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Ising antiferromagnet in the two-dimensional Hubbard model with mismatched Fermi surfaces
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We study the phase diagram of the two-dimensional repulsive Hubbard model with spin-dependent anisotropic
hopping at half filling. The system develops Ising antiferromagnetic long-range order already at infinitesimal
repulsive interaction strength in the ground state. Outside the perturbative regime, unbiased predictions for the
critical temperatures of the Ising antiferromagnet are made for representative interaction values by a variety
of state-of-the-art quantum Monte Carlo methods, including the diagrammatic Monte Carlo, continuous-time
determinantal Monte Carlo, and path-integral Monte Carlo methods. Our findings are relevant to ultracold atom
experiments in the p orbital or with spin-dependent optical lattices.
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I. INTRODUCTION

The Hubbard model plays an important role in con-
densed matter research combining a plethora of physical
phenomena such as the Mott insulator transition, magnetism,
and (un)conventional superconductivity. Despite this richness,
exact analytical solutions have only been found in a few special
cases, including the one-dimensional model [1], the atomic,
and the noninteracting limit. Furthermore, the Hubbard model
is numerically tractable in infinite dimensions by dynamical
mean-field theory [2], on bipartite lattices at half filling by
determinantal quantum Monte Carlo methods, and in the
infinite-U limit on ladder geometries with the density matrix
renormalization group [3]. Going away from either of these
special limits poses tremendous challenges to our theoretical
understanding. Reference [4] summarizes the presently known
results of the Hubbard model from a wide range of numerical
algorithms.

In this paper, we add another parameter regime which can
be exactly solved numerically: We study the phase diagram of
the repulsive Hubbard model with spin-dependent anisotropic
hopping by three different kinds of unbiased quantum Monte
Carlo (QMC) algorithms. As we will see, some of these
methods work only in certain parameter regimes but can be
more efficient when they are applicable. The Hamiltonian
reads

Ĥ = −
∑

σ∈{↑,↓}

∑
ννν∈{x,yx,yx,y}

∑
rrr

(tνννσ ĉ†rrr,σ ĉrrr+ννν,σ + H.c.)

+U
∑

rrr

(
n̂rrr,↑ − 1

2

)(
n̂rrr,↓ − 1

2

)
. (1)

Specifically, we consider the spin-dependent anisotropic
hopping amplitude tx↑ = ty↓ = t and tx↓ = ty↑ = αt , where
α ∈ [0,1] is a tuning parameter. The hopping is stronger
along x(y) direction for spin up(down) fermions, shown in
Fig. 1(a). It leads to a spin-dependent nematic distortion of
the Fermi surface in the reciprocal space shown in Fig. 1(b).
Physically, cold atomic systems [5,6] may be well suited to
study this system. The Hubbard model has been realized years
ago [7,8] and with fermionic microscopes antiferromagnetic
correlations have been measured [9–11], which can now

extend over the entire system size and realize a Heisenberg
antiferromagnet [12]. The hopping anisotropy can either be
realized with spin-dependent optical lattices or due to the
anisotropic shape of the Wannier function on the p band of an
optical lattice. The last term of (1) denotes an onsite repulsive
interaction with U > 0. We focus on magnetic order of the
model (1) in the half-filled case on a square lattice.

Diagonalizing the single-particle part of the Hamiltonian,
one has dispersions ε

↑
k = −2t cos(kx) − 2αt cos(ky) and ε

↓
k =

−2αt cos(kx) − 2t cos(ky). The noninteracting bandwidth is
thus W = 4(1 + α)t . Spin nematicity explicitly breaks the spin
SU(2) symmetry and removes the divergence in the density of
states at the Fermi energy. However the perfect Fermi surface
nesting with wave vector QQQ = (π,π ) is still preserved. As a
consequence, the longitudinal spin susceptibility χσσ (QQQ) =
1
N

∑
k

f (εσ
k )−f (εσ

k+Q)
εσ
k −εσ

k+Q

still diverges at zero temperature while the

transverse spin susceptibility χ+−(QQQ) = 1
N

∑
k

f (ε↑
k )−f (ε↓

k+Q)

ε
↑
k −ε

↓
k+Q

saturates to a constant value [here, f (·) is the Fermi-Dirac
distribution]. Therefore, a weak-coupling analysis predicts
Ising antiferromagnetic (AF) order already at infinitesimally
strong repulsive interaction.

The strong coupling limit of the model (1) was studied in
the context of p-orbital Mott insulators [13,14]. It reduces
to a spin-1/2 XXZ model with Ising anisotropy, which
favors an antiferromagnetic Ising ground state. At intermediate
interaction strength, the system exhibits a crossover from a
weak-coupling spin-density-wave state to the strong-coupling
AF Ising state, similar to the case of the 3D half-filled Hubbard
model. However, since the Ising state breaks only a discrete
Z2 symmetry, it has a finite critical temperature, even in two
dimensions.

The above considerations continue to hold in the fully
anisotropic case α = 0. In this limit, the kinetic part is
purely one dimensional—i.e., the motion of a spin is limited
to a row or a column of the 2D lattice—whereas the
density-density interactions on each site connect the two
spin species and make the system effectively two dimen-
sional. Therefore, as we will show with unbiased worldline
QMC simulations, the system still possesses a finite critical
temperature.
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FIG. 1. (a) Hopping amplitude of the model (1). (b) Mismatched
Fermi surfaces of the two spin species shown for α = 0.75.

References [15–17] studied the model (1) in the doped
attractive case in search of an elusive Bose liquid and exotic
superfluid states. It turns out that close to half filling the
most stable phase is an incommensurate density wave state,
which is related to the AF Ising state of the repulsive model
discussed above upon a particle-hole transformation. It was
also remarked in Ref. [17] that in the fully anisotropic limit
the particle number of each column and row is separately
conserved. This allows one to perform unbiased worldline
QMC calculations by mapping the fermions to quantum spins,
similar to what was done in Ref. [18], and which served
as a benchmarking tool for the diagrammatic Monte Carlo
calculations.

The model (1) is different from the one studied in Ref. [19],
which studied onset of antiferromagnetism in a similar Fermi
surface geometry. However, Ref. [19] doubles the fermion
species to avoid the fermion sign problem. In addition, the
current study focuses on the half-filled case where the AF
Ising state is strongly enhanced due to the commensurate
filling.

The organization of the paper is as follows. In Sec. II we
summarize the Monte Carlo methods used in this paper and
comment on their advantages and disadvantages. In Sec. III
we report on results obtained by various QMC calculations,
where Sec. III A contains results on the fully anisotropic case
of the model (1) and Sec. III B results for general anisotropic
cases. Section IV summarizes our main findings and discusses
their implications for future experimental and theoretical
studies.

II. METHODS

In this section we summarize the three different quantum
Monte Carlo techniques used to study the model Eq. (1): path
integral Monte Carlo simulations with worm-type updates
(Worm), diagrammatic Monte Carlo simulations (DiagMC),
and continuous-time determinantal Monte Carlo simulations
(LCT-QMC). Table I summarizes their main features and
allows one to quickly read off the method of choice. In their
domain of applicability all three methods yield unbiased results
on the physical observables. Whenever there is an overlap
in their application range we have checked that they give
consistent results. In the subsections below we explain in more
detail the specifics of all three methods for the anisotropic
Hubbard model.

TABLE I. A comparison of the QMC methods used. For the Worm
and LCT-QMC methods the sign-positive regimes are mentioned in
the table. They scale linearly and cubically in the system volume,
respectively, and both linearly with the inverse temperature. DiagMC
simulations work directly in the thermodynamic limit. In practice,
open boundary conditions are used in the Worm simulations.

Method Anisotropy Filling Interaction

Worm [20,21] α = 0 arbitrary arbitrary
DiagMC [22,23] arbitrary arbitrary U � 4t

LCT-QMC [24,25] arbitrary half filling arbitrary

A. Path-integral Monte Carlo (Worm)

In the fully anisotropic limit, which is where the Worm
algorithm can be applied, the model Eq. (1) reduces to

Hα=0 = −t
∑

r

ĉ
†
r,↑cr+x,↑ − t

∑
r

ĉ
†
r,↓cr+y,↓ + H.c.

+U
∑

r

(
n̂r,↑ − 1

2

)(
n̂r,↓ − 1

2

)
. (2)

The hopping is one dimensional, implying that for each row
(column) the number of up (down) particles is conserved. By
translational invariance we expect that all or none of these
symmetries are simultaneously broken. As a consequence of
the 1D character, individual rows and columns can be mapped
onto hard-core bosons at any density through the celebrated
Jordan-Wigner transformation [26,27], which in turn allows us
to use path-integral Monte Carlo simulations with worm-type
updates [20], here in the implementation of Ref. [21]. Spin
densities and density-density correlations functions, which
we measure in order to identify the phase transition, are not
affected by the Jordan-Wigner transformation and identical
for the original fermions and the simulated hard-core bosons.
For ease of the Jordan-Wigner transformation, we use open
boundary conditions. This comes at the price of greater finite
size effects through the influence of the boundary terms,
which is however minor in light of the mapping to a positive
expansion for all filling factors and the linear scaling of the
Worm algorithm with system size and inverse temperature.
For α �= 0 the Worm algorithm has a sign problem leading
to an exponential scaling in the system volume and inverse
temperature.

B. Diagrammatic Monte Carlo (DiagMC)

The diagrammatic Monte Carlo (DiagMC) method eval-
uates Feynman diagrammatic expansions by means of a
stochastic process that samples sums over diagram topologies
and internal variables on equal grounds [28,29]. Our imple-
mentation for the Hubbard model [17,23], which is based
on diagrams with bare propagators G0 and interactions U ,
is not directly applicable within a magnetically ordered phase.
Therefore, we detect a continuous phase transition to AF order
by monitoring the divergence of the magnetic susceptibility on
approaching the critical temperature. This aspect is different
from the other two Monte Carlo methods, which are not
formulated in the thermodynamic limit. To this end we
sample the self-energy �σ (k) and the irreducible scattering
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vertex in the particle-hole channel 	
ph

σσ ′(Q,k,k′) for fixed total
four-momentum Q = (QQQ,i
m = 0) with QQQ = (π,π ) the AF
ordering vector. According to the Bethe-Salpeter equation

χ (Q) = χ0(Q)

1 + χ0(Q)	(Q)
, (3)

the susceptibility χ (Q) diverges when the largest eigenvalue
of the kernel −χ0(Q)	(Q) reaches unity. The above should
be read as a matrix equation for the generalized suscepti-
bility χσσ ′

(Q; k,k′) in spin and four-momentum space. Fur-
thermore, the particle-hole bubble χ0

σσ ′(Q; k,k′) = Gσ (k +
Q/2)Gσ (k − Q/2)δσ,σ ′δ(k − k′) is the diagonal product of
two one-particle propagators and the one-particle propagators
in turn are calculated from the self-energy via Dyson’s
equation.

With DiagMC the system is directly simulated in the
thermodynamic limit, but the diagrammatic series for the
irreducible quantities � and 	 must be restricted to orders n �
N∗ because the sign of a fermionic series vanishes factorially
with diagram order n. All DiagMC results must therefore be
extrapolated in the cutoff parameter N∗ → ∞. The uncertainty
in this extrapolation is typically the dominant contribution to
the error bars, and the extrapolation may be impossible when
the series does not converge quickly enough. This happens
frequently if the interaction is too strong, e.g., U � W . For
models like the half-filled Hubbard model where determinantal
QMC methods do not suffer from the sign problem, the
sign-problem-free method will generally yield smaller error
bars than DiagMC under comparable computational efforts.
The main advantage of DiagMC is that it can equally well
be applied away from half filling, where simulations with
other QMC methods are often unfeasible due to a severe
sign problem. Additionally, the comparison of finite-size
extrapolations (e.g., from path-integral or determinantal QMC)
with finite-order extrapolations from DiagMC yields a very
nontrivial crosscheck that all systematic errors in the different
methods are under control.

C. Continuous-time determinantal Monte Carlo (LCT-QMC)

We employ the continuous-time quantum Monte Carlo
method scaling linearly in β (LCT-QMC) [24,25] to study the
model (1) at general anisotropies on finite lattices. The LCT-
QMC methods perform continuous-time interaction expansion
of the partition function and evaluate each expansion as a
matrix determinant. Thanks to recent progress on the fermion
sign problem [30–33] these matrix determinants can be shown
to be nonnegative. There is no sign problem in the simulation
despite the mismatched Fermi surfaces: The crucial conditions
are half filling and the presence of bipartite lattices. The
implementation of the LCT-QMC simulation is similar to the
recent study of the mass-imbalanced Hubbard model [34]. As
the signature of the phase transition we measure the staggered
magnetization square according to the Wick’s theorem in the
LCT-QMC simulations.

Compared to the path-integral Monte Carlo method of
Sec. II A, the drawback of the LCT-QMC algorithm is that it
scales cubically with the system size. We are therefore limited
to system sizes L � 24 for the LCT-QMC results. The advan-
tage, however, is that one is able to study also finite anisotropy

ratios and systems with periodic boundary conditions can be
simulated without further constraints because the method does
not rely on the Jordan-Wigner mapping.

III. RESULTS

In this section we first present our results for the fully
anisotropic case, followed by the results for the more general
case. The unit of energy is set by the hopping t = 1 unless
explicitly noted otherwise.

A. The fully anisotropic model

Below we use bosonization arguments to get an intuitive
and analytical understanding of the phase diagram at zero
temperature, followed by quantum Monte Carlo simulations
addressing the phase transition at finite temperature. We will
see that the ground state is always gapped and ordered in
spin space, whereas at finite temperature a Z2 transition
between a normal liquid and an antiferromagnet is found.
Unless otherwise specified, we limit ourselves to the half-filled
case.

1. Bosonization considerations of the ground state

Thanks to the one-dimensional nature of the hopping, each
row and column can be bosonized separately. Following the
notation and the formulas of Appendix D in the standard book
(Ref. [27]) we write the harmonic action for row j as

H
j

↑ = 1

2π

∫
dx u

j

↑K
j

↑(∇θ
j

↑(x))2 + u
j

↑
K

j

↑
(∇φ

j

↑(x))2, (4)

where u↑ is a velocity and K↑ the dimensionless Luttinger
parameter. The fields ∇φ and ∇θ are proportional to the sum
and the difference of right and left movers, respectively. For
a column j̄ a similar expression can be written down with
the replacements ↑ ↔ ↓, x ↔ y, and j ↔ j̄ . We still need to
investigate the Hubbard term, which couples the spin densities
on intersecting rows and columns, and take care of the filling
factor. The density in bosonized form is

ρ
j

↑(x) = ρ0 − 1

π
∇φj (x) + ρ0

∑
p �=0

ei2p(πρ0x−φ
j

↑(x)), (5)

with ρ0 = 1/2 at half filling.
Introducing the charge φ

jk̄
ρ = (φj

↑ + φk̄
↓)/

√
2 and the spin

φ
jk̄
σ = (φj

↑ − φk̄
↓)/

√
2 fields we get a nonoscillating term

cos(
√

8φ
jk̄
ρ ) resulting from the Hubbard interaction, as well as

a term cos(
√

8φ
jk̄
σ ). If we assume that translational invariance

is not broken, then the fields for all j and j̄ are the same, and
the cosines become relevant in both sectors; i.e., similar to the
1D Hubbard model with spin and repulsive interactions at half
filling the charge sector is always massive at zero temperature.
Its gap can be exponentially small ln � ∼ −1/

√
U in the

weak-coupling regime [cf. Eq. (10) below]. However, in
contrast to the 1D Hubbard model, the spin sector cannot
remain a spin liquid because of the 2D nature of the lattice
(which we see in the bosonization via the presence of the
second cosine term). The system therefore orders into an
Ising antiferromagnet in order to lower its energy. Away
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FIG. 2. Finite size scaling of the staggered magnetization squared
as a function of the inverse temperature β for different system sizes
of linear length L for a fully anisotropic Hubbard model with U = 3.
Error bars for the biggest system sizes could be larger than shown
(see text). Nevertheless, the critical temperature can be estimated as
βc = 9.6(4) justifying the 2D Ising universality class.

from half filling, similar arguments can be applied leading
to incommensurate spin density waves, in line with the weak-
coupling and DiagMC results of Ref. [17] for the attractive
case.

2. Monte Carlo results for the Ising transition at finite
temperature

At finite temperature one expects a phase transition between
a normal liquid and an Ising antiferromagnet with critical
exponents belonging to the 2D classical Ising universality
class. In order to test this, we performed large scale Monte
Carlo simulations using the Worm algorithm and computed
the expectation value square 〈M2

st〉 and fourth power 〈M4
st〉 of

the staggered magnetization Mst,

Mst =
∑

r=(x,y)

(−1)x+y(ĉ†r,↑ĉr,↑ − ĉ
†
r,↓ĉr,↓). (6)

Finite size scaling theory predicts, in leading order, that the
curves 〈M2

st〉L2β/ν intersect in a single point. Here, L is the
linear system size of the system, β is the critical exponent for
the order parameter which is β = 1/8 for the 2D classical Ising
model, and ν = 1 is the critical exponent for the correlation
length. This is shown in Fig. 2, where we see that the system
sizes L = 8 and L = 16 are too small to be taken into account
in the finite size analysis. For system sizes L = 24 and larger
we get curves that intersect, within error bars, in almost a
single point when the staggered magnetization squared is
multiplied with the correct power of the system size, L1/4, in
agreement with the critical exponents of the classical 2D Ising
class.

Although the linear scaling in the system volume of the
Worm algorithm suggests it should be the method of choice
in the absence of a sign problem, the Worm algorithm is
nevertheless not well equipped to study this Ising transition
because the worms are confined to single rows and single
columns. The spin-resolved single-particle density matrix is
hence one dimensional and decays exponentially in the gapped

phase: The algorithm is in the spin sector not better than a
single spin-flip algorithm for a classical 2D Ising model. We
have checked for β = 8 that the integrated autocorrelation
time increases linearly with L with a very large prefactor.
Very close to the transition point, additional critical slowing
down takes place with a dynamical exponent z ≈ 2, just as in
the single spin-flip algorithm for a classical 2D Ising model.
To give an idea, for L = 32,β = 9.6, we find a value around
100 with a binning analysis, where each measured value taken
into account in the binning analysis is already an average of
1000 Monte Carlo measurements. Measurements were taken
after 1000 Monte Carlo worm updates to compensate for the
size of the system. The total calculation lasted several CPU
months per data point and resulted in more than half a million
measurements, but that is barely enough. An immediate
consequence is that the fluctuations on the Binder cumulant
are an order of magnitude worse than the ones in Fig. 2 and
are therefore less precise to locate the phase transition. We
have also successfully repeated this analysis for U = 4 (not
shown) with βc = 6.2(5). We leave for future work whether a
new algorithm can be devised which combines a spin-cluster
algorithm with the Worm algorithm in order to overcome
this critical slowing down. Despite the present algorithm’s
inefficiencies we have obtained results for larger systems than
accessible with any other method. The finite size scaling is
further validated by DiagMC results for the thermodynamic
limit in Sec. III B 2.

We also tried a similar analysis for the ground state
assuming the universality class of the 3D classical Ising spin
model (not shown). For system sizes up to L = 128 we failed
to find a single crossing point: Curves for the staggered
magnetization squared multiplied with L2β/ν have all the same
shape with the steep part shifting parallel to lower values
of U with increasing L. This is consistent with the ground
state being ordered for any U , in line with the bosonization
arguments. Since the charge gap opens exponentially slowly
for low values of U there is of course no chance of observing
the ground state in a brute-force numerical approach in the
small U limit.

B. General anisotropic case

At general anisotropy α > 0 both fermion species can hop
in the 2D plane. Therefore an effective bosonic description
can no longer hold. In the following we show that the system
has a weak-coupling instability to antiferromagnetic order
for all values of α. Then we obtain unbiased results for the
transition temperature at intermediate interaction using two
fermionic QMC methods (LCT-QMC and DiagMC) and cross
check the results. In general one anticipates that in the highly
anisotropic case (α � 1) the critical temperature approaches
the one determined by the bosonic Worm calculation in
Sec III A, whereas the critical temperature drops to zero
when α approaches unity, restoring the full SU (2) rotational
symmetry.

1. Weak coupling analysis

Particle-hole symmetry of the half-filled model (1) ensures
that the Fermi surfaces for the two spin species individually
are nested with respect to the AF wave vector QQQ = (π,π )
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independent of the anisotropy α. Therefore the longitudinal
spin susceptibilities always have a logarithmic divergence

χ0
↑↑(QQQ) = χ0

↓↓(QQQ) ∼ − ln
T

TF

(7)

for T → 0. Here TF denotes the Fermi temperature. In con-
trast, nesting between ↑- and ↓-Fermi surfaces is destroyed by
an anisotropy α �= 1, so that the transverse spin susceptibilities
χ0

+−, χ0
−+ saturate to finite values at low temperature. Since

there are no first-order pairing instabilities in the particle-
particle channel for repulsive interactions, longitudinal (Ising)
antiferromagnetism is the only instability to leading order in
U .

In the first-order approximation to the Bethe-Salpeter kernel
in the longitudinal particle-hole channel the irreducible vertex
is replaced by the bare interaction

	(Q)σ,k;σ ′,k′ = Uδσ,−σ ′ + O(U 2). (8)

This yields an eigenvalue

λ = Uχ0
σσ (QQQ), (9)

which grows logarithmically according to (7) and will hence
reach unity for arbitrarily small U at a critical temperature

Tc = TF exp(−c/U ), (10)

which has the typical form of a BCS-type weak-coupling
instability [c is the constant prefactor of the logarithmic
divergence in (7)].

In summary, a weak-coupling analysis predicts a gen-
eral low-temperature instability of the Fermi liquid towards
Ising-type antiferromagnetic order (cf. the previous section),
except at the isotropic point α = 1 where longitudinal and
transverse channels become degenerate and magnetic order
at finite temperature is ruled out by the continuous spin
rotation symmetry (as long as the system remains purely two-
dimensional). For weak coupling we expect the Tc suppression
to be confined to a very small region around the isotropic
point because at exponentially low temperatures the physics
is extremely sensitive to small Fermi surface mismatches.
Away from half filling and at α > 0 the perfect nesting
and hence the weak-coupling instability in the particle-hole
channel is lifted. Then only second-order instabilities in the
particle-particle pairing channel remain, leading to p-wave
superfluidity in direct correspondence to the attractive case
[17].

2. DiagMC results

In order to go beyond the weak-coupling analysis we turn to
DiagMC simulations, which can address arbitrary anisotropy.
As shown in Figs. 3 and 4 we track the leading Bethe-Salpeter
eigenvalue for antiferromagnetic order. As the temperature
is lowered, the eigenvalue grows and eventually crosses
unity, causing a divergence of the AF susceptibility. While
a cutoff order N∗ = 1 corresponds to a mean-field treatment
and strongly overestimates the transition temperature, the
eigenvalues for higher cutoffs converge reasonably quickly
with a decaying even-odd oscillation: The eigenvalue for each
order lies between the values from the next two smaller orders.
We take the average of the three largest orders N∗ = 4,5,6 as

FIG. 3. Leading Bethe-Salpeter eigenvalue λ versus temperature
T from DiagMC simulations for U = 3, α = 0 with cutoff order
N∗ = 1, . . . ,6. Lines are quadratic fits in log T used to interpolate
the data around Tc. Inset: Estimates of the transition temperature Tc

determined from these fits. The circle represents our extrapolation
Tc(N∗ → ∞) = 0.12(3)t .

extrapolation to infinite order and give error bars that cover
these three finite-order results. For the fully anisotropic model
(Fig. 3) we obtain the transition point βc = 8.2 ± 1.7. This is
consistent with the Worm result presented above. As expected,
the DiagMC error bar is markedly larger than the one obtained
with sign-problem-free bosonic QMC. The results at general
anisotropy α = 0.75 (Fig. 4) are very similar to the fully
anisotropic case even though the kinetic terms are changed
from one-dimensional to two-dimensional. In this case we
obtain a slightly larger transition temperature βc = 7.5 ± 1.4.

3. LCT-QMC results

Using the LCT-QMC method, we obtained the critical tem-
perature at U/t = 3,α = 0.75 by scaling the staggered magne-
tization according to the 2D Ising critical exponent as is shown

FIG. 4. Like Fig. 3, but for U = 3, α = 0.75. The extrapolated
transition temperature is Tc(N∗ → ∞) = 0.14(3)t .
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FIG. 5. Scaled staggered magnetization squared (according to the
2D Ising critical exponent) as a function of the inverse temperature β

(in units of the hopping amplitude t) for different system sizes of linear
length L for an anisotropic Hubbard model with U/t = 3,α = 0.75.
The critical temperature is estimated from the intersections to be
βct = 8.5 ± 0.5.

in Fig. 5. The estimate is again in agreement with the critical
temperature obtained by the DiagMC calculations. Figure 6
summarizes the critical temperature computed at different
anisotropic ratios. The critical temperature measured in the
unit of the bandwidth W remains high from extreme (α ∼ 0)
to intermediate (α ∼ 0.75) anisotropy. When measured in the
unit of the hopping amplitude t the transition temperature even
rises with decreasing anisotropy. However, since Tc should
drop to zero in the isotropic case, it suggests a quite abrupt
change of the critical temperature in the neighborhood of the
isotropic point α ∼ 1. This behavior is reminiscent of the XXZ

model [35], which applies in the strong coupling limit, and also
appears natural in the weak-coupling limit (cf. Sec. III B 1
above).

FIG. 6. Critical temperature of the model (1) versus anisotropy
at U/t = 3. The critical temperature is measured in the unit of the
noninteracting bandwidth W = 4(1 + α)t . The data point at α = 0
is from the worm calculation (Fig. 2) and the critical temperature is
known to be zero at α = 1 [36], while the other data are from the
LCT-QMC calculation.

IV. SUMMARY AND EXPERIMENTAL REALIZATION

Breaking of the discreteZ2 spin inversion symmetry results
in an antiferromagnetic Ising state with finite critical temper-
ature on a two-dimensional lattice. We presented quantitative
predictions for the onset of antiferromagnetic Ising order in
a Hubbard model with mismatched Fermi surfaces. Since the
model (1) can be implemented using spin-dependent optical
lattices or higher orbitals, testing these predictions would be a
step stone to further approach the more exotic quantum phases
at different filling and interaction [17] and on different lattice
geometries [13,14].

On the methodological side, we have shown how specific
limits of the Hubbard model with mismatched Fermi sur-
faces on two-dimensional lattices can be brought under full
numerical control by using three different quantum Monte
Carlo methods. These limits are (i) fully anisotropic spin-
dependent hopping at any density with the Worm algorithm,
(ii) anisotropic spin-dependent hopping at half filling with
LCT-QMC, and (iii) arbitrary anisotropy and density at
sufficiently weak interactions using DiagMC. The results of
the methods are consistent with each other within their domain
of applicability and furthermore supported by analytical weak-
coupling arguments.

The main physical result is that we find a discrete Z2

symmetry breaking at a finite critical temperature towards
an Ising antiferromagnet in the half-filled model. In view
of our numerical results at intermediate interactions as well
as the situation in the weak- and strong-coupling limits,
a small anisotropy seems to be generically sufficient to
create a large critical temperature. One should notice that
breaking the spin SU (2) symmetry is crucial to obtain an Ising
antiferromagnet with finite critical temperature in 2D. The
strictly symmetrical distortion of the spin up and down Fermi
surfaces shown in Fig. 1 is however not crucial. Away from
half filling the weak-coupling limit predicts incommensurate
spin density waves at extreme anisotropy α = 0 and p-
wave superfluidity at general anisotropy 0 < α < 1. At finite
interactions we expect the O(U ) spin density wave instability
to dominate over the O(U 2) superfluid instabilities in a finite
region of the phase diagram at strong anisotropy and around
half filling, similar to the situation in the attractive case
[37].

Experimentally, the model (1) can be implemented using
spin-dependent optical lattices [38] or using higher orbitals
[39,40]. In both cases, tuning the anisotropic hopping am-
plitudes of two species of atoms differently will lead to
mismatched Fermi surfaces like those shown in Fig. 1(b).
Moreover, by using magnetic gradient modulation, Ref. [41]
has created a continuously tunable state-dependent optical
lattice. In the extreme anisotropic and large U limit the model
(2) approaches the 2D Ising model. The critical entropy per
particle is 0.30647kB [42], which is likely to be within reach in
current experiment [12]. The presence of an additional trapping
potential is likely to reduce the required entropy [43] because
the metallic wings with incommensurate filling have higher
entropy than the trap center.

Detection of the phase transition would be easiest via a
spin-resolved density measurement. Forming of the antiferro-
magnetic pattern would also leave a signature in spin-resolved
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time-of-flight images. Testing our predictions would be an
important step towards approaching the more exotic quantum
phases at different filling and interaction strengths [17] and on
different lattice geometries [13,14], which are at the limits of
numerical control.

ACKNOWLEDGMENTS

We thank Y.-H. Liu for helpful discussions and Wei Tang
for providing the critical entropy value of the 2D Ising
model. J.G. is supported by the Swiss National Science

Foundation, L.W. by the Ministry of Science and Technology
of China under the Grant No. 2016YFA0302400 and the
start-up grant of IOP-CAS, and L.P. by FP7/ERC starting
Grant No. 306897. The DiagMC calculations were run on
the Mammouth cluster of Université de Sherbrooke, provided
by the Canadian Foundation for Innovation, the Ministère de
l’Éducation des Loisirs et du Sport (Québec), Calcul Québec,
and Compute Canada. The LCT-QMC calculations were run
on the Tianhe-2 cluster of the National Supercomputer Center
in Guangzhou. Simulations and data evaluation made use of
the ALPS libraries [44,45].

[1] F. H. L. Essler, H. Frahm, F. Göhmann, A. Klümper, and V. E.
Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, Cambridge, 2005).

[2] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[3] L. Liu, H. Yao, E. Berg, S. R. White, and S. A. Kivelson, Phases
of the Infinite u Hubbard Model on Square Lattices, Phys. Rev.
Lett. 108, 126406 (2012).

[4] J. P. F. LeBlanc, Andrey E. Antipov, Federico Becca, Ireneusz
W. Bulik, Garnet Kin-Lic Chan, Chia-Min Chung, Youjin
Deng, Michel Ferrero, Thomas M. Henderson, Carlos A.
Jiménez-Hoyos, E. Kozik, Xuan-Wen Liu, Andrew J. Millis,
N. V. Prokof’ev, Mingpu Qin, Gustavo E. Scuseria, Hao Shi,
B. V. Svistunov, Luca F. Tocchio, I. S. Tupitsyn, Steven R.
White, Shiwei Zhang, Bo-Xiao Zheng, Zhenyue Zhu, and
Emanuel Gull (Simons Collaboration on the Many-Electron
Problem), Solutions of the Two-Dimensional Hubbard Model:
Benchmarks and Results from a Wide Range of Numerical
Algorithms, Phys. Rev. X 5, 041041 (2015).

[5] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with
ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[6] T. Esslinger, Fermi-Hubbard Physics with Atoms in an Optical
Lattice, Annu. Rev. Condens. Matter Phys. 1, 129 (2010).

[7] R. Jördens, N. Strohmaier, K. Günter, H. Moritz, and T.
Esslinger, A mott insulator of fermionic atoms in an optical
lattice, Nature (London) 455, 204 (2008).

[8] U. Schneider, L. Hackermüller, S. Will, Th. Best, I. Bloch,
T. A. Costi, R. W. Helmes, D. Rasch, and A. Rosch, Metallic
and insulating phases of repulsively interacting fermions in a 3d
optical lattice, Science 322, 1520 (2008).

[9] M. Boll, T. A. Hilker, G. Salomon, A. Omran, J. Nespolo,
L. Pollet, I. Bloch, and C. Gross, Spin- and density-resolved
microscopy of antiferromagnetic correlations in fermi-hubbard
chains, Science 353, 1257 (2016).

[10] M. F. Parsons, A. Mazurenko, C. S. Chiu, G. Ji, D. Greif, and
M. Greiner, Site-resolved measurement of the spin-correlation
function in the fermi-hubbard model, Science 353, 1253
(2016).

[11] L. W. Cheuk, M. A. Nichols, K. R. Lawrence, M. Okan, H.
Zhang, E. Khatami, N. Trivedi, T. Paiva, M. Rigol, and M. W.
Zwierlein, Observation of spatial charge and spin correlations
in the 2d fermi-hubbard model, Science 353, 1260 (2016).

[12] A. Mazurenko, C. S. Chiu, G. Ji, M. F. Parsons, M. Kanász-Nagy,
R. Schmidt, F. Grusdt, E. Demler, D. Greif, and M. Greiner,

Experimental realization of a long-range antiferromagnet in the
Hubbard model with ultracold atoms, arXiv:1612.08436.

[13] C. Wu, Orbital Ordering and Frustration of p-Band Mott
Insulators, Phys. Rev. Lett. 100, 200406 (2008).

[14] E. Zhao and W. Liu, Orbital Order in Mott Insulators of Spinless
p-Band Fermions, Phys. Rev. Lett. 100, 160403 (2008).

[15] A. E. Feiguin and M. P. A. Fisher, Exotic Paired States with
Anisotropic Spin-Dependent Fermi Surfaces, Phys. Rev. Lett.
103, 025303 (2009).

[16] A. E. Feiguin and M. P. A. Fisher, Exotic paired phases in
ladders with spin-dependent hopping, Phys. Rev. B 83, 115104
(2011).

[17] J. Gukelberger, E. Kozik, L. Pollet, N. Prokof’ev, M. Sigrist,
B. Svistunov, and M. Troyer, p-Wave Superfluidity by Spin-
Nematic Fermi Surface Deformation, Phys. Rev. Lett. 113,
195301 (2014).

[18] S. Xu, Y. Li, and C. Wu, Sign-Problem-Free Quantum Monte
Carlo Study on Thermodynamic Properties and Magnetic Phase
Transitions in Orbital-Active Itinerant Ferromagnets, Phys. Rev.
X 5, 021032 (2015).

[19] E. Berg, M. A. Metlitski, and S. Sachdev, Sign-Problem-Free
Quantum Monte Carlo of the Onset of Antiferromagnetism in
Metals, Science 338, 1606 (2012).

[20] N. V. Prokof’ev, B. V. Svistunov, and I. S. Tupitsyn, Exact,
complete, and universal continuous-time worldline monte carlo
approach to the statistics of discrete quantum systems, J. Exp.
Theor. Phys. 87, 310 (1998).

[21] L. Pollet, K. V. Houcke, and S. M.A. Rombouts, Engineering
local optimality in quantum monte carlo algorithms, J. Comput.
Phys. 225, 2249 (2007).

[22] K. V. Houcke, E. Kozik, N. Prokof’ev, and B. Svistunov,
Diagrammatic Monte Carlo, Phys. Procedia 6, 95 (2010).

[23] Jan Gukelberger, From non-unitary anyons to unconventional
superfluidity, Ph.D. thesis, ETH Zurich, 2015.

[24] M. Iazzi and M. Troyer, Efficient continuous-time quantum
Monte Carlo algorithm for fermionic lattice models, Phys. Rev.
B 91, 241118 (2015).

[25] L. Wang, M. Iazzi, P. Corboz, and M. Troyer, Efficient
continuous-time quantum Monte Carlo method for the ground
state of correlated fermions, Phys. Rev. B 91, 235151 (2015).

[26] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M.
Rigol, One dimensional bosons: From condensed matter systems
to ultracold gases, Rev. Mod. Phys. 83, 1405 (2011).

[27] T. Giamarchi, Quantum Physics in One Dimension, International
Series of Monographs on Physics (Clarendon Press, Oxford,
2003).

205121-7

https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.108.126406
https://doi.org/10.1103/PhysRevLett.108.126406
https://doi.org/10.1103/PhysRevLett.108.126406
https://doi.org/10.1103/PhysRevLett.108.126406
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/PhysRevX.5.041041
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1146/annurev-conmatphys-070909-104059
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1038/nature07244
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.1165449
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1635
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag1430
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
https://doi.org/10.1126/science.aag3349
http://arxiv.org/abs/arXiv:1612.08436
https://doi.org/10.1103/PhysRevLett.100.200406
https://doi.org/10.1103/PhysRevLett.100.200406
https://doi.org/10.1103/PhysRevLett.100.200406
https://doi.org/10.1103/PhysRevLett.100.200406
https://doi.org/10.1103/PhysRevLett.100.160403
https://doi.org/10.1103/PhysRevLett.100.160403
https://doi.org/10.1103/PhysRevLett.100.160403
https://doi.org/10.1103/PhysRevLett.100.160403
https://doi.org/10.1103/PhysRevLett.103.025303
https://doi.org/10.1103/PhysRevLett.103.025303
https://doi.org/10.1103/PhysRevLett.103.025303
https://doi.org/10.1103/PhysRevLett.103.025303
https://doi.org/10.1103/PhysRevB.83.115104
https://doi.org/10.1103/PhysRevB.83.115104
https://doi.org/10.1103/PhysRevB.83.115104
https://doi.org/10.1103/PhysRevB.83.115104
https://doi.org/10.1103/PhysRevLett.113.195301
https://doi.org/10.1103/PhysRevLett.113.195301
https://doi.org/10.1103/PhysRevLett.113.195301
https://doi.org/10.1103/PhysRevLett.113.195301
https://doi.org/10.1103/PhysRevX.5.021032
https://doi.org/10.1103/PhysRevX.5.021032
https://doi.org/10.1103/PhysRevX.5.021032
https://doi.org/10.1103/PhysRevX.5.021032
https://doi.org/10.1126/science.1227769
https://doi.org/10.1126/science.1227769
https://doi.org/10.1126/science.1227769
https://doi.org/10.1126/science.1227769
https://doi.org/10.1134/1.558661
https://doi.org/10.1134/1.558661
https://doi.org/10.1134/1.558661
https://doi.org/10.1134/1.558661
https://doi.org/10.1016/j.jcp.2007.03.013
https://doi.org/10.1016/j.jcp.2007.03.013
https://doi.org/10.1016/j.jcp.2007.03.013
https://doi.org/10.1016/j.jcp.2007.03.013
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1016/j.phpro.2010.09.034
https://doi.org/10.1103/PhysRevB.91.241118
https://doi.org/10.1103/PhysRevB.91.241118
https://doi.org/10.1103/PhysRevB.91.241118
https://doi.org/10.1103/PhysRevB.91.241118
https://doi.org/10.1103/PhysRevB.91.235151
https://doi.org/10.1103/PhysRevB.91.235151
https://doi.org/10.1103/PhysRevB.91.235151
https://doi.org/10.1103/PhysRevB.91.235151
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405
https://doi.org/10.1103/RevModPhys.83.1405


JAN GUKELBERGER, LEI WANG, AND LODE POLLET PHYSICAL REVIEW B 95, 205121 (2017)

[28] N. Prokof’ev and B. Svistunov, Bold Diagrammatic Monte Carlo
Technique: When the Sign Problem is Welcome, Phys. Rev. Lett.
99, 250201 (2007).

[29] N. Prokof’ev and B. Svistunov, Fermi-polaron problem: Dia-
grammatic Monte Carlo method for divergent sign-alternating
series, Phys. Rev. B 77, 020408 (2008).

[30] E. F. Huffman and S. Chandrasekharan, Solution to sign
problems in half-filled spin-polarized electronic systems, Phys.
Rev. B 89, 111101 (2014).

[31] Z.-X. Li, Y.-F. Jiang, and H. Yao, Solving the fermion sign
problem in quantum Monte Carlo simulations by Majorana
representation, Phys. Rev. B 91, 241117 (2015).

[32] L. Wang, Y.-H. Liu, M. Iazzi, M. Troyer, and G. Harcos, Split
Orthogonal Group: A Guiding Principle for Sign-Problem-Free
Fermionic Simulations, Phys. Rev. Lett. 115, 250601 (2015).

[33] Z. C. Wei, C. Wu, Y. Li, S. Zhang, and T. Xiang, Majorana
Positivity and the Fermion Sign Problem of Quantum Monte
Carlo Simulations, Phys. Rev. Lett. 116, 250601 (2016).

[34] Y.-H. Liu and L. Wang, Quantum Monte Carlo study of mass-
imbalanced Hubbard models, Phys. Rev. B 92, 235129 (2015).

[35] E. Loh Jr., D. J. Scalapino, and P. M. Grant, Monte carlo
simulations of the quantum xxz model in two dimensions, Phys.
Scr. 32, 327 (1985).

[36] N. D. Mermin and H. Wagner, Absence of Ferromagnetism
or Antiferromagnetism in One- or Two-Dimensional Isotropic
Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).

[37] Cf. Ref. [17]. Note that, while there is a direct mapping between
results for the half-filled attractive and repulsive models, the
doped repulsive model maps into the attractive model in a
magnetic field and vice versa [46].

[38] O. Mandel, M. Greiner, A. Widera, T. Rom, T. W. Hänsch, and I.
Bloch, Coherent Transport of Neutral Atoms in Spin-Dependent
Optical Lattice Potentials, Phys. Rev. Lett. 91, 010407
(2003).

[39] T. Müller, S. Fölling, A. Widera, and I. Bloch, State Preparation
and Dynamics of Ultracold Atoms in Higher Lattice Orbitals,
Phys. Rev. Lett. 99, 200405 (2007).

[40] G. Wirth, M. Ölschläger, and A. Hemmerich, Evidence for
orbital superfluidity in the P-band of a bipartite optical square
lattice, Nat. Phys. 7, 147 (2010).

[41] G. Jotzu, M. Messer, F. Görg, D. Greif, R. Desbuquois, and
T. Esslinger, Creating State-Dependent Lattices for Ultracold
Fermions by Magnetic Gradient Modulation, Phys. Rev. Lett.
115, 073002 (2015).

[42] L. Onsager, Crystal statistics. i. a two-dimensional model
with an order-disorder transition, Phys. Rev. 65, 117
(1944).

[43] R. Jördens, L. Tarruell, D. Greif, T. Uehlinger, N. Strohmaier,
H. Moritz, T. Esslinger, L. De Leo, C. Kollath, A. Georges,
V. Scarola, L. Pollet, E. Burovski, E. Kozik, and M. Troyer,
Quantitative Determination of Temperature in the Approach to
Magnetic Order of Ultracold Fermions in an Optical Lattice,
Phys. Rev. Lett. 104, 180401 (2010).

[44] B. Bauer, L. D. Carr, H. G. Evertz, A. Feiguin, J. Freire, S. Fuchs,
L. Gamper, J. Gukelberger, E. Gull, S. Guertler, A. Hehn, R.
Igarashi, S. V. Isakov, D. Koop, P. N. Ma, P. Mates, H. Matsuo,
O. Parcollet, G. Pawołwski, J. D. Picon, L. Pollet, E. Santos,
V. W. Scarola, U. Schollwöck, C. Silva, B. Surer, S. Todo, S.
Trebst, M. Troyer, M. L. Wall, P. Werner, and S. Wessel, The alps
project release 2.0: open source software for strongly correlated
systems, J. Stat. Mech. (2011) P05001.

[45] A. F. Albuquerque, F. Alet, P. Corboz, P. Dayal, A. Feiguin, S.
Fuchs, L. Gamper, E. Gull, S. Gürtler, A. Honecker, R. Igarashi,
M. Körner, A. Kozhevnikov, A. Läuchli, S. R. Manmana,
M. Matsumoto, I. P. McCulloch, F. Michel, R. M. Noack,
G. Pawłowski, L. Pollet, T. Pruschke, U. Schollwöck, S.
Todo, S. Trebst, M. Troyer, P. Werner, and S. Wessel, The
ALPS project release 1.3: Open-source software for strongly
correlated systems, J. Magn. Magn. Mater. 310, 1187 (2007),
proceedings of the 17th International Conference on Magnetism
The International Conference on Magnetism.

[46] A. F. Ho, M. A. Cazalilla, and T. Giamarchi, Quantum simulation
of the Hubbard model: The attractive route, Phys. Rev. A 79,
033620 (2009).

205121-8

https://doi.org/10.1103/PhysRevLett.99.250201
https://doi.org/10.1103/PhysRevLett.99.250201
https://doi.org/10.1103/PhysRevLett.99.250201
https://doi.org/10.1103/PhysRevLett.99.250201
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.77.020408
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevB.89.111101
https://doi.org/10.1103/PhysRevB.91.241117
https://doi.org/10.1103/PhysRevB.91.241117
https://doi.org/10.1103/PhysRevB.91.241117
https://doi.org/10.1103/PhysRevB.91.241117
https://doi.org/10.1103/PhysRevLett.115.250601
https://doi.org/10.1103/PhysRevLett.115.250601
https://doi.org/10.1103/PhysRevLett.115.250601
https://doi.org/10.1103/PhysRevLett.115.250601
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevLett.116.250601
https://doi.org/10.1103/PhysRevB.92.235129
https://doi.org/10.1103/PhysRevB.92.235129
https://doi.org/10.1103/PhysRevB.92.235129
https://doi.org/10.1103/PhysRevB.92.235129
https://doi.org/10.1088/0031-8949/32/4/016
https://doi.org/10.1088/0031-8949/32/4/016
https://doi.org/10.1088/0031-8949/32/4/016
https://doi.org/10.1088/0031-8949/32/4/016
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.91.010407
https://doi.org/10.1103/PhysRevLett.91.010407
https://doi.org/10.1103/PhysRevLett.91.010407
https://doi.org/10.1103/PhysRevLett.91.010407
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1103/PhysRevLett.99.200405
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys1857
https://doi.org/10.1038/nphys1857
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1103/PhysRevLett.115.073002
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1103/PhysRevLett.104.180401
https://doi.org/10.1103/PhysRevLett.104.180401
https://doi.org/10.1103/PhysRevLett.104.180401
https://doi.org/10.1103/PhysRevLett.104.180401
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1088/1742-5468/2011/05/P05001
https://doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1016/j.jmmm.2006.10.304
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620
https://doi.org/10.1103/PhysRevA.79.033620



