first assume tij,αα =
t for nearest neighbors. We define the intraband Hub-
bard interaction HU and interband Hubbard interaction HV

as

Hintra = U
∑
i,α

ni,α,↑ni,α,↓, (C5)

Hinter = V
∑
i,σ,σ ′

ni,α,σ ni,β,σ ′ , (C6)

and the Hund’s rule coupling as

HHund = −JH

∑
i,α,β

[c†i,α,↑ci,α,↓c
†
i,β,↓ci,β,↑ + H.c.], (C7)
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where the Hund coupling ensures that two electrons form
a spin triplet if they occupy different orbitals on the same
site.

To derive an effective Hamiltonian, let us first consider the
limit of strong interaction defined by U = 0, JH = 0, and
t = 0. For one site, the ground-state manifold is spanned
by configurations with two electrons on each site, one in
each orbital, and the two electrons of a given site forming
a triplet. Thus, the spin-1 model is likely suitable to describe
the iron-based superconductor, which also matches the very

recent neutral scattering measurements on FeSe samples [25].
Next we consider two sites. Two S = 1 spins can be combined
into a total S = 2,1,0 with the corresponding levels fivefold
and threefold degenerate, and nondegenerated, where we label
as |S,Sz〉 and the total spin S and its a-component Sz are
good quantum numbers. When a small hopping t is added, the
fluctuations will lift the ground-state degeneracy and favor the
spin singlet state. Here the discussion is parallel to the case of
the simple eg molecule with two orbitals in each site [74]. We
just quote the results, up to fourth-order perturbation ∝ t4:

Heff =
(

2t2

U + JH

− 8t4

(U + JH )3

)
Si · Sj + 12t4

(U + JH )3

(
1

U + JH

− 2

2(U + V ) + JH

− 2

2(U − V ) + JH

)
PS=0, (C8)

where Si is spin-1 operator and PS=0 projects to the spin single
state:

PS=0 = 1
3 [(Si · Sj )2 − 1]. (C9)

Finally, we get the bilinear-biquadratic exchange Hamiltonian
as

Heff = J
∑
〈i,j〉

Si · Sj + K
∑
〈i,j〉

(Si · Sj )2. (C10)

For an isolated Fe atom, the intraband interaction U and
interband interaction V are similar in magnitude, while Hund

coupling JH is an order smaller. Thus, a reasonable estimate
is J > 0 and K < 0 for an iron-based superconductor. This
model can be also extended to the next-nearest neighbors, thus
we have the J1-J2-K1-K2 model as the start point

Heff = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj

+K1

∑
〈i,j〉

(Si · Sj )2 + K2

∑
〈〈i,j〉〉

(Si · Sj )2. (C11)
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