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The binary intermetallic compound TiAu is distinguished by an extremely sharp and narrow density of states
peak at the Fermi level that has been proposed, via scattering between mirrored van Hove singularities, to be
the mechanism for antiferromagnetic ordering versus the more fundamental ferromagnetic Stoner instability.
Here we study, using density functional theory methods, magnetic tendencies and effects of doping, the latter
within the virtual crystal approximation (VCA). Ferromagnetic tendencies are quantified using the fixed spin
moment approach, illustrating the strong Stoner instability that does not, however, provide the ground state.
Use of VCA results allows the identification of the value of the Stoner exchange constant I = 0.74 eV for Ti.
Magnetic fluctuations not included with semilocal density functionals are quantified with the procedure provided
by Ortenzi and coauthors, with alloy concentrations corresponding to the quantum critical points reduced by a
factor of three to five. Our results provide useful guidelines for experimental doping studies of TiAu.
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I. INTRODUCTION

Among the variety of magnetic behaviors that have been
reported for itinerant metals, weak ferromagnetism (wFM)
is rare. Only a handful of itinerant magnetic compounds
have been reported in conventional compounds, viz. ZrZn2

[1], TiBe2 [2,3], and off-stoichiometric Sr3In, all comprised
of nonmagnetic elements. Weak magnetism also occurs in
heavy fermion and metallo-organic systems, where correlation
effects are stronger and the mechanism may differ. The
above-mentioned small group of wFMs also share another
common origin: They arise from accidental van Hove sin-
gularities (vHs) that make the nonmagnetic state unstable to
Stoner ferromagnetism [4], even though there is not enough
spectral density to support a substantial ordered moment. The
small moment both reflects and encourages strong magnetic
fluctuations which conspire to keep the magnetic entropy small
at the transition.

The occurrence of small ordered moment, often delicate,
magnetism is beginning to become known as fragile mag-
netism. The term was applied early on in this manner by
Gayathri et al. to some behavior in the doped-manganite
La0.7Ca0.3Mn1xCoxO3 system [5]. Fragile magnetism was also
how the heavy fermion system of doped CeRu2Ge2 was char-
acterized by Raymond and coworkers [6]. In more recent times,
fragile magnetism was reintroduced as a description by Ueland
et al. [7] of heavy fermion YbBiPt. This characterization is
becoming more common, with nearly all cases being tuned by
doping, pressure or strain, or magnetic field, and an overview
has been provided by Canfield and Bud’ko [8].

A magnetic phenomenon even rarer than wFM is weak
antiferromagnetism (wAFM), which involves the same issues
plus ordering at a nonzero wave vector �QAFM . TiAu is a
recently revisited system for which Svanidze et al. discovered
that the orthorhombic form orders antiferromagnetically [9]
below the Neel temperature, TN = 36 K. TiAu displays a
Curie-Weiss (CW) moment of 0.8μB . This size is about half
that of a spin-half local moment (1.73μB ), though there is
no reason for Ti to have a spin-half moment in TiAu since
(as we show within) its 3d band is roughly 1/3 filled. It was
one success of Moriya’s self-consistent renormalized theory

of itinerant spin fluctuations that it predicts a Curie-Weiss-
like susceptibility over a wide temperature range [10,11].
Neutron diffraction reveals an ordered local moment of only
0.15 μB/Ti, identifying TiAu as a weak moment system.
Ordering is at a commensurate wave vector �QAFM = (0, π

b
,0),

i.e., a simple doubling of the cell along the �b axis; see Fig. 1.
These properties identify TiAu as an itinerant but commen-

surate wAFM, whereas small itinerant moments are more often
associated with incommensurate spin-density wave states.
These observations open several questions: Is the small ordered
moment indicative of remnant fluctuations well below TN? Is
the itinerant wAFM phase the result of Fermi surface nesting,
and if so, why is it commensurate? Is the CW moment actually
a Ti local moment as is needed for the standard spin fluctuation
(Curie-Weiss) picture, or does it arise from interaction of
longer range magnetic fluctuations as suggested initially by
Moriya and collaborators and elaborated on occasionally since,
such as for multiorbital models by Konno [12]? The small
moment places the system near a quantum critical point (QCP).
As for all weak magnets, it is anticipated that the magnetic
ground state is strongly affected by spin fluctuations.

The theory of the unusual properties of a wAFM near the
QCP has a substantial history, reviewed by Löhneysen et al.
[13]. Moriya’s self-consistent renormalization (SCR) theory of
spin fluctuations [14] provides a useful guide for our purposes,
as it ties the small |�q| (for wave vectors �Q + �q near the
ordering wave vector �Q), small ω behavior to averages of
various band structure and Fermi surface (FS) quantities, thus
bringing the focus to the geometry, topology, and velocity
field of the FS. Near the Neèl point, the interaction of
temporal and spatial fluctuations around the nonmagnetic state
are treated in a self-consistent random phase approximation
manner, renormalizing the FS averages that characterize the
fluctuations.

TiAu presents one distinctive feature in its nonmagnetic
electronic structure: an extremely sharp peak in the density
of states N (E) at the Fermi level [9,15], arising from two
closely spaced van Hove singularities [15]. Taken together
with the exchange interaction, this large value of N (EF ) at
the Fermi level EF ensures a (Stoner) magnetic instability,
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usually manifest as a FM or wFM phase. The wAFM ground
state requires a mechanism for selecting the AFM wave vector
as well as avoiding the FM state. Such wave vectors in metals
are almost invariably linked to the topology of the FS, in terms
of a nesting wave vector that corresponds to a spin density
wave (SDW) wave vector. Svanidze et al. suggested that the
FS favors ordering at 2

3
�QAFM versus the observed ordering

at �QAFM .
In previous work [15], it was pointed out that mirrored van

Hove singularities separated by �Q lead to a small |�q|, small ω

behavior of the antiferromagnetic susceptibility χ ( �Q + �q,ω)
that is identical in form to that of the ferromagnetic �Q = 0
case. Without mirroring, e.g., with vHs rotated with respect to
each other, the AFM susceptibility near criticality has the form
obtained by Moriya (see the appendix). The Fermi surface
nesting function ξ (q), which measures the phase space for
scattering through wave vector q from the FS to a copy of the
FS displaced by q, is given by (EF = 0)

ξq =
∑

k

δ(εk)δ(εk+q)

= �

(2π )3

∫
L

dLk

|�vk × �vk+q| . (1)

The second form enables the interpretation as the integral over
the line of intersection of the undisplaced FS and another
FS displaced by q, weighted by the reciprocal of the cross
product of the two velocities. Large contributions arise from (i)
regions of phase space with aligned or antialigned velocities,
the classic FS nesting, or (ii) regions where one or (even better)
both velocities are small, as at vHs. This latter case becomes
relevant at the vHs of TiAu, where the large masses result
in larger regions of small velocities than if the masses were
small. Evaluation of this function for TiAu led to maxima
only around the vHs spanning wave vectors, not at any Fermi
surface nesting vectors [15]. The critical fluctuations arise from
scattering between small vHs regions of the FS rather than
large regions of FS nesting.

In this paper, we present first principles studies, with
methods described in Sec. II, of the electronic structure and
magnetic tendencies of TiAu, with the goal of illuminating
behavior associated with its weak itinerant antiferromag-
netism. Svanidze et al. [9] provided several characteristics
of the electronic structure and magnetic energies of TiAu. In
Sec. III, the electronic structure and especially the van Hove
singularities near the Fermi level are studied, along with the
tendencies for FM versus AFM ordering in the stoichiometric
compound. These results, and previous work, are expanded
on by considering in Sec. IV electron and hole doping with
a virtual crystal approximation, and also fixed spin moment
study to quantify the ferromagnetic instability. A method of
accounting for spin fluctuations is applied in Sec. V, and
discussion and a summary in Sec. VI complete the paper.

II. CRYSTALLOGRAPHIC STRUCTURE;
THEORETICAL METHODS

Orthorhombic TiAu crystallizes in space group Pmma

(51), pictured in Fig. 1. At 5 K, neutron diffraction provides
lattice parameters [9] a = 4.622 Å, b = 2.915 Å and c =

FIG. 1. Structure of Pmma TiAu with two f.u. per primitive
cell; three primitive cells are shown. Antiferromagnet ordering with
modulation vector �Q = (0, π

b
,0) is shown. The positions of Ti and

Au are at 2e (0.25, 0, 0.3110) and 2f (0.25, 0.5, 0.8176) sites,
respectively.

4.897 Å. The atom positions are given in the caption to Fig. 1.
The shortest distance between two Ti atoms is 2.91 along the �b
axis. However, the distance between Ti atoms in the �a-�c plane is
less that 2% larger, at 2.96 Å, so a Ti-chain picture is not appro-
priate. For the hexagonal close-packed structure of elemental
Ti, the nearest neighbor distance is similar, 2.95 Å, indicating
that direct 3d Ti-Ti exchange coupling from orbital overlap
between near neighbors is expected in addition to the conven-
tional RKKY (Ruderman-Kittel-Kasuya-Yoshida) coupling of
Ti moments to more distant neighbors through the itinerant
electronic system.

Using the full-potential local-orbital minimum-basis code
(FPLO [16]), we have carried out density functional theory
(DFT) calculations on nonmagnetic TiAu and to situations that
illuminate magnetism-related behavior. Due to the fine elec-
tronic structure, we have compared results obtained using the
local density approximation (LDA) of Perdew and Wang [17]
to those obtained from the generalized gradient approximation
(GGA) of Perdew et al. [18] both in the scalar relativistic limit.
Au 5d,6s,6p states and Ti 3d,4s,4p states were treated as
the valence states, orthogonalized to the tightly bound core
states. Density convergence to an accuracy of 10−6 was the
conservative choice for the convergence condition, since in
most cases the energy converges faster than the density. Most of
the self-consistency calculations in this work were performed
on a 20 × 20 × 20 k-mesh. The density of states in Fig. 2
was obtained from a 60 × 60 × 60 k-mesh, corresponding to
29 791 points in the irreducible wedge.

In weak magnets but also in select other cases, such
as the ferro-pnictides and ferro-chalcogenides that become
high-temperature superconductors when doped, it has been
found that the commonly used semilocal exchange-correlation
functionals overestimate the ordered moment. Moreover, one
of the differences between GGA and LDA is that GGA
enhances the exchange and usually gives larger moments than
does LDA. Since the overestimate of exchange effects is less
for LDA than for GGA, we present mostly results based on
LDA, commenting in places on what would be obtained with
GGA. As already reported [9] and as will be discussed here,
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FIG. 2. Upper panel: The nonmagnetic band structure shows low
dispersion along 	-Z. The vHs does not lie on a high symmetry
line. Lower panel: The total and atom-projected density of states
(DOS), showing that the states from −7 to −2 eV arise from Au 5d

orbitals, whereas the bands from −2 to 3 eV have Ti 3d character.
Insert: The narrow and high peak in the DOS, with its lower edge
lying 4 meV above the Fermi level. Notation: 	, X, Y, and Z have
their conventional meanings. S = (π/a,π/b,0), U = (π/a,0,π/c),
R = (π/a,π/b,π/c), and T = (0,π/b,π/c).

these functionals do overestimate the ordered moment in TiAu,
GGA by considerably more than LDA. For this reason, we try
to account for this overestimate by applying the procedure
suggested by Ortenzi et al. [19], as discussed in Sec. V.

III. ANALYSIS OF RESULTS

A. Band dispersion and density of states

The nonmagnetic band structure and atom-projected den-
sity of states (pDOS) and total DOS N (E) of TiAu are
displayed in Fig. 2. The DOS was presented earlier by Svanidze
et al. [9] and is consistent with our result (which we have
converged more highly due to the extremely fine structure).
The bands along symmetry lines seem conventional for a metal,
with several Fermi level (EF ) crossings. Near degeneracy
of four bands very near EF at R is uncommon but has
no apparent impact. The bands below and at EF have low
(0.1–0.3 eV) dispersion along 	-Z, reflecting some degree of
quasi-two-dimensionality in the �a-�b plane. However, there is

enough dispersion across EF that the Fermi surfaces (FSs) are
three dimensional.

The DOS is prosaic for the most part, with expected
features being present. The Au 5d bands are completely filled,
centered 5 eV below EF and 3 eV wide, so they are inert
for magnetic and low-energy behavior. It might therefore be
concluded that Au simply provides only its single s electron
to the itinerant bands much as an alkali atom would do. We
checked this simple picture by replacing Au with K, keeping
the structure fixed. The Ti 3d bands (see below) remain at
the same filling but the dispersion and FSs are substantially
different. Therefore Au does play a specific role in determining
the properties of TiAu.

The Fermi level lies within the 3-eV-wide Ti 3d bands,
which are separated from the Au 5d bands by a pseudogap
centered 2.5 eV below the Fermi level. The pseudogap region
−3 to −1.5 eV contains roughly 0.3 electrons/f.u. At the
broadest level, Au provides an itinerant electron gas, within
which Ti with its open 3d shell resides.

The one remarkable aspect of this electronic structure is an
extremely sharp and narrow DOS peak that is centered a few
meV above the Fermi energy. Such a narrow peak requires
two vHs lying nearby in energy, very similar to what occurs in
the new highest temperature superconductor H3S [20]. There
are in fact several vHs within 35 meV of EF , as discussed
in the next subsection. The Fermi level DOS is N (EF ) =
2.41 states/eV per spin and per f.u. (These units will be used
for N (E) throughout, for reasons to be explained in Sec. IV.B.)
Thus the total DOS for both spins is 9.8 states/eV. This large
value of N (EF ) is very similar to the per-Ti value in TiBe2,
which also has a strong and narrow peak [21] in N (E) at
EF and is also shows weak magnetic order. Various types of
electronic-driven instabilities are suggested by such peaks.

Possible broken symmetries include (i) a Peierls instability,
in which a lattice distortion splits the DOS peak and stabi-
lizes the system by lowering N (EF ), (ii) a superconducting
instability, which is strongly encouraged by large N (EF )
and gaps the Fermi surface in the superconducting state,
(iii) a ferromagnetic instability, which provides an exchange
splitting of majority and minority states and moves the DOS
peak in each spin channel away from the Fermi level, and
(iv) an excitonic state involving pairing across two or more
vHs. Instabilities such as charge or orbital order might also
be considered. Experimental data indicate [9] that it is the
magnetic instability that wins this competition to stabilize the
system by splitting the DOS peak away from EF . It is, however,
an AFM phase rather than the FM state that is observed. The
underlying mechanism, critical scattering at very low energy
and for the wave vector spanning the participating vHs, has
been proposed and supported elsewhere [15].

B. van Hove singularities

The DOS peak results from two nearby vHs: vHs1 at 4 meV
and vHs2 at 6 meV, relative to EF . There are four more nearby
vHs, at 15, 22, 28, and 34 meV. Most of these are evident in the
inset of Fig. 2, where N (E) is shown in the region near EF . All
lie where Ti 3d orbitals dominate, and the orbital characters of
the vHs are a similar admixture. vHs1, nearest to EF and most
responsible for the large value of N (EF ), is discussed in detail
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FIG. 3. The constant energy surfaces at the three M1 or M2 vHs
discussed in the text. The energies relative to EF are top, 4 meV;
middle, 15 meV; and bottom, 34 meV. The coordinate system has been
rotated in the middle panel so the double-cone surfaces can be seen,
and the 	 point lies in the center of each figure. The velocities range
from zero to ∼ 7.5 × 107 cm/s, with large (blue) sections having very
low velocities, finally extending to zero at the singularities.

below, since it has been proposed that scattering between these
mirrored vHs drive the AFM ordering [15]. The vHs at 15 meV
lies at (±0.22π/a,0,0), giving only a pair of symmetry-related
points. At 32 meV, the vHs lies in a symmetry plane giving
four points (0, ± 0.16π/b, ± 0.36π/c). The corresponding
constant energy surfaces are pictured in Fig. 3. These surfaces,
like the Fermi surface which is much like that for vHs1, are
large and multisheeted, with substantial areas of the largest
sheets comprised of states with small velocity, less than
107 cm/s and extending to vanishingly small values at the
vHs singularities. The maximum velocity on these sheets is
7.5 × 107 cm/s.

The vHs1 point nearest EF is of the M1 type with two
positive and one negative masses, with energy dispersion
relative to the vHs

εk = k2
x

2mx

− k2
y

2my

+ k2
z

2mz

. (2)

M1 and M2 vHs display two-touching-cone constant energy
surfaces at the vHs energies. These diabolical points, so named
by Berry [22] in a somewhat different context, are visible in the
constant energy surface plots pictured in Fig. 3. The position
of this vHs1 is �k0 = (0,0.45π

b
,0.49π

c
) and symmetry-related

points, being consistent with the Fermi level crossings in Fig. 2
that occur near (0, b∗

2 ,0) and (0,0, c∗
2 ). The narrow band along

Y-	-Z in Fig. 2 provides part of the low velocity surfaces but
does not in itself give any hint of such a sharp and narrow peak
in N (E).

Due to the eight symmetry operations of space group
Pmma, there are four vHs in the Brillouin zone, various
of which are connected by the spanning vectors �QvHs =
(0, ± 0.9π

b
, ± 0.98π

c
). The effective masses at vHs1 are

surprisingly heavy for an intermetallic Ti-Au compound of
this type, mx = 21me, my = −4.5me, mz = 4.9me, and thus
are consistent with a high DOS peak. The value of N (EvHs)
and thermodynamic properties are related to the thermal
mass mth ≡ |mxmymz|1/3 = 7.7 me, a remarkably large value
for an itinerant, presumably weakly correlated, intermetallic
compound. The peak height arises from the heavy masses
and the fact that the band remains relatively flat in the vHs
region, providing a large phase space at that energy. Scattering
between these regions are responsible for the maxima [15] in
the nesting function ξ�q , though the maxima are not nearly as
impressive as FS nesting can produce, sometimes leading to a
superconducting instability [23].

C. Magnetic instability

We have studied both FM and AFM phases, the latter with
AFM wave vector �QAFM = (0, π

b
,0). The FM moment on Ti is

calculated to be 0.84 μB within GGA, consistent with previous
findings [9]. Within LDA, the moment is 0.39μB , reflecting
the delicacy of the moment in TiAu to the exchange correlation
functional. As mentioned in Sec. II, a known feature of GGA
versus LDA is to enhance and often overestimate magnetic
tendencies. For this reason, we focus on the LDA results, from
which we also consider further downward renormalization of
the ordered moment in Sec. V.

We find (using LDA) that AFM alignment at �QAFM is
energetically favored over FM alignment by 3 meV, and over
the nonmagnetic state by 11 meV, per Ti atom. The AFM
moment is calculated to be 0.40 μB/Ti within the Ti sphere
similar to that for FM alignment, and not really consistent
with an S = 1

2 moment even considering reduction by the
environment. Magnetism in TiAu is better pictured as itinerant
rather than localized. The experimental value of the ordered
moment is, however, only 0.15 μB/Ti, a factor of almost
three smaller. As mentioned earlier, for other weak magnets
DFT predictions using a semilocal exchange functional have
overestimated the magnetic moment. We return to these
questions in Sec. V.

IV. VCA AND FSM CALCULATIONS

A. Virtual crystal approximation

Near QCPs, little understood processes arise that impact
properties in peculiar ways [13]. We consider in this section
changes with doping level x, confined to the mean field level.
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FIG. 4. Ferromagnetic tendency versus doping (x) by holes (Sc)
and electrons (V), from the energy difference 
E(x) = Enm − EFM

between nonmagnetic and FM states. Blue dots (from LDA) do not
account for spin fluctuations, while red dots take spin fluctuations into
account by the Ortenzi procedure (see text). The peak corresponds to
the peak in the density of states.

We apply the virtual crystal approximation (VCA) for the
alloy electronic structure. In this treatment, for hole doping
an average Ti-Sc nucleus with charge 22 − x is considered,
and for electron doping an average Ti-V nucleus with charge
22 + x is chosen. Disorder is neglected but its effects are often
small for doping with neighboring elements in intermetallic
alloys, because the quantum behavior of electrons tends also to
average over small local differences. Importantly, in VCA self-
consistency of the addition (or depletion) of charge is taken
into account, unlike the simpler rigid band approximation in
which the Fermi level is simply moved to simulate the alloy’s
band structure.

The variation of ferromagnetic moment versus doping is
summarized by the round (blue) symbols in Fig. 4. The
moment decreases with hole doping, disappearing at a hole
doping near 0.25. For electron doping, the LDA ordered
moment increases initially as EF (x) moves across the vHs
peak in N (E) at x = 0.06. Surprisingly, it continues to increase
beyond the DOS peak to x = 0.25, whereupon it dives rapidly
to zero near x = 0.40.

Some asymmetry around EF is expected because the Fermi
level is situated somewhat below the peak in N (E). The
states in and around both vHs giving the peak are Ti d

states, and the DOS is not so far from symmetric around
the midpoint of the N (E) peak to a distance of a few tenths
of eV. However, the moment versus chemical potential is
asymmetric. The other noteworthy aspect is the rapid drop
of moment at each end (especially the electron doping end),
seemingly approximating a first-order phase boundary versus
the expected second-order (continuous) behavior in a mean
field treatment. In these regions, achieving self-consistency
becomes increasingly problematic, so we have not attempted
to resolve the first- versus second-order issue. For x = 0.35,
for example, the Fermi level lies at a sharp peak for one
spin direction and a valley for the other spin direction; such
a situation may complicate self-consistency. Also, the sharp
drop in N (E) on either side of the peak may be responsible.

The predictions from VCA then are that the doping
concentrations corresponding to the quantum critical points,
supposing FM order, are given in Fig. 4: 25% for hole doping
and 40% for electron doping. The electronic structure and
therefore the critical doping concentrations may be different
for AFM order. The effect of spin fluctuations on these critical
concentrations is the topic of Sec. V.

B. Fixed spin moment study

The DFT-based theory of the spin susceptibility [24]
and of the ferromagnetic instability [25–27] formalizes the
Stoner model, where an interelectron exchange interaction I
encourages FM splitting of bands resisted by the increase
in band (“kinetic”) energy entailed by the splitting. The
DFT prescription [24] for I was studied by Janak [25] and
calculated for elemental transition metals.

Fixed spin moment calculations (FSM), wherein the elec-
tronic system is relaxed within DFT subject to the constraint
of a chosen moment M , not only provides confirmation of
the FM tendencies but conventionally enables identification
of the DFT spin interaction (Stoner) constant I (�q = 0) = I for
the functional being used. See the appendix for the definition
of I (�q). FSM calculations were carried out to obtain the energy
as a function of magnetic moment

E(M) = E(0) + 1
2χ−1M2 + 1

4βM4 + · · · . (3)

From the relation d2E/dM2 = χ−1 the Stoner enhancement
of susceptibility S due to the exchange interaction is conven-
tionally obtained according to

χ = χ0

1 − IN (EF )
≡ Sχ0, (4)

where the bare susceptibility per f.u. is χ0 = 2μ2
BN (EF ) in

terms of the unpolarized N (E). We note that N (E) always
refers to the DOS per spin and per f.u. (i.e., per Ti atom).
In this form, I has the interpretation as the Ti atomic value.
Various conventions have been used in the literature. Vosko
and Perdew [24] and Janak [25] used the DOS for both spins
multiplying I in Eq. (4), so their values of I must be doubled
when comparing with values for the convention used here,
which were also used by Andersen et al. [27] and Krasko [28].

The LDA FSM results are shown in Fig. 5. For undoped
TiAu, the LDA value of magnetic moment at the minimum of
energy is equal to the moment from the FM calculation (M =
0.39μB ), as it must be. However, for such strong structure
in N (E) near EF the small M limit of various quantities,
including the expansions of E(M), requires calculating and
fitting at very small values of M , less than 0.02μB , as we show
below. Such calculations are challenging and, as we argue
below, unnecessary. Another consequence of the vHs-induced
energy variation is that the constant (or slowly varying) N (E)
expression [26] for the Ti moment M = N (EF )
ex is replaced
by M = N̄ (M)
ex, where 
ex = EF,↑ − EF,↓ is the band
exchange splitting and N̄ (M) is the average DOS over this
range of splitting. Note that the Fermi energies for up and
down spins, EF,↑ and EF,↓, are no longer equally displaced
from the M = 0 Fermi level.

In Fig. 6, this average DOS N̄ (M) is displayed, showing a
peak rise by 2% at M = 0.03μB due to the DOS peak above
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FIG. 5. Fixed spin moment energy of TiAu as a function of
moment M at various hole dopings x (legend is at the right), using
the LDA functional.

EF , followed by a precipitous drop to half its original value
for M = 0.6μB and larger. Since the slope of E[M] must be
negative [27,28] as well as the Stoner criterion (above) being
satisfied, to promote a FM instability, this curve indicates an
instability for any value of I in the range 0.4 eV � I � 0.8 eV,
corresponding to (imposed) moments of 0.03 � M � 0.9. The
energy minimum determines the most favored moment.

As mentioned, the curvature obtained from the customary
FSM plot for TiAu, the x = 0 curve on the scale of Fig. 5,
does not allow a reliable estimate of χ−1 and hence the Stoner
enhancement in the small M limit, and thus not of I itself,
without a challenging calculation for tiny moments. However,
I is determined by derivatives of the exchange-correlation
functional and wave function character at the Fermi level [25]
and should be slowly varying within energy regions dominated
by Ti 3d character, as is the case we are exploring.

As the hole doping x increases the corresponding Fermi
level moves away from the DOS peak, making the fine structure
progressively less relevant. We calculate the FM instability to
disappear at x = xcr = 0.25, where the Fermi level is 73 meV
lower than for TiAu (x = 0), well away from the vHs. At

FIG. 6. The density of states N̄ (M) averaged over the range EF,↓
to EF,↑ contributing to moment M , versus Ti moment M . The inset
shows the fine structure at small M arising from the vHs.

this Stoner critical point, I = 1/N(EF ,xcr ) without any need
for curve fitting. Here N (EF ,xcr ) = 1.35 states/(eV spin f.u.)
gives I = 0.74 eV, similar to Janak’s value for elemental Ti
after accounting for his factor of two convention. This value
then gives the Stoner product for TiAu of IN (EF ,x = 0) =
1.8, reflecting a very strong FM instability. Nonetheless, ex-
periment shows that AFM alignment wins the competition for
the ground state, as also confirmed by our LDA calculations.

V. ACCOUNTING FOR SPIN FLUCTUATIONS

The overestimation of magnetic moment by DFT function-
als is understood from the viewpoint that they do not take
account of the type of spin fluctuations that must be occurring
in weak magnets such as TiAu. Effects of spin fluctuations can
be modeled from a Landau viewpoint, leading to a suppression
of ordering tendency and of the ordered moment in DFT.

Moriya’s self-consistent renormalization (SCR) theory
[10,11] of spin fluctuations provides the modern theory of
weak magnetism due largely to the fact that (i) the C-W behav-
ior of χ (q = 0) is not explained by Stoner theory and (ii) RPA
theory requires modification at higher temperatures. Moriya’s
SCR theory not only resolved these difficulties, but it also
predicted some observed quantum critical behavior of wFMs
as well, for example, 1/χQ → T 3/2 and Cm/T →∝ T 1/2 for
a 3D AFM system [14]. In a wAFM system, since the most
important effect of the spin fluctuations comes from the small
q (relative to the ordering �Q vector) and small ω region, the
dynamical susceptibility χ ( �Q + �q,ω) is expanded as described
in the appendix. The coefficients depend on the particular
band structure, and unfortunately Moriya’s theory [29] is only
semiquantitative as it depends on ill-defined cutoffs.

Ortenzi et al. suggested [19] that a simple magnetic renor-
malization procedure can account for the fluctuations, appear-
ing as a scaling factor s, 0 < s < 1, of the spin-dependent part
of the exchange correlation functional. The scaling factor s is
not easy to determine from first principles, but it can be fixed by
tuning it to reproduce the experimental moment. This method
is implemented in the WIEN2K code [30]. We find that with a
scale factor s = 0.55, the LDA magnetic moment is reduced
to the experimental value of 0.15μB/Ti. The corresponding
AFM electronic structure can be found in Ref. [15].

With the Ortenzi spin fluctuation scaling, the magnetic ten-
dency is comparably reduced. Figure 4 provides a comparison
of the FM moment when alloying within this exchange scaled
theory within LDA. For s = 0.55, magnetism disappears at a
hole doping of 0.05 and an electron doping of 0.13, smaller by
factors of five and three, respectively, than the LDA results. It
will be revealing to learn how accurate these predictions for FM
TiAu compare with the critical doping levels for the observed
AFM phase, if alloying to the critical points can be achieved.

VI. DISCUSSION AND SUMMARY

The electronic structure and magnetic tendencies of the
weak antiferromagnet TiAu have been studied using ab initio
methods. The dominant feature of the paramagnetic phase is
a very sharp and narrow peak in the DOS at the Fermi level,
arising from a van Hove singularity involving unexpectedly
large masses for an intermetallic Ti-Au compound. This
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peak provides a strong Stoner instability to ferromagnetism,
yet the observed magnetic order is simple commensurate
antiferromagnetic order, �QAFM = (0, π

b
,0), a result that is

upheld by DFT calculations.
Both FM and AFM magnetically ordered states were

obtained and studied, with the AFM state lying lower in
energy consistent with observation. Within LDA the ordered
magnetic moment is calculated to be 2.7 times larger than
found in neutron diffraction, so the phenomenological spin
fluctuation reduction of Ortenzi et al. was applied. Why is
AFM order favored over FM? Our previous work [15] provided
evidence that mirrored vHs provides enhanced low-q, small-ω
fluctuations that make AFM more favorable than otherwise
and that the AFM phase is further stabilized by the exchange
splitting of flat bands above and below the Fermi level along
two symmetry lines in the AFM Brillouin zone.

The response of the nonmagnetic system to both hole
and electron doping was studied within the virtual crystal
approximation for the FM phase, using both LDA and the
Ortenzi renormalization. Analysis of the VCA results allows
identification of the Stoner exchange constant I = 0.74 eV.
Fixed spin moment studies were provided to provide a better
understanding of the interplay between the van Hove peak and
the Stoner instability. The Ortenzi rescaling by 45% to account
phenomenologically for spin fluctuations reduces the predicted
FM quantum critical points (critical doping concentrations in
Fig. 4) severely, by a factor of three to five. The critical dopings
for the observed AFM order may differ, so experimental
doping studies will be of interest. This system could provide an
important platform for further exploration of AFM quantum
critical points.
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APPENDIX

Here we review some of the formalism underlying spin fluc-
tuation theory that is Fermi surface related. As we quantify be-
low, nonmagnetic TiAu has a very strong ferromagnetic (FM)
instability at q = 0 and a few possible nesting wave vectors for
spin density wave order [9], yet the observed magnetic order is
simple AFM with wave vector �QAFM = �b∗/2 at a zone bound-
ary. The likelihood of competing instabilities leads us to review
some of the formalism of the treatment of spin fluctuations in
the neighborhood of the transition temperature, for low fre-
quencies ω and for wavelengths near the ordering wave vector.

The quantity of interest is the magnetic susceptibility
χ , with the objective of connecting to material-specific
information from density functional theory (DFT). Following
the formulation of Janak [25] for the interacting static, macro-

scopic susceptibility within DFT and the extension by Gross
et al. [31] to the dynamic, microscopic counterpart χ (q,ω), the
expression appearing in random phase approximation form but
valid more generally is

χ (q,ω) = χo(q,ω)

1 − I (q)χo(q,ω)
,

I (q) = 1

2
F

〈
δ2Exc[n,m]

δm(r)δm(r ′)

〉
q

χ−1(q,ω) = χ−1
o (q,ω) − I (q), (A1)

where F indicates the Fourier transform. The vector notation
on vectors will be dropped here for simplicity except when
needed for emphasis, and we take h̄ = 1. The q = 0 expression
can be found in Janak’s paper [25]. A formally exact expression
is similar, but requires quantities to be matrix elements
in reciprocal lattice vectors and a frequency-ω-dependent
exchange-correlation interaction I (q,ω). For the small ω of
interest in this paper, the frequency dependence of I (q,ω) can
be omitted. Here Exc[n,m] is the exchange-correlation energy
function of charge density n(r) and magnetization density
m(r), and χo is the noninteracting Kohn-Sham (viz. Lindhard
form) susceptibility.

The Kohn-Sham susceptibility is (h̄ = 1)

χo(q,ω) =
∑
k,m,n

|Mk,m;k+q,n|2 fk,n − fk+q,m

εk,n − εk+q,m − ω − iη
,

(A2)

in terms of the Kohn-Sham eigenvalues εkn, and η is a positive
infinitesimal. Mk,m;k+q,n is the matrix element of exp(iq · r)
between Bloch states. For crystals the susceptibilities become
matrices in reciprocal lattice vectors and the resulting local
field effects can be important for quantitative detail, but our
treatment will not extend to that level.

1. FM case

The small q,ω expansion (for orthorhombic symmetry) is

χo(q,ω) = χo +
∑

j

Ajq
2
j + i

〈
1

q̂ · v

〉
FS

ω

q
, (A3)

the last expression being appropriate for ω < vF q. The
expressions for the coefficients have been presented in the
literature [10,21]

Aj = − 1

12

d

dε

[
N (ε)

〈
∂vk,j

∂kj

〉]

= 1

48πe2

(
2π

aj

)2 d2�2
p,j (EF )

dE2
F

, (A4)

where �vk = ∇kεk is the band velocity. The second expression
for Aj incorporates the Drude plasma energy

�2
p,j (EF ) = 4πe2N (EF )v2

j (EF ) (A5)

in terms of the mean square Fermi surface velocity v2
j (EF ).

The first expression for Aj is instructive when EF is near the
van Hove singularity EvHs . In that case the second derivatives
are just the vHs effective masses, and for the positioning of
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EF in TiAu (see Sec. IV), N (ε) ∝ −m
3/2
th (EvHs − ε)1/2. Then

the contribution from the vHs region is

AvHs
j ∝ − 1

24

m
3/2
th

mj

1√
EvHs − EF

, (A6)

which becomes divergent at the vHs.

2. AFM case, �Q > 0

With spatial fluctuations at q + Q around nonzero Q not
being long wavelength, the expressions for the low-energy,
small q coefficients are not all tied to the Fermi surface, so
they are not as intuitive as for the FM Q = 0 case. At ω = 0,
the susceptibility is real and given for small q by (for ease in
interpretation, the matrix elements are omitted)

χo(Q + q,ω = 0)

= χo(Q) +
∑

k

[
δ(εk+Q)

εkn − εk+Q,m

+ fkn − fk+Q,m

(εkn − εk+Q,m)2

]
�vk · �q.

(A7)

The first term is due to the change in band occupation with
q, being a sum over over the FS of the inverse of occupied
eigenvalues �Q away from the FS, and is likely to vary slowly
with Q unless it is small. The second term arises from the
change with q in the energy denominator. Since it involves the
energy difference squared, it is more likely to have strong Q

dependence when �Q is near a nesting wave vector. Expressions
for the second-order terms in q2,qω, and ω2 are involved and
unenlightening.

For small ω, the imaginary part becomes

χ ′′
o (Q + q,ω) = πωξ (Q) − π

∑
k

δ(εk)δ(εk+Q)vk+Q · q

ξ (Q) =
∑

k

δ(εk)δ(εk+Q). (A8)

ξ (Q) is the FS nesting function that measures the phase space
available for scattering from the FS at k to the FS at k + Q,
most often discussed in phonon scattering processes. Evidently
small ω processes are focused into regions of nesting. ξ (q) is
evaluated and discussed in Ref. [15].
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