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Spectrum of conformal gauge theories on a torus
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Many model quantum spin systems have been proposed to realize critical points or phases described by 2+1
dimensional conformal gauge theories. On a torus of size L and modular parameter τ , the energy levels of
such gauge theories equal (1/L) times universal functions of τ . We compute the universal spectrum of QED3, a
U(1) gauge theory with Nf two-component massless Dirac fermions, in the large-Nf limit. We also allow for a
Chern-Simons term at level k, and show how the topological k-fold ground state degeneracy in the absence of
fermions transforms into the universal spectrum in the presence of fermions; these computations are performed
at fixed Nf /k in the large-Nf limit.
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I. INTRODUCTION

While many fractionalized states of matter have been
proposed, verifying their existence is a formidable task. Not
only are experimental measurements of fractional degrees
of freedom difficult, but even establishing the existence of
these phases in simplified lattice models can be challenging.
Numerical techniques have made a great deal of progress and
now provide support for some of these states of matter.

In the context of quantum spin systems, the simplest
fractionalized state with an energy gap and time-reversal
symmetry is the Z2 spin liquid. Recent work described the
universal spectrum of a spin system on a torus [1,2] across
a transition between a Z2 spin liquid and a conventional
antiferromagnetically ordered state [2]. Such a spectrum is
a unique signature of the transition between these states and
goes well beyond the 4-fold topological degeneracy of the
gapped Z2 state that is usually examined in numerical studies.

In this paper, we turn our attention to critical spin liquids
with an emergent photon and gapless fractionalized excita-
tions. Commonly referred to as an “algebraic spin liquid”
(ASL) or a “Dirac spin liquid”, it is a critical phase of matter
characterized by algebraically decaying correlators, and whose
long-distance properties are described by an interacting con-
formal field theory (CFT) called 3d quantum electrodynamics
(QED3) [3–7]. For the kagome antiferromagnet, and also for
the J1-J2 antiferromagnet on the triangular lattice, there is an
ongoing debate as to whether the ground state is a gapped Z2

spin liquid [8–13] or a U(1) Dirac spin liquid [14,15], and
we hope our results here can serve as a useful diagnostic of
numerical data.

In addition, although certain systems may not allow for an
extended ASL phase, related CFTs could describe their phase
transitions [16,17]. These “deconfined critical points” [18,19]
require a description beyond the standard Landau-Ginzburg
paradigm and are often expressed in terms of fractionalized
quasiparticles interacting through a gauge field. Our methods
can be easily generalized [20] to critical points of theories with
bosonic scalars coupled to gauge fields [18,19], but we will
limit our attention here to the fermionic matter cases.

A close cousin of QED3 can be obtained by adding an
Abelian Chern-Simons (CS) term to the action. When a
fermion mass is also present, the excitations of the resulting

theory are no longer fermions, but instead obey anyonic
statistics set by the coefficient, or “level”, of the CS term. The
critical “Dirac-CS” theory (with massless fermions) has been
used to describe phase transitions between fractional quantum
Hall plateaus in certain limits [21,22] and transitions out of a
chiral spin liquid state [17,23,24].

In this paper, we study the finite-size spectrum of the QED3
and Dirac-CS theories on the torus. While the state-operator
correspondence often motivates theorists to put CFTs on
spheres, the torus is the most practical surface to study on
a computer. The energy spectrum on the torus does not give
any quantitative information regarding the operator spectrum
of the theory, but it is a universal function of the torus
circumference L and modular parameter τ and, therefore,
can be used to compare with numerically generated data.
The torus has the additional distinction of being the simplest
topologically nontrivial manifold. A defining characteristic of
topological order is the degeneracy of the ground state when
the theory is placed on a higher genus surface. On the torus,
the pure Abelian CS theory at level k has k ground states
[25,26] whose degeneracy is only split by terms which are
exponentially small in L. Here, we will couple Nf massless
Dirac fermions to the CS theory and find a rich spectrum of
low-energy states with energies which are of order 1/L. In the
limit of large Nf and k, we will present a computation which
gives the k degenerate levels in the absence of Dirac fermions
and a universal spectrum with energies of order 1/L in the
presence of Dirac fermions.

Proposals for ASL phases typically begin with a parton
construction of the spin-1/2 Heisenberg antiferromagnet

H =
∑
〈ij〉

Jij Si · Sj , (1)

where Si represent the physical spin operators of the theory and
i,j label points on the lattice. Slave fermions are introduced by
expressing the spin operators as Si = 1

2f
†
iασ αβfiβ , where fiα is

the fermion annihilation operator and σ = (σx,σ y,σ z) are the
Pauli matrices. This is a faithful representation of the Hilbert
space provided it is accompanied by the local constraint∑

α

f
†
iαfiα = 1. (2)
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Since the physical spin Si is invariant under the transformation
fiα → eiφi fiα , the slave fermions necessarily carry an emer-
gent gauge charge. Replacing spins with slave fermions, de-
coupling the resulting quartic term, and enforcing 〈f †

iαfiα〉 =
1 on average returns an ostensibly innocuous mean field
Hamiltonian HMF = −∑

〈ij 〉 tij f
†
iαfjα + H.c. The mean field

theory is a typical tight-binding model, but with electrons
replaced by slave fermions. However, the stability of HMF

is by no means guaranteed, and gauge fluctuations must be
taken into account. This is achieved by supplementing the
mean field hopping parameter with a lattice gauge connection
aij : tij → tij e

iaij . Under the renormalization group, kinetic
terms for the gauge field are generated. Since the connection
aij parametrizes the phase redundancy of the fiα’s, it is a
2π -periodic quantity, and the resulting lattice gauge theory is
compact. Determining the true fate of these theories is where
numerics provide such great insight.

The mean field Hamiltonians of the models we are con-
cerned with possess gapless Dirac cones. In the continuum
they can be expressed

SD[ψ,A] = −
∫

d3r ψ̄αiγ μ(∂μ − iAμ)ψα, (3)

where r = (τ,x) is the Euclidean spacetime coordinate, ψα

is a two-component complex spinor whose flavor index α is
summed from 1 to Nf , and Aμ is a U(1) gauge field that
is obtained from the continuum limit of the aij . The gamma
matrices are taken to be γ μ = (σ z,σ y,−σx) and ψ̄α = iψ†

ασ z.
On the the kagome lattice, the mean field ansatz with a π

flux through the kagome hexagons and zero flux through the
triangular plaquettes has a particularly low energy [27–29]. Its
dispersion has two Dirac cones, which, accounting for spin,
gives Nf = 4.

By writing the theory in the continuum limit in the form of
Eq. (3), we are implicitly assuming that monopoles (singular
gauge field configurations with nonzero flux) in the lattice
compact U(1) gauge theory can be neglected. In their absence,
the usual Maxwell action can be added to the theory

SM[A] = 1

4e2

∫
d3r FμνF

μν, Fμν = ∂μAν − ∂νAμ, (4)

resulting in the full QED3 action, Sqed[ψ,A] = SD[ψ,A] +
SM[A]. Importantly, when Nf is smaller than some critical
value, these manipulations are no longer valid. SM[A] is never
an appropriate low-energy description of a lattice gauge theory
with Nf = 0: for all values of e2, monopoles will proliferate
and confine the theory [30,31]. In the confined phase, the slave
fermions cease to be true excitations, and remain bound within
the physical spins Si . However, matter content suppresses
the fluctuations of the gauge field. For Nf large enough,
monopoles are irrelevant operators [5,32–34], and Sqed[ψ,A]
is a stable fixed point of the lattice theory [5]. In this limit,
QED3 is believed to flow to a nontrivial CFT in the infrared,
and this has been shown perturbatively to all orders in 1/Nf

[35–38]. The critical theory is obtained by naïvely taking the
limit e2 → ∞, and, for this reason, the Maxwell term will be
largely ignored in what follows.

The Dirac fermions ψα represent particle or hole-like
fluctuations about the Fermi level. Consequently, any single-
particle state violates the local gauge constraint in Eq. (2)

TABLE I. Energies of two-particle fermion states in QED3 (CS
level k = 0) on a square torus of size L. Energies are shown for
q = 0, q1 = 2π (1,0)/L, and q2 = 2π (1,1)/L. The 1st, 3rd, and 5th
columns list the energy levels, Ef , while the column to the right,
labeled df , shows the degeneracy of the level. The energy levels with
finite external momentum, q1 = 2π (1,0)/L and q2 = 2π (1,1)/L,
have an additional 4-fold degeneracy resulting from the symmetry
of the lattice. (q̄ = Lq/2π , Ē = LE/2π .)

q̄ = (0,0) q̄ = (1,0) q̄ = (1,1)

Ēf df Ēf df Ēf df

1.414214 4N 2
f − 2 1.414214 2N2

f − 1 1.414214 N2
f − 1

2.288246 4N 2
f − 2 2.288246 4N2

f − 2

2.828427 2N2
f − 1

3.162278 8N 2
f − 4 3.162278 2N2

f − 1 3.162278 2N2
f − 1

3.702459 4N2
f − 2

4.130649 4N2
f − 2 4.130649 4N2

f − 2

4.242640 4N 2
f − 2

4.496615 4N2
f − 2

4.670830 4N2
f − 2

and is prohibited. Since fluctuations in Aμ are suppressed
at Nf = ∞, we might expect this neutrality to be the only
signature of the gauge field in the large-Nf limit, and so
the spectrum on the torus is given by the charge neutral
multiparticle states of the free field theory. It is important to
note that all of these multiparticle states are built out of single
fermions ψα which obey antiperiodic boundary conditions
around the torus: such boundary conditions (or equivalently, a
background gauge flux of π and periodic boundary conditions
for the fermions) minimize the ground state energy, as we show
in Appendix C. Some of these energy levels are given in Table I.

Even among the charge-neutral multiparticle states, there
are certain states of the free field theory which are strongly
renormalized even at Nf = ∞. These are the SU(Nf ) singlet
states which couple to the Aμ gauge field. Computation of
these renormalizations is one of the main purposes of the
present paper. We show that the energies of these states are
instead given by the zeros of the gauge field effective action.
A similar conclusion was reached in Ref. [2] for the O(N )
model, where the O(N ) singlet levels were given by the zeros
of the effective action of a Lagrange multiplier.

In Table II, we list some of the lowest frequency modes of
the photon in QED3 on a square torus, obtained in the large-Nf

computation just described. Because the theory on the torus
is translationally invariant, we can distinguish states by their
total external momentum. For each momentum considered,
the leftmost column gives the photon frequency, with its
degeneracy shown on the right. By including multiphoton
states, the actual energy levels of the photon are shown in
Table III for the same set of momenta. The origin of the photon
shift will be apparent when we find the free energy in Sec. II C
and explicitly calculate the energy levels in Sec. III.

A similar story applies to the Dirac-CS theory with finite
CS coupling k:

SCS[A] = ik

4π

∫
d3r εμνρAμ∂νAρ. (5)
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TABLE II. Photon modes in QED3 (CS level k = 0) on a
square torus of size L. Frequencies are shown for q = 0, q1 =
2π (1,0)/L, and q2 = 2π (1,1)/L. The 1st, 3rd, and 5th columns
list the frequencies, ωγ , while the column immediately to the right
provides the degeneracy, dγ . The actual photon energy levels are
given by these frequencies as well as integer multiples. (q̄ = Lq/2π ,
Ē = LE/2π .)

q̄ = (0,0) q̄ = (1,0) q̄ = (1,1)

ω̄γ dγ ω̄γ dγ ω̄γ dγ

0.584130 2
1.437980 1

1.682078 1
1.739074 1

1.976292 1
2.311525 2

2.527606 1
2.658092 1

2.813224 1
3.156341 1
3.407832 1

3.517617 1
3.626671 1

3.814432 1
3.855225 2

4.092996 1
4.259784 1
4.330137 1

4.425387 1
4.523167 1

4.586816 2
4.657172 1

4.685590 1

The addition of this term gives the photon a mass and
attaches flux to the Dirac fermions so that they become
anyons with statistical angle θ = 2π (1 − 1/k). The Dirac-CS
theory applies to the chiral spin liquid which spontaneously
breaks time reversal, generating a Chern-Simons term at
level k = 2 [39]. Similarly, a CS term with odd level can
be used to impose anyonic statistics on the quasiparticles
of a fractional quantum Hall fluid. The Dirac-CS CFT we
consider can describe the continuous transitions into and
between such topological phases [17,23,24]. It is given by
SDCS[ψ,A] = SD[ψ,A] + SCS[A] (after taking e2 → ∞). As
k becomes very large, the anyons become more fermion-like,
making an expansion in 2π/k possible at large Nf [21,22].

Once again, keeping λ = Nf /k fixed, the critical Dirac-CS
theory is both stable and tractable in the large-Nf limit. The
qualitative features of the spectrum are very similar to QED3.
Again ψα is not a gauge-invariant quantity and cannot exist
by itself in the spectrum. The Gauss law mandates that it be
accompanied by k units of flux. In the large-k limit, these
states have very high energies and can be neglected: only
charge-neutral excitations need be considered. Likewise, the
energy levels of the SU(Nf ) singlet states coupling to the gauge
field are strongly renormalized even at large Nf , while the
mixed-flavor two-particle excitations behave as free particles.
As k/Nf becomes large, the Chern-Simons term will dominate

TABLE III. Photon energy levels in QED3 (CS level k = 0) on
a square torus of size L. Energies are shown for states with total
momentum q = 0, q1 = 2π (1,0)/L, and q2 = 2π (1,1)/L. The 1st,
3rd, and 5th columns list the energy levels, Eγ , while the column
immediately to the right provides their degeneracy, dE

γ . (q̄ = Lq/2π ,
Ē = LE/2π .)

q̄ = (0,0) q̄ = (1,0) q̄ = (1,1)

Ēγ dE
γ Ēγ dE

γ Ēγ dE
γ

0.58413 2
1.16826 4

1.43798 1
1.68208 1
1.73907 1

1.75239 8
1.97629 1
2.02211 2

2.26621 2
2.31153 2

2.3232 2
2.33652 16

2.52761 1
2.56042 2
2.60624 4
2.65809 1

2.81322 1
2.85034 4

2.87596 2
2.89566 4
2.89566 4

2.90733 4
2.92065 32

3.11174 2
3.14455 4
3.15634 1
3.19037 8
3.24222 2

3.36416 2
3.39735 2

and the topological degeneracy which was lost upon coupling
to matter will reassert itself. The photon modes of the zero
external momentum sector are shown in Table IV for several
values of λ.

We will calculate the energy spectrum using a path-integral
approach similar to that of Ref. [20]. In order to ensure that
the gauge redundancy is fully accounted for, it is useful to
first calculate the free energy. This is done in Sec. II, starting
with two exactly solvable theories, pure Chern-Simons and
Maxwell-Chern-Simons, before moving on to QED3 and the
Dirac-CS theory in the large-Nf limit. The structure of the
free energy will allow us to identify the multifermion states,
along with their bound states which appear in the photon
contribution. In Sec. III we determine the energy levels and
we conclude in Sec. IV.

II. PATH INTEGRAL AND FREE ENERGY

To understand the spectrum of the large-Nf QED3 and
Dirac-CS theory, we evaluate its path integral [20]. The path
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TABLE IV. Dirac-Chern-Simons modes at Nf , k = ∞ with zero external momentum, q = 0. (ω̄ = LE/2π .)

λ = Nf /k

0 1/10 1/4 1/2 1 4 10 ∞
0 0.012851 0.032056 0.063615 0.123519 0.347859 0.475391 0.584130

1.39173 1.358213 1.303479 1.201486 0.859690 0.700684
1.4142136 1.436722 1.470375 1.525588 1.629405 1.990723 2.171077 2.311525

3.142113 3.111848 3.061891 2.966946 2.626458 2.450844
3.162278 3.182355 3.212169 3.260552 3.349688 3.637930 3.765391 3.855225

4.235129 4.223855 4.205187 4.169170 4.025093 3.935641
4.242641 4.250129 4.261281 4.279522 4.313961 4.443737 4.761364 4.586816

5.086480 5.067543 5.036016 4.975471 4.519975 4.660037
5.099020 5.111437 5.129740 5.159072 5.211794 5.371116 5.439288 5.489309

5.820132 5.804317 5.779259 5.734850 5.599761 5.537818

integral is

Z = 1

Vol(G)

∫
DADψ e−S[A,ψ], (6)

where Vol(G) is the volume of the gauge group. For simplicity,
we work on the square torus: the modular parameter τ = i and
the x and y cycles are equal in length: x ∼ x + L, y ∼ y + L.
Eventually, we will specify to the zero-temperature limit,
1/T = β → ∞, but for now we leave β finite.

The gauge field A can be split into zero and finite
momentum pieces,

Aμ = aμ + A′
μ, A′

μ = 1√
βL2

′∑
p

Aμ(p)eipr , (7)

where p sums over pμ = 2πnμ/Lμ, Lμ = (β,L,L), where
nμ ∈ Z and the prime on the summation indicates that the
nμ = (0,0,0) mode is not included. We note that while
this representation is completely sufficient for the theories
we consider in the paper, it does allow for nontrivial flux
sectors, and this is discussed in more detail in Appendix F.
Overlooking this technicality, the measure of integration is
DA = Da DA′. Unlike on R3, the zero modes a are not pure
gauge configurations. Instead, the gauge transformation which
shifts a,

U = exp

[
2πi

∑
μ

nμrμ

Lμ

]
, (8)

is only well defined provided nμ ∈ Z. Under the action of U ,
the zero modes transform as aμ → aμ + 2πnμ/Lμ, and so
they are periodic variables and should be integrated only over
the intervals [0,2π/Lμ). Including a Jacobian factor of

√
βL2

for each component, we have∫
Da = (βL2)3/2

∫ 2π/β

0
da0

∫ 2π/L

0
d2a. (9)

The spatially varying portion of the gauge field can be
decomposed further into A′ = B + dφ where φ parametrizes
the gauge transformations of A′, and B may be viewed as the
gauge-fixed representative of A′. Naturally, gauge invariance
implies that the action is independent of φ: S[ψ,A] = S[ψ,a +
B]. Here, we work in the Lorentz gauge, ∂μBμ = 0. The full

measure of integration is then

DA = Da DB D(dφ). (10)

We begin by expressing D(dφ) directly in terms of the phases
φ. They can be related through the distance function D(ω,ω +
δω) = (

∫ |δω|2)
1/2

:

D(φ,φ + δφ) =
(∫

|δφ|2
)1/2

,

D(dφ,dφ + dδφ) =
(∫

|dδφ|2
)1/2

=
(∫

δφ(−∇2)δφ

)1/2

. (11)

Changing variables, the measure becomes

D(dφ) = D′φ
√

det′(−∇2), (12)

where the primes indicate that constant configurations of φ are
not included and that the zero eigenvalue of the Laplacian is
omitted. This functional determinant is the familiar Faddeev-
Popov (FP) contribution to the path integral. As expected for
Abelian gauge theories, both of these factors are independent
of the gauge field B.

The volume of the gauge group can be divided in a similar
fashion

Vol(G) = Vol(H )
∫

D′φ, (13)

where H is the group of constant gauge transformations.∫
D′φ will cancel the identical factor present in the numerator

from the gauge field measure in Eq. (12), and Vol(H ) can
be determined using the distance function defined above.
A constant gauge transform has φ = c, a constant, where
c ∈ [0,2π ). We find

Vol(H ) =
∫ 2π

0
dc

D(c,c + δc)

δc
=

∫ 2π

0
dc

δc

δc

(∫
1

)1/2

= 2π
√

Vol(T2 × S1) = 2π
√

βL2. (14)

Putting these facts together, we are left with

Z = βL2

2π

√
det′(−∇2)

∫
d3a DB Dψ e−S[a,B,ψ]. (15)

205128-4



SPECTRUM OF CONFORMAL GAUGE THEORIES ON A TORUS PHYSICAL REVIEW B 95, 205128 (2017)

In the following two sections, we calculate the free energies
and partition functions of the pure Chern-Simons and the
Maxwell-Chern-Simons theories. These serve as simple exam-
ples (and verifications) of the normalization and regularization
procedure, before we move on to the third section and primary
purpose of this paper, large-Nf QED3 and Dirac-Chern-
Simons.

A. Pure Chern-Simons theory

It is well known that pure Abelian Chern-Simons theory
should have ZCS = k [25]. Since the action in Eq. (5) only has
linear time derivatives, the Hamiltonian vanishes and it may at
first be surprising that ZCS is not simply unity: 〈0|0〉 = 1. One
way to understand this is through canonical quantization. The
observable operators of the theory are the two Wilson loops
winding around either cycle of the torus. Their commutation
relations are determined by the Chern-Simons term, and at
level k, it can be shown that the resulting representation
requires at least a k-dimensional Hilbert space (see, e.g., [40]).
The partition function is therefore ZCS = ∑k

n=1 〈n | n〉 = k.
Within the general framework of topological field theories, the
partition function on the torus should evaluate to the dimension
of the corresponding quantum mechanical Hilbert space.

The pure CS partition function is

ZCS = βL2

2π

√
det′(−∇2)

∫
da DB e−SCS[B]. (16)

We write the Chern-Simons action in momentum space as
SCS[B] = 1

2

∑
q Bμ(−q)�μν

CS(q)Bν(q), where

�
μν

CS(q) = ik

2π
εμνρqρ, (17)

with qμ = 2πnμ/Lμ, nμ ∈ Z. Performing the Gaussian inte-
gral, we find

ZCS = βL2

2π

√
det′(−∇2)

√
det′

(
2π

�
μν

CS

)∫
da. (18)

It is simpler to work with the free energy and then return to
the partition function at the end of the calculation:

FCS = − 1

β
log ZCS = Fa + Fπ + FFP − 1

β
log

[
βL2

2π

]
.

(19)

We proceed to treat each contribution individually. The
integral over the zero modes gives

Fa = − 1

β
log

[∫
da

]
= − 1

β
log

[
(2π )3

βL2

]
. (20)

This cancels the volume-dependent constant in the free energy,
leaving FCS = − 1

β
log(2π )2 + Fπ + FFP. The FP determi-

nant’s contribution is

FFP = − 1

β
log

√
det′(−∇2) = − 1

2β

′∑
q

log q2, (21)

where qμ = 2πnμ/Lμ, nμ ∈ Z. As will be the convention
throughout this paper, the prime on the summation indicates

that the zero momentum mode [nμ = (0,0,0)] is omitted.
Finally, the piece from the Gaussian integral is

Fπ = 1

2β
log det′

[
�

μν

CS

2π

]
. (22)

For each momentum qμ, the Chern-Simons kernel has three
eigenvalues, 0 and ±ik|q|/2π , but only the nonzero values
should be included. In fact, it is easy to verify that the eigen-
vector corresponding to the 0 eigenvalue is proportional to qμ

and consequently arises from the pure gauge configurations
∼∂μφ which have already been accounted for. Therefore,

Fπ = 1

2β

′∑
q

log

[
1

4π2

k2

4π2
q2

]
. (23)

Using the zeta-function regularization identity
∑′

p = −1, we
have

Fπ = 1

2β

′∑
q

log q2 − 1

β
log

(
k

4π2

)
. (24)

The momentum sum in Fπ cancels exactly with the sum in FFP.
This is a direct consequence of the fact that the CS theory has
no finite-energy states and, notably, is only apparent when the
Faddeev-Popov and gauge kernel determinants are considered
together. All together, the total free energy is

FCS = − 1

β
log k, (25)

which gives ZCS = k as claimed.

B. Maxwell-Chern-Simons theory

It is also useful to understand how the topological degen-
eracy emerges in the presence of finite-energy modes. This is
easily accomplished by adding a Maxwell term:

SMCS[A] = SM[A] + SCS[A], (26)

where SM[A] is given in Eq. (4). The procedure for calculating
the free energy is identical to the pure CS case except that the
gauge kernel is now

�MCS(q) = q2

e2

(
δμν − qμqν

q2

)
+ ik

2π
εμνρqρ. (27)

As above, this matrix has one vanishing eigenvalue in the
pure gauge direction and two nontrivial ones in orthogonal
directions:

q2

e2
± ik

2π
|q|. (28)

Performing the functional integral and taking the logarithm,
we find

Fπ = 1

2β

′∑
q

log

[
q4

e4
+ k2q2

4π2

]
. (29)

As in the pure CS case, the FP determinant cancels a factor of
q2 from Fπ . Now, however, this does not completely remove
the momentum dependence of the sum. The total free energy
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is

FMCS = − 1

β
log 4π2 + Fπ + FFP

= 1

β
log

(
e2

2π

)
+ 1

2β

′∑
n,q

log

[
ε2
n + q2 + e4k2

4π2

]
,

(30)

where we have written qμ = (εn,q) with εn = 2πn/β, n ∈ Z.
Analytically continuing to real time, εn → −iω, the argument
of the logarithm is ω2 − γ 2

q where γq =
√

q2 + (e2k/2π )2.
We recognize the γq’s as the frequencies of a set of harmonic
oscillators. As in the previous section, this is only manifest
when the sum Fπ + FFP is considered: by itself, Fπ seems
to imply the existence of an extra set of oscillators whose
frequencies are γ̃q = |q|.

The presence of the oscillators is even clearer upon perform-
ing the (imaginary) frequency sum. Adding and subtracting the
zero mode, we are left to evaluate an infinite sum

FMCS = − 1

β
log

(
2πγ0

e2

)
+ 1

2β

∑
n,q

log

[
n2 +

(
βγq

2π

)2
]
.

(31)

By using the known analytic properties of the zeta function for
complex s, we can assign a value to the otherwise obviously
diverging sum. For the logarithm, this representation results in
the identification

∑
n

log

[
n2 +

(
βγq

2π

)2
]

= − lim
s→0

d

ds

∑
n

[
n2 +

(
βγq

2π

)2
]−s

= − lim
s→0

d

ds
ζE

(
s;

(
βγq

2π

)2
)

, (32)

where ζE (s; a2) is the Epstein zeta function. After some
standard manipulations (given in Appendix B), we arrive at
the expression

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1 − e−βγq

]
. (33)

Re-exponentiating, we find

ZMCS = k
∏

q

Zq,

Zq = e−βγq/2

1 − e−βγq
= e−βγq/2

∞∑
n=0

e−βnγq . (34)

As observed, the partition function is a product over an
infinite stack of harmonic oscillators with frequencies γq.
The topological degeneracy enters through the factor of k

multiplying ZCS: there are k identical sets of oscillators. We
note that in the limit e2 → ∞, the barrier to the first excited
state becomes infinitely large, effectively projecting onto the

lowest Landau level. Ignoring some constants, we arrive back
at the pure Chern-Simons described above.

C. QED3 and Dirac-Chern-Simons theory

When we couple the gauge field to fermions, the partition
function is no longer exactly solvable. Nonetheless, when
the number of fermion flavors, Nf , is large, a saddle-point
approximation is valid and allows a systematic expansion
in 1/Nf . As discussed in the introduction, the QED3 and
Dirac-CS fixed points are obtained in the limit e2 → ∞, and
so we will not explicitly include the Maxwell action SM[A] in
our calculations. In order to avoid the parity anomaly [41,42],
we take Nf to be even in all that follows. The partition function
is given in Eq. (15) with action

SDCS[ψ,A] = SD[A,ψ] + SCS[A], (35)

where SD[A,ψ] and SCS[A] are given in Eqs. (3) and (5)
respectively. The Chern-Simons level k is assumed to be of the
same order as Nf . We begin by integrating out the fermions,

Z = βL2

2π

√
det′(−∇2)

∫
da DB

× exp(−SCS[B] + Nf log det i /D), (36)

where /D = σμ(∂μ − iaμ − iBμ). We subsequently expand the
determinant in terms of B:

log det(i /D) = tr log
(
i /∂ + /a

) + tr

(
1

i /∂ + /a
/B

)

− 1

2
tr

(
1

i /∂ + /a
/B

1

i /∂ + /a
/B

)
+ · · · . (37)

By rescaling B → B/
√

Nf , the subleading behavior of the
linear and quadratic terms, as well as the Chern-Simons action,
is clear.

On the plane, the saddle-point value of A vanishes by
symmetry and gauge invariance. However, since A → A + c

for constant c is no longer a gauge transformation on the
torus, the zero modes are distinct and could conceivably have
a nonzero expectation value: 〈a〉 = ā 
= 0. In fact, neither the
pure CS nor Maxwell-CS actions depended on aμ. The matter
lifts this degeneracy by creating an effective potential for the
a’s, and ā can be determined by minimizing the free-fermion
functional determinant

F0(a) = −tr log
(
i /∂ + /a

) = −
∑

p

log (p + a)2. (38)

The summation above is over spacetime momenta pμ =
2π (nμ + 1/2)/Lμ, nμ ∈ Z as is appropriate for our choice
of fermions with antiperiodic boundary conditions. This
calculation is performed in Appendix C where it is shown
that the saddle-point value of the gauge field is āμ = 0:
this is closely linked to the choice of antiperiodic boundary
conditions for the fermions, which we have established also
minimize the total energy.
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The linear term in B in Eq. (37) vanishes, so that the
subleading term in the determinant expansion is

Sf [B] = Nf

2
tr

(
1

i /∂
/B

1

i /∂
/B

)
= Nf

2

∑
q

Bμ(−q)�μν

f (q)Bν(q),

(39)

where

�
μν

f (q) = 2

βL2

∑
p

× pμ(pν + qν) + (pμ + qμ)pν − δμνp · (p + q)

p2(p + q)2 .

(40)

On the plane, this expression evaluates to [43]

�μν
∞ = |q|

16

(
δμν − qμqν

q2

)
. (41)

On the torus, a simple analytic formula is no longer available
and �f must be calculated numerically. Expressions for the
components of �

μν

f on the symmetric torus are given in
Appendix D.

Since k ∼ O(Nf ), the CS term will contribute at the same
order as �f . Rescaling Eq. (17) to bring out an overall factor of
Nf , we write the momentum space kernel of the Chern-Simons
term as

�
μν

CS(q) = i

2πλ
εμνρqρ, λ = Nf

k
. (42)

All together, the full effective potential is

Seff[B] = Nf

2

∑
q

Bμ(−q)�μν(q)Bν(q),

(43)
�μν(q) = �

μν

CS(q) + �
μν

f (q),

and the large-Nf partition function is

Z ∼= βL2

2π

√
det′(−∇2) e−βNf F0(ā)

×
∫

DB exp

[
−1

2

∑
q

Bμ(−q)�μν(q)Bν(q)

]

= βL2

2π

√
det′(−∇2) e−βNf F0(ā)

√
det′

(
2π

�μν

)
. (44)

The corresponding free energy is

F = − 1

β
log Z ∼= Nf F0 + FG − 1

β
log

[
βL2

2π

]
, (45)

where the full gauge field contribution is

FG = FFP + Fπ,

Fπ = − 1

β
log

√
det′

(
2π

�μν

)
,

FFP = − 1

β
log

√
det′(−∇2). (46)

1. Zero external momentum, q = 0

We begin by considering the zero (spatial) momentum
portion of the free energy. Denoting the Euclidean space-
time momenta qμ = (ε,q), we set q = 0. In this case, only
�ij (ε,0) 
= 0, for i,j = x,y:

�ij (ε,0) =
(

�xx
f ε/2πλ

−ε/2πλ �
yy

f

)
. (47)

Expressions for �xx
f and �

yy

f are given in Eqs. (D7) and (D8)
of Appendix D. Taking the determinant, the free energy is

F q=0
π = 1

β
log 2π + 1

2β

′∑
n

log

[
�xx

f (εn,0)2 + ε2
n

4π2λ2

]
,

(48)

where εn = 2πn/β, n ∈ Z/{0}, and the symmetry of the torus
has been used to set �xx

f = �
yy

f . The FP piece is

F
q=0
FP = − 1

2β

′∑
n

log ε2
n. (49)

Adding the two and taking the zero-temperature limit, β → ∞,
the total gauge contribution is

F
q=0
G = 1

2

∫
dε

2π
log

[(
�xx

f

ε

)2

+ 1

4π2λ2

]
. (50)

For large ε, the integral does not converge. Instead, �xx
f

approaches its infinite-volume limit in Eq. (41):(
�xx

f

ε

)2

+ 1

4π2λ2
→

(
1

16

)2

+ 1

4π2λ2
. (51)

This is not a problem since an integral over a constant vanishes
in the zeta regularization scheme. Adding and subtracting the
large-frequency limit, the free energy is a finite function

F
q=0
G = 1

2

∫
dε

2π

{
log

[(
�xx

f

ε

)2

+ 1

4π2λ2

]

− log

[(
1

16

)2

+ 1

4π2λ2

]}
. (52)

2. Finite external momentum, q �= 0

For the finite-momentum piece, we begin by restricting
the polarization matrix �μν(ε,q) to the physical subspace. As
required by gauge invariance, it has a vanishing eigenvalue
along the qμ = (ε,q) direction: qμ�μν = 0. To determine
the remaining two modes, we project onto the orthogonal
directions

vT = 1

|q|

⎛
⎝ 0

qy

−qx

⎞
⎠,

vL = 1

|q|√ε2 + q2

⎛
⎝−q2

εqx

εqy

⎞
⎠, (53)
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and, after some simplifying, arrive at

�proj = 1

q2

(
(ε2 + q2)�00

√
ε2 + q2(qy�

0x − qx�
0y)√

ε2 + q2(qy�
0x − qx�

0y) q2(�xx + �yy) − ε2�00

)
. (54)

Taking the determinant, the contribution to the free energy is

F q 
=0
π = − 1

β
log

√
det′

(
2π

�μν

)
= − 1

β

′∑
ε,q

log 2π + 1

2β

′∑
ε,q

log �μν

= 1

2

∫
dε

2π

′∑
q

log

{
(ε2 + q2)

q2

[
�00

(
�xx + �yy − ε2

q2
�00

)
− 1

q2
(qy�

0x − qx�
0y)2

]}
, (55)

where the 1
β

log 2π term has vanished in the zero-temperature limit. The Faddeev-Popov portion of the free energy,

F
q 
=0
FP = −1

2

∫
dε

2π

∑
q

log(ε2 + q2), (56)

perfectly cancels the ε2 + q2 prefactor inside the logarithm in Eq. (55). Had it not been included, we may have erroneously
assumed the existence of a state with energy E = |q| as there is on the plane when k = 0.

As ε2 + q2 becomes large, �μν approaches its infinite volume limit [Eq. (41)] like in the q = 0 case. Here as well, the
summand becomes a constant which vanishes in our regularization procedure. Putting this together, we have

F
q 
=0
G = 1

2

∫
dε

2π

′∑
q

{
log

[
�00

q2

(
�xx + �yy − ε2

q2
�00

)
− 1

q4
(qy�

0x − qx�
0y)2

]
− log

[(
1

16

)2

+ 1

4π2λ2

]}
. (57)

The total contribution of the gauge field to the free energy is given by the sum of this expression with F
q=0
G in Eq. (52).

III. SPECTRUM

In this section we explicitly calculate the universal spectrum
on the finite torus using the path-integral expansion we just
derived.

As the photon is the only element of the theory which differs
from the free theory of Nf Dirac fermions, it is not surprising
that the free theory spectrum can account for most of the states.
The free Hamiltonian is

HD = −i

∫
d2x ψ†

α(x)σi∂iψα(x), (58)

and can be diagonalized by first going to Fourier space,

ψα(x) = 1

L2

∑
p

eiq·x
(

c1α(p)
c2α(p)

)
,

(59)

p = 2π

L

(
nx + 1

2
,ny + 1

2

)
, nx,y ∈ Z,

and then changing basis to χ±α(p):(
c1α(p)
c2α(p)

)
= 1√

2

(
1 1

P/|p| −P/|p|
)(

χ+α(p)
χ−α(p)

)
, (60)

where P = px + ipy , |p| =
√

p2
x + p2

y . In this basis, the
Hamiltonian is

HD =
∑

p

|p|[χ †
+α(p)χ+α(p) − χ

†
−α(p)χ−α(p)]. (61)

We identify the vacuum as the state having all negative
energy modes filled: χ+α(p) |0〉 = χ

†
−α(p) |0〉 = 0. Conse-

quently, χ
†
+α(p) is a particle creation operator carrying mo-

mentum p, and χ−α(p) is a hole creation operator carrying
momentum −p. Note that all the fermionic momenta corre-
spond to antiperiodic boundary conditions around the torus,
because these minimize the ground state energy, as shown in
Appendix C.

To determine the excitations relevant to QED3 and the
Dirac-CS theory, we recall that once the theory is gauged,
neither χ+α(p) nor χ−α(p) is gauge invariant, and all single-
particle states are prohibited. Similarly, only charge-neutral
two-particle states are allowed. We therefore expect the lowest
fermion-like energy states to be of the form

χ
†
+α(p + q)χ−β(p)|0〉, χ

†
+α(−p)χ−β(−p − q)|0〉. (62)

Here, we have taken advantage of the translational invariance
of the theory to distinguish states by their total external
momentum q, where q = 2π (nx,ny)/L, nx,y ∈ Z. Provided
the internal momentum p is not such that p + q = −p, these
states are distinct for each α, β, and have energy

Ef (q,p) = |p + q| + |p|. (63)

Naïvely counting, for every q and p, the flavor symmetry
gives (at least) 2N2

f such states (additional degeneracies may
be present depending on the lattice and internal momentum,
but this will not be important for the subsequent discussion).
When p + q = −p, the two states in Eq. (62) are identical,
and there are only N2

f possible states.
This story no longer holds even at Nf = ∞. The gauge field

only couples to single trace operators, so it is natural to expect
that the corresponding states may be shifted like in the O(N )
model [2]. However, QED3 and the Dirac-CS theory differ
from this example by having four different single-trace fermion
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bilinear operators: the “mass” operator M(x) = ψ̄αψα(x) and
the global gauge currents, Jμ(x) = ψ̄αγ μψα(x). It is apparent
that the current operators and the mass operator must be
treated very differently when we consider the equations of
motion:

Jμ = k

4π
J

μ
top + i

e2
εμνρ∂νJtop,ρ, (64)

where J
μ
top = εμνρ∂νAρ is the current of the topological U(1)top

symmetry. This symmetry is equivalent to the noncompactness
of Aμ and the irrelevance of monopoles at the fixed point. At
Nf = ∞, when k = 0, Jμ is more correctly understood as a
descendant of the topological current and not as a composite
operator. In the e2 → ∞ limit, it vanishes altogether and
should not be included in the spectrum: all states corresponding
the poles of 〈Jμ(x)J ν(0)〉 in the free theory no longer exist in
large-Nf QED3. The degeneracy is reduced so that for each
total momentum q and internal momentum p (where p + q 
=
−q), QED3 has only 2N2

f − 1 free-fermion-like states with
energy Ef (q,p) (when p + q = −p, the degeneracy is further
reduced to N2

f − 1). This is discussed in more detail in
Appendix E. For a small set of momenta, these energy levels
are shown in Table I along with their respective degeneracies.

For nonvanishing k, the situation is very similar. Equa-
tion (64) indicates that the CS term attaches k units of charge

to each unit of magnetic flux so that the charged state with the
lowest energy has k fermions accompanied by a single unit
of magnetic flux. In the limit k → ∞, these states have very
high energies and, as in the k = 0 case, will not contribute to
the low-energy spectrum. The same free-fermion states whose
energies are given in Table I also appear in the Dirac-CS theory
with the same degeneracy theory regardless of the level k.

For both QED3 and Dirac-CS, the removal of Jμ is
counterbalanced by the addition of Aμ. The spectrum must be
supplemented by the poles of the photon propagator, �μν(x) =
〈Aμ(x)Aν(0)〉, and, unlike for the free-fermion states, the
energies of the photon states depend on the level k.

From the effective action in Eq. (43), the photon propagator
is obtained by inverting the polarization matrix �μν(q). How-
ever, as discussed in the previous section, gauge invariance
is only fully taken into account once the FP determinant’s
contribution is included as well. Analogously to our iden-
tification of γq as the frequencies in a set of harmonic
oscillators for the Maxwell-Chern-Simons theory in Eq. (30),
the physical photon modes are actually given by the zeros of the
argument of the logarithms in FG. When Nf = ∞, each mode
represents an infinite tower of states of a harmonic oscillator
like in Maxwell-Chern-Simons: additional energy levels are
present as integer multiples of the modes determined from FG.
Equations (52) and (57) indicate that these modes occur when

0 1 2 3 4 5 6

ω̄

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LΠxx(ω, 0)
±|ω̄|/λ

FIG. 1. Plot of �xx
f (ω,0) and |ω|/2πλ. When k = 0, the modes are twofold degenerate and occur when �xx

f = 0. For k 
= 0, the degeneracy
splits and the frequencies are given by the intersection points �xx

f (ω,0) = ±|ω|/(2πλ). For λ = 4, this occurs when the solid blue and dashed
magenta lines cross. The lowest and second-lowest energies are shown in black with an asterisk and a circle, respectively. The vertical
dash-dotted lines in red mark the poles of �xx

f at the two-particle energies of the free theory. (ω̄ = Lω/2π .)
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the functions

K0(ω) = −
(

�xx
f (ω,0)

ω

)2

+ 1

4π2λ2
,

Kq(ω)= �00(ω,q)

q2

[
�xx(ω,q) + �yy(ω,q) + ω2

q2
�00(ω,q)

]

− 1

q4
[qy�

0x(ω,q) − qx�
0y(ω,q)]2 (65)

vanish. Here, we have analytically continued to real fre-
quencies, ω = iε. In what follows ε will always denote an
imaginary frequency, while ω will represent a real frequency;
the same symbol for the polarization �μν is used for both.
For k = 0, some mode levels are listed in Table II while
Table III shows the lowest energy levels when multiphoton
states are included. Table IV gives the lowest ten modes with
zero external momentum for several values of λ = Nf /k.

To summarize, the Nf = ∞ theory does not have single-
particle excitations. Instead, the lowest energy states are of
the form given in Eq. (62) or are created by the photon,
Aμ. The free-fermion 2-particle energies Ef (q,p) occur with
either a (2N2

f − 1) or a (N2
f − 1)-fold degeneracy depending

on the internal momentum p (and before additional lattice
symmetries are taken into account). The frequency modes of
the photon operator are given by the gauge-fixed poles of �μν

and correspond to the zeros of the expressions in Eq. (65). Each
mode, ωγ , represents a harmonic oscillator so that the energies
2ωγ ,3ωγ ,ωγ + ωγ ′ , . . . are present in the spectrum as well.

We will examine Eq. (65) in more detail in the subsequent
sections.

A. Zero external momentum, q = 0

When the external momentum vanishes, the zeros of
Eq. (65) occur when

�xx
f (ω,0) = ± |ω|

2πλ
. (66)

In Fig. 1, the left-hand side is shown with a solid blue line and
the right-hand side is shown with a dashed magenta line for
λ = 4.

When k = 0 (λ → ∞), the energy modes are twofold
degenerate and are given by the point where �xx

f crosses
the x axis. This degeneracy may be surprising since in 2+1
dimensions we expect the photon to have a single polarization.
However, if we had approached the problem by gauge fixing
in the Coulomb gauge, we would immediately see that the
constraint ∇ · A = 0 does not affect the q = 0 modes, again
resulting in a degeneracy. In fact, the exact degeneracy is a
result of the additional symmetry of our torus, which gives
�xx

f (ε,0) = �
yy

f (ε,0).
To understand the effect of the gauge field on the theory, it

is useful to explicitly write the form that �xx
f (ω,0) takes:

�xx
f (ω,0) = y2

4πL
− ω2

2L2

∑
p

1

|p|
1

4p2 − ω2
, (67)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1/λ

0

1

2

3

4

5

ω̄

FIG. 2. Plot of the modes of the Dirac-CS theory as a function of 1/λ. When 1/λ → 0, the CS term vanishes, and the energies are twofold
degenerate, occurring when �xx

f = 0. These are marked with the dashed purple line. As 1/λ becomes large, the lowest mode approaches zero
and all others approach the two-particle energies of the free theory, shown with a dash-dotted red line. (ω̄ = Lω/2π , λ = Nf /k.)
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where y2 = −Y2(1/2) ∼= 1.6156 for the function Y2(s) defined
in Eq. (A1). Schematically, we see from Fig. 1 that we could
rewrite this as a rational function:

�xx
f (ω,0) ∼

∏
γ

(
ω2 − ω2

γ

)
∏

p (ω2 − Ef (0,p)2)
, (68)

where ωγ are the zeros of the polarization, �xx
f (ωγ ,0) = 0, and

Ef (0,p) = 2|p| are its poles. Its contribution to the partition
function is therefore something like

Zq=0 ∼
∏
iεn

{ ∏
p[(iεn)2 + 4p2]∏

γ [(iεn)2 + (ωγ )2]

}2

. (69)

Not only are the interacting theory’s energies present as poles,
but the free theory’s two-particle energies are accounted for
as zeros in the numerator, thereby removing them from the
spectral function. The fact that the function is squared accounts
for the square symmetry of the torus.

When k is nonzero, the degeneracy splits. The energies
are depicted in Fig. 1 as the intersection points of �xx

f and
±|ω|/2πλ for λ = 4. Figure 2 plots the first few modes in
blue as a function of 1/λ, and for several values of λ, the first
ten modes are listed in Table IV. When λ is very large, these
modes have only a small splitting and are nearly the same as in
QED3, shown with the purple dashed line in Fig. 2. Conversely,
as λ → 0, the lowest mode ω∗

0 approaches zero while all other
levels approach one of the free-theory two-particle energies,
depicted with a dash-dotted red line in Fig. 2.

The lowest energy level, ω∗
0, can be identified as the

splitting between the ground states of the pure CS theory
induced by matter. In the limit of λ and ω∗

0 very small, the
topological degeneracy is restored (albeit in the k → ∞ limit).
This aligns with our expectation that gauge fluctuations are
suppressed at large k even when Nf is small [21]. In a similar
fashion, when the fermions have a large mass Mf , we find
limω→0 �xx

f (ω,0) ∼ e−Mf , once again implying an effective
topological ground state degeneracy.

B. Finite external momentum, q �= 0

The situation for finite external momenta is very similar.
Using Eq. (65), along with Eqs. (D7) and (D8), all levels can
be numerically evaluated for any value of λ.

The next-lowest energies occur when the total momentum is
q1 = 2π (1,0)/L, or any other of the momenta related to it by
a π/2 rotation: 2π (0,1)/L, 2π (−1,0)/L, and 2π (0,−1)/L.
The C4 symmetry of the square torus implies an additional
fourfold degeneracy for all energy levels which would not
generally be present. For these particular momenta, it turns
out that the second term of Kq1 (ω) in Eq. (65) vanishes for
all ω when k = 0, and the zeros of the determinant can be
found by separately solving for the zeros of �00

f and �T
f =

�xx
f + �

yy

f + ω2�00
f /q2. These functions are plotted in Fig. 3

and the resulting modes are given in Table II along with the
results for q2 = 2π (1,1)/L.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

ω̄

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

LΠ00
f (ω,q1)

LΠT
f (ω,q1)

FIG. 3. Plot of �00
f (ω,q1) and �T

f (ω,q1) for q1 = 2π (1,0)/L, shown in solid blue and dashed magenta, respectively. The vertical dash-dotted
lines in red denote the two-particle energies of the free theory, Ef (q1,p). (ω̄ = Lω/2π .)
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IV. CONCLUSION

This paper has described the structure of 2+1 dimensional
conformal gauge theories on the two-torus T2. We computed
the partition function on T2 × R in the limit of large fermion
flavor number, Nf , using strategies similar to those employed
for the computation on the three-sphere S3 in Ref. [20]. We also
deduced the energies of the low-lying states in the spectrum.
For large Nf , most of the states are simply given by the
sum of the free-fermion energies with antiperiodic boundary
conditions, as established in Appendix C. However, singlet
combinations of pairs of fermions which couple to the current
operator are strongly renormalized even at Nf = ∞: these
states appear instead as bound states given by the zeros of
the effective action for the gauge field. A similar phenomenon
appears [2] in the O(N ) Wilson-Fisher conformal theory.

These results should be useful in identifying possible
realizations of nontrivial conformal field theories in exact
diagonalization studies of model quantum spin systems in
a manner similar to the study in Ref. [1]. For instance,
focusing on the q = (0,0) sector, a comparison of Tables I
and III indicates the existence of a twofold degenerate
singlet state with significantly lower energy than the (N2

f −
1)-fold degenerate fermion states. Although higher order
effects from both the finite-N CFT and the numerics will
undoubtedly split the energies of these fermion states, it
is reasonable to predict that a significant gap will remain.
This and similar trends between numerics and analytics
could serve as a useful diagnostic tool for the state being
simulated.
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APPENDIX A: GENERALIZED EPSTEIN
ZETA FUNCTION

We define the function Y2(s) to be

Y2(s) =
∞∑

n1,n2=−∞

[(
n1 + 1

2

)2

+
(

n2 + 1

2

)2
]−s

. (A1)

It is only convergent for Re s > 1/2, but can be defined by
analytically continuing outside of this domain. Specifically, it
can be expressed in terms of the special functions λ and β [44]:

Y2(s) = 4 · 2s λ(s)β(s), (A2)

where

β(s) =
∞∑

n=0

(−1)n(2n + 1)−s ,

λ(s) =
∞∑

n=0

(2n + 1)−s = (1 − 2−s)ζ (s) (A3)

with ζ (s) = ∑∞
n=1 n−s , the Riemann zeta function.

APPENDIX B: ANALYTIC CONTINUATION OF
MAXWELL-CHERN-SIMONS FREE ENERGY

In Eq. (32) we expressed the summation over imaginary
frequencies in terms of the Epstein zeta function

ζE (s; a2) =
∞∑

n=−∞
[n2 + a2]−s , (B1)

where a = βγq/2π . This expression is only valid for
Re s > 1/2, but can be analytically continued onto the entire
complex plane. To see this, we use the identity

1

As
= πs

�(s)

∫ ∞

0
dt ts−1e−πtA, (B2)

to write

ζE (s; a2) =
∑

n

πs

�(s)

∫ ∞

0
dt ts−1e−πt(n2+a2). (B3)

For sufficiently large values of s, we can exchange the
summation and the integral, and, subsequently, use the Poisson
summation formula:

ζE (s; a2) = πs

�(s)

∫ ∞

0
dt ts−1e−πta2

∑
n

e−πtn2

= πs

�(s)

∫ ∞

0
dt ts−1e−πta2 1√

t

∑
�

e−π�2/t . (B4)

We see that divergence for Re s � 1/2 is due to the � = 0 term
in the sum. Separating this term out and evaluating the integral,
we have

ζE (s; a2) = a1−2s

√
π�(s − 1/2)

�(s)

+ 2πs

�(s)

∞∑
�=1

∫ ∞

0
dt ts−3/2e−πa2t e−π�2/t . (B5)

We can now extend s all the way to zero. Taking the derivative
and limit, we have

− lim
s→0

d

ds
ζE (s; a2) = 2πa − 2

∞∑
�=1

e−2πa�

�

= 2πa + 2 log(1 − e−2πa). (B6)

Plugging this result into Eq. (31), we obtain

FMCS = − 1

β
log k − 1

β

∑
q

log

[
e−βγq/2

1 − e−βγq

]
. (B7)
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APPENDIX C: LEADING ORDER
CONTRIBUTION

The leading order contribution in the zero-temperature limit
is

F0(a) = − 1

β

∑
p

log (p + a)2

= −
∑

p

∫
dω

2π
log[ω2 + (p + a)2]

= −
∑

p

∫
dω

2π
log ω2 −

∑
p

|p + a|, (C1)

where p = (ω,p), p = 2π (nx + 1/2,ny + 1/2)/L, (nx,ny) ∈
Z2. The first term vanishes using zeta regularization, and the
second one can be evaluating by analytically continuing to
arbitrary s:

F0(a) = −
∑

p

(p + a)−2s

= −Nf

(
2π

L

)−2s ∑
n

(
n + 1

2
+ α

)−2s

, (C2)

where

αμ = L

2π
aμ. (C3)

We can write this as

F0(a) = −
(

2π

L

)−2s
πs

�(s)

[
1

s − 1
+

∫ ∞

1
dt ts−1�

[
α

0

]
(it)

+
∫ ∞

1
dt t−s

(
�

[
0
α

]
(it) − 1

)]
, (C4)

where � is shorthand for a product of Jacobi theta functions

�

[
α

0

]
(it) =

∏
j=1,2

ϑ

[
αj + 1/2

0

]
(0|it),

(C5)

�

[
0
α

]
(it) =

∏
j=1,2

ϑ

[
0

−αj − 1/2

]
(0|it),

FIG. 4. Plot of the free energy of a free Dirac fermion on the torus
as a function of its boundary conditions, ax , ay .

and we have used the following definition for the Jacobi theta
functions with characteristics:

ϑ

[
a

b

]
(ν|τ ) = exp[πia2τ + 2πia(ν + b)]ϑ(ν + aτ + b|τ )

=
∞∑

n=−∞
exp[πi(n + a)2τ + 2πi(n + a)(ν + b)].

(C6)

For s = −1/2, we have

F0(a) = 1

L

[
− 2

3
+

∫ ∞

1
dt t−3/2�

[
α

0

]
(it)

+
∫ ∞

1
dt

√
t

(
�

[
0

−α

]
(it) − 1

)]
. (C7)

This function is plotted in Fig. 4 and clearly has a minimum
at α = (0,0). In terms of the function Y2 defined in Appendix
A in Eq. (A1),

F0(0) = −2π

L
Y2

(
−1

2

)
. (C8)

APPENDIX D: POLARIZATION DIAGRAM

Here we calculate the leading 1/Nf contribution to the gauge kernel from the fermions. It is given by the polarization diagram:

Sf [B] = 1

2
tr

(
1

i /∂
/B

1

i /∂
/B

)
= 1

2

1

βV

∑
p,q

tr

(
/p

p2
/B(−q)

(
/p + /q

)
(p + q)2

/B(q)

)

= 1

2

1

βV

∑
p,q

tr
(
σρσμσλσ ν

)
Bμ(−q)Bν(q)

pρ(p + q)λ
p2(p + q)2 , (D1)

where we have dropped all explicit references to ā = 0. The internal momentum, p, corresponds to a fermionic field, pμ =
2π (nμ + 1/2)/Lμ, nμ ∈ Z, whereas the external momentum is appropriate for a bosonic field, qμ = 2πnμ/Lμ, nμ ∈ Z. This
can be written as

Sf [B] = 1

2

∑
q

Bν(−q)�μν

f (q)Bν(q) (D2)
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with

�
μν

f (q) = 1

βV

∑
p

tr
(
σρσμσλσ ν

)pρ(p + q)λ
p2(p + q)2

= 2

βL2

∑
p

pμ(pν + qν) + (pμ + qμ)pν − δμνp · (p + q)

p2(p + q)2 . (D3)

In what follows, we will consider the zero-temperature limit, β → ∞.
We begin by calculating the the xx component:

�xx
f (ε,q) = 2

L2

∑
p

∫
dω

2π

px(px + qx) − py(py + qy) − ω(ω + ε)

(ω2 + p2)[(ω + ε)2 + (p + q)2]

= 1

L2

∑
p

[
px(px + qx) − py(py + qy)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)

− |p| + |p + q|
(|p| + |p + q|)2 + ε2

]
. (D4)

This is formally divergent but can be regulated by adding and subtracting the divergent piece and analytically continuing using
zeta functions:

�xx
f (ε,q) = − 1

L2

{ ∑
p

px(px + qx) − py(py + qy)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)

−
∑

p

[ |p| + |p + q|
(|p| + |p + q|)2 + ε2

− 1

2|p|
]

+
∑

p

1

2|p|
}
. (D5)

The divergent term is ∑
p

1

2|p| = 1

2

L

2π

∑
n

1√
(n + 1/2)2

= L

4π
Y2(1/2), (D6)

where Y2(s) is defined for all s in Appendix A. The finite expression is therefore

�xx
f (ε,q) = − 1

4πL
Y2(1/2) − 1

L2

∑
p

[ |p| + |p + q|
(|p| + |p + q|)2 + ε2

− 1

2|p|
]

+ 1

L2

{∑
p

px(px + qx) − py(py + qy)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)}

. (D7)

Similarly, we find

�
yy

f (ε,q) = − 1

4πL
Y2(1/2) − 1

L2

∑
p

[ |p| + |p + q|
(|p| + |p + q|)2 + ε2

− 1

2|p|
]

− 1

L2

{∑
p

px(px + qx) − py(py + qy)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)}

,

�
xy

f (ε,q) = 1

L2

∑
p

px(py + qy) + py(px + qx)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)

,

�00
f (ε,q) = 1

L2

∑
p

|p||p + q| − p · (p + q)

(|p| + |p + q|)2 + ε2

(
1

|p| + 1

|p + q|
)

,

�0i
f (ε,q) = 1

L2

∑
p

ε

(|p| + |p + q|)2 + ε2

(
pi

|p| − pi + qi

|p + q|
)

. (D8)

APPENDIX E: OPERATOR CONTRIBUTIONS
TO THE SPECTRUM

In Sec. III we stated that in addition to imposing charge
neutrality, the gauge field alters the spectrum in two ways at

Nf = ∞. First, its presence enforces the constraint Jμ(x) = 0,
removing one state from the spectrum for every choice of
external momentum q and internal momentum p, thereby de-
creasing the degeneracy of the free-theory spectrum. Further,
the photon creates states which contribute to the spectrum
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as well; their energies coincide with the poles of the photon
propagator, �μν(x) = 〈Aμ(x)Aν(0)〉.

We can understand how this comes about by translating the
field-theoretic operators to the quantum mechanical language
of the free theory. We write

Jμ(x) = 1

L2

∑
q,E

e−ix·qJμ

E (q),

J
μ

E (q) =
∑

p
Ef (q,p) = E

ψ̄α(p + q)γ μψα(p),

M(x) = 1

L2

∑
q,E

e−ix·qME(q),

ME(q) =
∑

p
Ef (q,p) = E

ψ̄α(p + q)ψα(p). (E1)

For the moment, we specify to the case where p + q 
= −p.
Equation (62) shows the two distinct states which exist for
each energy Ef (q,p) (additional degeneracies may be present
due to the symmetry of the lattice, but this does not alter any
of the following discussion). It follows that J

μ

E (q) and ME(q)
create states of the form

J
μ

E (q)|0〉 = [
v

μ

1 (p)χ †
+α(p + q)χ−α(p)

+ v
μ

2 (p)χ †
+α(−p)χ−α(−p − q)

]|0〉,
(E2)

ME(q)|0〉 = [
vM

1 (p)χ †
+α(p + q)χ−α(p)

+ vM
2 (p)χ †

+α(−p)χ−α(−p − q)
]|0〉,

where the “E” subscript on v
μ

i (p) and vM
i (p) has been dropped

for notational ease. These coefficients are easily computed, and
are found to be

v0 = i

2

(
1 − P

|p|
P+Q

|p+q|
1 − P

|p|
P+Q

|p+q|

)
, vx = 1

2

(
− P

|p| + P+Q

|p+q|
− P

|p| + P+Q

|p+q|

)
,

(E3)

vy = i

2

⎛
⎝ P

|p|+ P+Q
|p+q|

− P
|p| − P+Q

|p+q|

⎞
⎠, vM = i

2

(
1 + P

|p|
P+Q

|p+q|
1 + P

|p|
P+Q

|p+q|

)
,

where P = px + ipy , Q = qx + iqy . While it may not be
obvious, it can be verified that the state created by the mass
operator is orthogonal to the three states created by the current
operators, and that these states are all proportional to one
another.

The linear dependence of the current states actually follows
directly from the conservation law ∂μJμ = 0. In terms of the
states, this reads[−i(|p + q| + |p|)J 0

E(q) + qxJ
x
E(q) + qyJ

y

E(q)
]|0〉 = 0.

(E4)

The space spanned by χ
†
+α(p + q)χ−α(p)|0〉 and

χ
†
+α(−p)χ−α(−p − q)|0〉 is a 2-dimensional complex vector

space, equivalent to a 4d real vector space. Equation (E4)
shows that the three J

μ

E (q)|0〉 states actually only span a 2d real
subspace, i.e., a 1d complex vector space. As claimed, the cur-
rents only create a single state. The orthogonality of ME(q)|0〉

to this state is then obvious since Eq. (E3) implies that

(vμ)†vM = 0. (E5)

Returning to the large-Nf theory, the gauge current states
cease to exist, but the mass state remains, resulting in (at
least) a 2N2

f − 1 degeneracy.
In the special case p + q = −p, there is only a single state

for each α,β pair, and so only an N2
f degeneracy in the free

theory. Equation (E3) shows that only the current operators
create states of this form, and, as above, this state is removed
at Nf = ∞, resulting in an N2

f − 1 degeneracy.

APPENDIX F: FLUX SECTORS

In this Appendix we review the role of nontrivial flux sectors
in the theories we considered in Sec. II. When we defined the
gauge field in Eq. (7), we did not consider its ability to carry
nontrivial flux. This is possible because the photon is only
defined modulo 2π/L and so can wind around either cycle of
the torus so that

2πn = 1

β

∫
d3r (∂xAy − ∂xAy) 
= 0. (F1)

Gauge field configurations with nonzero flux cannot be defined
on the entire space with a single function: multiple functions
defined on different patches are necessary. However, in regions
intersecting one or more patches, the descriptions of A

must differ only by a gauge transformation. Analogously
to the quantization of electric charge through the existence
of magnetic monopoles, this forces n to be an integer.
Furthermore, at finite temperature, the photon can also wind
around the time direction, introducing the possibility of F0x

or Fy0 integrating to a nonzero value. For simplicity, we will
only focus on the flux through the spatial torus though our
arguments generalize easily to this case.

One way to represent a nontrivial flux state is to write

Ax = ax + A′
x + 2πny

L2
· (F2)

The Chern-Simons partition function in Eq. (16) is modified
by replacing SCS with

S
(n)
CS,fl[A] = SCS[B] + ik

2π

∫
d3r a0

2πn

L2

= SCS[A] + iβk n a0. (F3)

The path integral must sum over the flux sectors separately; it
becomes

ZCS = βL2

2π

√
det′(−∇2)

∞∑
n=−∞

∫
da e−iβk n a0

∫
dB e−SCS[B].

(F4)

Upon integrating over a0, n is restricted to be zero, and we get
the partition function we determined in the main body of the
paper. Similarly, when a Maxwell term is present, the action
in the presence of flux is modified to

S
(n)
MCS[A] = SMCS[B] + iβk n a0 + β

4e2

(
2πn

L

)2

· (F5)

Integrating over a0 from 1 to 2π/β again sets n to zero.
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In the presence of matter, the flux sector no longer
completely vanishes. However, Dirac fermions in the presence
of flux have a higher energy than without. The saddle-point

approximation we employ in Sec. II C only expands about the
ground state of free-fermion theory; it does not take possible
winding of A into account. Provided N is large enough, this is
a good approximation.
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