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We investigate the effect of spin-orbit coupling on the in-gap bound states localized at magnetic impurities
in multiband superconductors with unconventional (sign-changed) and conventional (sign-unchanged) s-wave
pairing symmetry, which may be relevant to iron-based superconductors. Without spin-orbit coupling, for spin-
singlet superconductors it is known that such bound states cross zero energy at a critical value of the impurity
scattering strength and acquire a finite spin polarization. Moreover, the degenerate, spin-polarized, zero-energy
bound states are unstable to applied Zeeman fields as well as a deviation of the impurity scattering strength away
from criticality. Using a T -matrix formalism as well as analytical arguments, we show that, in the presence of spin-
orbit coupling, the zero-energy bound states localized at magnetic impurities in unconventional, sign-changed,
s-wave superconductors acquire surprising robustness to applied Zeeman fields and variation in the impurity
scattering strength, an effect which is absent in the conventional, sign-unchanged, s-wave superconductors. Given
that the iron-based multiband superconductors may possess a substantial spin-orbit coupling as seen in recent
experiments, our results may provide one possible explanation to the recent observation of surprisingly robust
zero bias scanning tunneling microscope peaks localized at magnetic impurities in iron-based superconductors
provided the order parameter symmetry is sign changing s+−-wave.

DOI: 10.1103/PhysRevB.95.205107

I. INTRODUCTION

We are motivated by a recent scanning tunneling mi-
croscope (STM) observation of a robust zero bias con-
ductance peak (unsplit by an applied magnetic field ∼8T )
induced at magnetic impurities in iron-based superconductor
Fe1+x(Te,Se) [1]. Zero- or low-energy subgap states bound to
magnetic and/or nonmagnetic impurities in superconductors
are not unusual [2–13]. However, in spin-singlet supercon-
ductors [e.g., s-wave (s++,s+−-wave), d-wave, etc], the zero
bias peaks localized at impurities are expected to split into a
double peak structure upon application of a magnetic field.
Qualitatively, the splitting of the peak by a magnetic field is
due to the fundamental twofold spin degeneracy of Bogoliubov
quasiparticle states in a singlet superconductor. Since the
spin of the zero-energy bound states couples to a magnetic
field via Zeeman coupling, the zero bias STM peak, if any,
gives rise to a double peak structure by application of a
magnetic field. Theoretically, a defect-induced zero-energy
state can escape splitting by a magnetic field when the state
is nondegenerate. A nondegenerate zero-energy bound state
in a superconductor, on the other hand, is very unusual,
and is commonly referred to as a Majorana bound state
(MBS) that can be realized in a topological superconductor
[14,15]. This has led to the tantalizing conjecture of real-
izing a topological superconductor and MBS in iron-based
superconductors induced by superconductivity, spin-orbit cou-
pling, and local magnetic order induced at isolated magnetic
impurities [1].

Impurity induced in-gap states at nonmagnetic and mag-
netic impurities in iron-based superconductors have been
investigated before within a T -matrix approach and the
Bogoliubov de-Gennes formalism [5–13]. In both approaches
it has been found that, while for nonmagnetic impurities in-gap

bound states exist only for unconventional, sign-changed,
s-wave superconductors (s+−), for magnetic impurities such
states exist for both sign-unchanged (s++) and sign-changed
(s+−) superconducting ordering symmetries. For magnetic
impurities, with increasing strength of the impurity potential, a
pair of spin-polarized in-gap bound states cross zero energy at
a quantum phase transition at a critical value of the scattering
potential. Moreover, the pair of zero-energy bound states at the
critical scattering strength, owing to finite spin polarizations,
are unstable to applied Zeeman fields, which split them into a
pair of positive and negative energy in-gap states, producing a
double peak structure in tunneling experiments. Thus, within
this conventional picture of impurity scattering in iron-based
superconductors [5–13], zero bias STM peaks at magnetic
impurities that remain unsplit by magnetic fields ∼8T cannot
be explained, irrespective of whether the superconducting
ordering symmetry is assumed to be s+− or s++ wave. More
recently, Ref. [16] has attempted to explain the robustness
of zero bias STM peaks at magnetic impurities in iron-based
superconductor Fe1+x(Te,Se) [1] in terms of a Z2 topological
mirror order and s+− superconducting order symmetry. In
other recent work, Ref. [17] has attempted to explain the
same experiments [1] within a so-called ‘tunneling impurity’
formulation, in which the magnetic impurity is assumed to be
coupled to the underlying Fe lattice only by hopping terms but
no exchange interaction, in spite of the fact that the impurity
possesses a nonzero local magnetic moment. In this paper we
show that the zero-energy bound states localized at magnetic
impurities in sign changing s+−-wave superconductors (but
not in sign unchanged s++-wave superconductors) can be
surprisingly robust to perturbations such as Zeeman fields and
variations in the impurity scattering strength in the presence
of spin-orbit coupling. Given that a substantial spin-orbit
coupling (∼5–10 meV) may be present in all the classes of iron
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FIG. 1. (a) Fermi surfaces of the two-band model at μ = 1.65t1
in the unfolded BZ and (b) the Fermi surfaces of the helicity bands
in the presence of the Rashba-type SOC with ν = 0.25t1 = 2.5 meV.
The red pockets at � and M points represent the holelike pockets,
and the blue pockets at the X point represent the electronlike pockets.
SOC produces the additional Fermi surfaces with the same chemical
potential.

based superconductors as seen in recent experiments [18], our
work provides an alternative explanation of robust STM peaks
in iron-based superconductor Fe1+x(Te,Se) [1] which remain
unsplit even by a magnetic field as high as ∼8T without having
to invoke exotic physics such as topological superconductivity
[1,16] and/or absence of exchange coupling of magnetic
impurity with the underlying Fe lattice [17]. In addition,
our work fills the gap of analyzing the effects of spin-orbit
coupling on magnetic impurity induced Yu-Shiba-Rusinov
(YSR) states [19–21] in unconventional and conventional
s-wave superconductors.

In our calculations, the key to the robustness of magnetic
impurity induced zero-energy bound states in multiband
unconventional s-wave superconductors is a nonzero spin-
orbit coupling (SOC), which has so far been neglected in
the analysis of YSR states in multiband superconductors. In
recent high resolution ARPES experiments, substantial SOC
(∼5–10 meV) has been detected in all the families of iron-
based superconductors via the observation of SOC-induced
Fermi surface splitting [18].

With a minimal modeling of the band Hamiltonian in the
presence of SOC we are able to show that a robust zero bias
state (ZBS) is induced at magnetic impurities in iron-based su-
perconductors provided the symmetry of the superconducting
order parameter is sign-changing s+− wave. The robustness of
the ZBS due to SOC can be intuitively understood as resulting
from the suppression of the superconducting gap by SOC in the
s+− case and the properties of impurities in nearly isotropic gap
superconductors [19–21]. As shown in Fig. 1, SOC produces
a finite Fermi surface splitting that pushes one Fermi surface
towards the X point and the other towards the � point of
the Brillouin zone. On the other hand, for s+− pairing, the
pairing potential changes sign between these two points in the
Brillouin zone. Therefore, with one Fermi surface moving
towards the X point, the pairing amplitude on that Fermi
surface is suppressed. As a result, one of the Fermi surfaces in
s+−-wave superconductors in the presence of SOC would have
a smaller gap. This suppressed gap is still quite isotropic and
as shown in the Appendix, for such isotropic Fermi surfaces,

one can prove that a magnetic impurity will support localized
subgap bound states just as in the case of the Yu-Shiba-Rusinov
states [19–21]. However, if the gap is suppressed by SOC,
then the impurity-induced subgap state is pinned to live
inside the smaller gap, even in the presence of a magnetic
field, explaining the robustness of the zero bias peak to
substantial magnetic fields. On the other hand, the magnitude
of conventional s++ pairing gap does not renormalize in
the presence of SOC. Thus, the s++ superconductor does
not provide the robust zero-energy bound states at magnetic
impurities, with zero bias states being strongly affected by
the perturbation of a magnetic field even with spin-orbit
coupling. Thus, our results, in addition to providing a possible
theoretical explanation of robust zero bias conductance peaks
in iron-based superconductors [1] without having to invoke
exotic physics such as topological superconductivity [1,16]
or absence of exchange coupling between magnetic impurity
and the underlying Fe lattice [17], also help in identifying the
relevant symmetry of the superconducting order parameter of
iron-based superconductors as sign-changing s+− wave.

The paper is organized as follows: In Sec. II, we introduce
the model Hamiltonian and the formalism. The robustness
of the zero-energy bound states induced by a single magnetic
impurity with and without spin orbit coupling is investigated in
Sec. III. Then, we present the effects of the multiple magnetic
impurities in Sec. IV. Finally, a conclusion is given in Sec. V.
Some technical details pertaining to the analytical calculations
of the robustness are relegated to the Appendix.

II. MODEL AND FORMALISM

We start with a mean-field Hamiltonian for the iron-based
superconductor using the two-orbital model (dxz and dyz) on
the two-dimensional Fe square lattice [22],

H = H0 + Hmag + Himp. (1)

Here, H0 is the tight-binding Hamiltonian in the superconduct-
ing state, including intra- and interorbital hopping integrals

H0 =
∑
ijαβσ

t
αβ

ij c†iασ cjβσ − μ
∑
iασ

c†iασ ciασ + Hpair, (2)

where c
†
iασ creates an electron with spin σ in the orbitals

α = 1 (dxz) and 2 (dyz) at site i. Following earlier work [5],
we take the values of the nearest-neighbor hopping matrix
elements as t11

i±x̂ = t22
i±ŷ = t1, t22

i±x̂ = t11
i±ŷ = t2 = −1.3t1, and

the next-nearest-neighbor hopping as tαα
i±(x̂+ŷ) = tαα

i±(x̂−ŷ) = t3,

and t
αβ

i±(x̂+ŷ) = −t
αβ

i±(x̂−ŷ) = t4 with t3 = t4 = 0.85t1. We have
taken t1 = 10 meV as the energy units and lattice constant
a = 1. The chemical potential μ = 1.65t1 is adjusted to give
a fixed filling factor ne � 2.1 per site [5]. We have checked
that the main result of this paper—robust zero-energy states at
magnetic impurities in s+− superconductors in the presence of
spin-orbit coupling—is robust to variations in these parameters
as long as the superconducting order parameter symmetry is
sign changing s+− wave.

The Fermi surfaces consist of the hole pockets at the � and
M points and the electron pocket at the X point in the unfolded
Brillouin zone [Fig. 1(a)] without SOC.
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The pairing Hamiltonian Hpair is given by

Hpair =
∑
ijα

�α(i,j)c†iα↑c
†
jα↓ + H.c., (3)

where �α(i,j) is a mean-field superconducting order pa-
rameter. We focus on the unconventional sign-changed s+−
pairing symmetry so that �α(i,j) = �0δi,j±(x̂±ŷ) [5,23]. For a
conventional s++ superconductor, �α(i,j) = �0δi,j.

We can rewrite the Hamiltonian in the momentum space as
H0 = 1

N

∑
k 	

†
kĥ

0
k	k, where

ĥ0
k = ξ i

kα̂
i ⊗ (τ̂ 3 ⊗ σ̂ 0) + �kα̂

0 ⊗ (τ̂ 1 ⊗ σ̂ 0), (4)

and 	k is an eight-dimensional Nambu spinor 	
†
k =

[c†k1↑,c
†
k1↓,c−k1↓,−c−k1↑,c

†
k2↑,c

†
k2↓,c−k2↓,−c−k2↑] with ckασ

being a Fourier transform of crασ . The Pauli matrices α̂i , σ̂ i ,
and τ̂ i act on the orbital, the particle hole, and the spin spaces,
respectively. Then, the order parameter �k = �0 cos kx cos ky

for s+− pairing, and the dispersions ξ 0
k = (t1 + t2)(cos kx +

cos ky) + 4t3 cos kx cos ky − μ, ξ 1
k = 4t3 sin kx sin ky , ξ 2

k = 0,
and ξ 3

k = (t1 − t2)(cos kx − cos ky).
The second term in the Hamiltonian Hmag describes the

effects of the magnetic field and SOC. In our work, we consider
the out-of-plane magnetic field hext, and the Rashba-type SOC
[24] with an angular momentum L(k) = (− sin ky, sin kx,0)
[25,26] on the two-dimensional x-y plane. Then, we have
Hmag = 1

N

∑
k 	

†
kĥ

mag
k 	k, where

ĥ
mag
k = −hextα̂

0 ⊗ (τ̂ 0 ⊗ σ̂ 3) + να̂0 ⊗ (τ̂ 3 ⊗ L(k) · σ̂ )

(5)

with ν being the strength of SOC.
In this work, we treat the magnetic impurity as a localized

spin in the classical limit (S � 1) [19–21,27], and the quantum
(Kondo) effect of impurity is not under our consideration. In
this limit, which has been studied earlier quite extensively
for s+− and s++ superconductors in the absence of spin-orbit
coupling [5–13], the magnetic impurity is equivalent to the
local magnetic moment S. Then the impurity Hamiltonian
describes the interaction between the conduction electrons and
the impurity spin located at r = 0

Himp =
∑

α

S · (J1sαα(0) + J2sαᾱ(0)), (6)

where J1 and J2 are the intra- and interorbital exchange
couplings, and the operators sαβ(r) = 1

2

∑
σσ ′ c

†
rασ τ̂σσ ′crβσ ′ .

Spin-rotational symmetry of the system enables us to choose
the z axis of the spin degrees of freedom to point in the direction
of S. Using the Nambu spinor 	k, the impurity Hamiltonian
can be rewritten as Himp = ∑

k,k′ 	
†
kV̂ 	k′ with V̂ = J1Sα̂0 ⊗

(τ̂ 0 ⊗ σ̂ 3) + J2Sα̂1 ⊗ (τ̂ 0 ⊗ σ̂ 3). We shall consider the effects
of the intraorbital impurity scattering, thus the strength of the
impurity is given by w = SzJ1.

We perform a numerical study employing a mean-field
T -matrix approximation [4,28]. In this case, we assume that
the spatial variation of the superconducting order parameter
can be neglected. Since the impurity interaction is limited to
one site, scattering of quasiparticles from the impurity moment
is described by a T matrix, T̂ (ω), whose Fourier transform
is independent of wave vectors. Then the single-particle

Green’s function for an impurity located at r = 0 is given by

Ĝ(r,r′; ω) = Ĝ(0)(r − r′,ω) + Ĝ(0)(r,ω)T̂ (ω)Ĝ(0)(−r′,ω),

(7)

where Ĝ(0)(r,ω) = 1
N

∑
k Ĝ(0)(k,ω)eik·r. The single-particle

Green’s function for a clean system Ĝ(0)(k,ω) = [(ω + i0+)
I − (ĥ0

k + ĥ
mag
k )]−1, where I is an eight-dimensional identity

matrix. The Fermi surfaces in the presence of SOC at zero
magnetic field are presented in Fig. 1(b). The helicity bands
remove the degeneracies of the electron spin in the electronlike
and holelike pockets. With Ĝ(0)(r,ω) in hands, the T matrix
can be obtained from the Lippmann-Schwinger equation

T̂ (ω) = [Î − V̂ Ĝ(0)(0,ω)]−1V̂ . (8)

Note that as far as the spatial variation of order parameter can
be neglected, these equations allow a complete solution of the
problem.

The nature of the magnetic impurity induced bound states
can be found by computing the spin-resolved local density of
states (LDOS)

Nασ (r,ω) = − 1

π
Im Gασ,ασ (r,r; ω) (9)

of which the poles give the energy spectra of single-particle
excitations and consist of those of the Ĝ0 and the T matrix. The
poles of the T -matrix signify the emergence of the impurity
induced states. It is known that a strong scattering yields
localized states deep in the gap, while a weak scattering results
in bound states close to the gap edge [4].

For the case of a quantum spin, one needs to address the
Kondo effect [29–31]. However, following earlier work on
s-wave superconductors including s+− and s++ [5–13], in this
work, we treat the magnetic impurity as a classical spin using a
mean-field T -matrix approximation approach. In this case the
main effect of the exchange coupling between the local mo-
ment S and electron spin is the renormalization of the effective
scattering potential for electrons of two different spin orien-
tations, and so there are four impurity induced in-gap states,
one for each electron-spin orientation in each dxz (α = 1)
and dyz (α = 2) orbital. It is noteworthy that the degeneracy
between two orbitals, dxz and dyz, cannot be removed by the
magnetic field and the SOC as well, thus we omit the notation
of α in the spin-resolved LDOS throughout this paper.

III. SINGLE MAGNETIC IMPURITY

We begin with the effects of the applied magnetic field
and SOC on the in-gap bound states induced by a single
magnetic impurity for the sign changed s+−-wave iron-based
superconductor. Figure 2 presents the spin-resolved LDOS
Nσ (r = 0,ω) at the critical values of impurity strengths w =
wc(ν = 0) and w = wc(ν = 0.5t1) for a finite temperature
T = 1.5 K below the superconducting critical temperature Tc.
For a weak impurity scattering w < wc, the ground state has
time-reversed pairs of single-particle in-gap states ±�. As w

increases, the energies ±� approach the chemical potential
and, eventually, at the critical scattering strength w = wc,
it becomes a zero-energy state, or zero-energy bound state
(ZBS) [2–5]. Figures 2(a) and 2(d) show the ZBSs for both
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FIG. 2. Magnetic field and SOC effects on LDOS, Nσ for s+−
pairing vs bias energy ω for clean system (green and magenta for
σ = ↑,↓, respectively), and system with an impurity at r = 0 (blue
and red for σ = ↑,↓) at T = 1.5 K. (a) and (d) show the appearance of
both ZBPs for σ =↑ and ↓ at the critical values w = wc(ν = 0) and
w = wc(ν = 0.5t1), respectively; (b) and (c) illustrate the Zeeman
splitting of N↑ and N↓ at weak magnetic fields hext = 0.06�0 and
0.12�0 without SOC. Whereas (e) illustrates the robustness of the
ZBPs, N↑,↓, to the applied magnetic field in the presence of SOC, ν =
0.5t1 = 5 meV, (f) the Zeeman split begins to appear with increasing
magnetic field for a single impurity in the system. Comparing the
LDOS for clean systems (green and magenta), it is manifest that the
SOC slightly changes the low energy states by forming a V-shaped
LDOS and makes the system robust against magnetic field.

spins (σ =↑ and σ =↓) with zero magnetic field applied,
hext = 0. In the absence of SOC (ν = 0), the corresponding
zero bias peaks (ZBPs) in the LDOS at hext = 0 begin
to split with increasing magnetic field hext. Figures 2(b)
and 2(c) illustrate the Zeeman splitting by the applied magnetic
fields hext = 0.06�0 (∼4 Tesla) and hext = 0.12�0 (∼8 Tesla),
respectively. In contrast, the presence of SOC (ν = 0.5t1 ∼
5 meV) dramatically reduces the Zeeman splitting and makes
the ZBPs robust to the magnetic field [Figs. 2(e) and 2(f)]. Note
that SOC ∼5–10 meV may not be unrealistic in iron based
superconductors as seen in recent high resolution ARPES
experiments [18]. It is noteworthy that the ZBSs localized
at the impurity site in the presence of SOC remain pinned
to zero energy even in a magnetic field 0.12�0 ∼ 8 Tesla.
It is in good agreement with the experimental observations
[1]. We believe that the robust ZBS is a strong signature
of the presence of SOC in the system. Note, however, the
low energy quasiparticle states inside the gap in the clean
system (green and magenta) even at hext = 0 [Figs. 2(d)–2(f)].
They exist because a finite SOC reduces the magnitude of
the superconducting gap, as discussed in the introduction, and
with a finite SOC ν = 0.5t1 = 5 meV the system is a nodal
superconductor. As discussed in the introduction (also see
below and the Appendix for more details), the reduction of the
magnitude of the superconducting gap in s+− (but not in s++)
superconductors with SOC is the key effect responsible for

the increased robustness of magnetic impurity induced ZBSs
to applied Zeeman fields. Later we will show that in a system
with a finite concentration of magnetic impurities as in the
experiments [1], the low energy quasiparticle density which
effectively reduces the gap can naturally arise from YSR states
bound to the nearby impurities. In this case, the ZBSs localized
at impurity sites are robust to applied magnetic fields (as well as
to variations in the impurity potential) even for smaller values
of SOC (ν = 0.25t1 = 2.5 meV), corresponding to which the
clean system has a full gap. This demonstrates that our results
are robust and do not depend on the specific values of the
parameters, as long as there is SOC and a finite concentration
of low energy quasiparticles at the impurity sites as in the
experiments.

The robustness of the ZBS due to SOC is attributed to a
combined effect of suppression of the superconducting gap by
SOC in the s+− case and the properties of magnetic impurities
in nearly isotropically gapped superconductors. As seen in
Fig. 1, SOC produces a relatively large spin splitting that
pushes one Fermi surface towards the X point and the other
towards the � point in the Brillouin zone. On the other hand, in
s+− pairing, the pairing potential changes sign between these
two points. Therefore, as one Fermi surface moves towards
the X point, the pairing amplitude is suppressed, so that
one of the Fermi surfaces would have a smaller gap. This
suppressed gap is still quite isotropic and as shown in the
appendix, for such isotropic Fermi surfaces, one can prove
that an infinitesimal magnetic impurity will support subgap
states just as in the case of the YSR states [19–21]. However,
if the gap is suppressed by SOC, then the impurity-induced
subgap state is pinned to live inside the smaller gap, even in
the presence of a magnetic field, explaining the robustness of
the ZBP to substantial magnetic fields. Since the coherence
peaks from the larger gapped Fermi surfaces are expected to
be larger, the smaller gap could appear as a pinned peak inside
the larger gap.

IV. MULTIPLE MAGNETIC IMPURITIES

Now we consider the robust ZBSs induced by the mul-
tiple magnetic impurities for s+−-wave superconductor in
the presence of SOC. This addresses the so-called class-D
antilocalization mechanism. The case of a large number of
bound states to magnetic impurities in a superconductor with
SOC is described by random-matrix theory in symmetry class
D [32]. This symmetry class shows no level repulsion at
zero energy. Because of this, the disorder averaged density
of states (or the density of states of a large number of weakly
localized bound states) is expected to show a peak at zero
energy quite generically independent of the magnetic field
[33]. Specifically, in the present context, nearby multiple Shiba
impurities provide a second mechanism (aside from SOC) of
reducing the magnitude of local gap near a given magnetic
impurity. By the argument given in the appendix, the zero bias
peak at the given impurity will then stay pinned at zero energy
even if the value of SOC is smaller, provided there is overlap
of wave functions from states localized at nearby impurities.
This demonstrates that our results are robust to specific values
of SOC. Below we explore this mechanism numerically by
introducing multiple Shiba impurities.
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FIG. 3. Magnetic field and SOC effects on LDOS, Nσ for s+−
pairing vs bias energy ω for clean system (green and magenta for σ =
↑,↓, respectively) and system with multiple impurities (blue and red
for σ = ↑,↓) at T = 1.5 K. Eight impurities are located in a square
and d = 12 atomic sites. The LDOS are calculated at a impurity
site. (a)–(c) show the ZBPs for σ =↑ and ↓ at the critical value
of the impurity potential without SOC, w = wc(ν = 0). The ZBP is
split by applying magnetic field hext = 0.12�0; (d)–(f) illustrate the
robustness of the ZBPs, N↑,↓ in the presence of SOC, ν = 0.25t1 =
2.5 meV.

For numerical analysis, we consider eight impurities ar-
ranged in the shape of a square with the nearest neighbors
separated by d/2 = 6 lattice sites (various other arrangements
of impurities give qualitatively the same results). For this
multiple-impurity problem, the Green’s function, Eq. (7),
is modified to include the scattering from the neighboring
impurities rI :

Ĝ(r,r; ω) = Ĝ(0)(0,ω) +
∑
I,I ′

Ĝ(0)(δrI ,ω)T̂ (rI ,rI ′ ,ω)

× Ĝ(0)(−δrI ′ ,ω), (10)

where δrI = r − rI runs for all impurities in the system, and
T̂ (rI ,rI ′ ,ω) = [Î − V̂ G(0)(rI − rI ′ ,ω)]−1V̂ is the 8 × nimp-
matrix with nimp being the number of the impurities in the
system. In Fig. 3, we present the spin-resolved LDOS Nσ (0,ω)
at one of the impurity sites (rI = 0) for clean system (green
and magenta lines) and the impurity induced bound states
at the critical scattering wc (blue and red lines) with and
without SOC. The Zeeman splitting in the absence of SOC
is manifest in the shift of each spin component in the LDOS
for the clean system with increasing Zeeman field, as shown
in Figs. 3(b) and 3(c). As the Zeeman field increases, the
degeneracy between the two spin components is removed,
thus N↑ and N↓ split from each other. On the other hand, even
weak SOC (ν = 0.25t1) dramatically changes the zero-energy
bound states, maintaining the ZBS even in the presence of
the applied magnetic field ∼8 Tesla. Figure 3(d) shows the
appearance of the ZPBs at the critical value of the impurity
scattering w = wc(ν) in the presence of SOC ν = 0.25t1 with

FIG. 4. SOC effects on the ZBP for s+− pairing at hext = 0 for
a single impurity (top) and for eight impurities in a square shape
(bottom) as in Fig. 3. For ν = 0, (a) and (d), the ZBP appears at the
critical value of impurity strength w = wc(ν = 0). For finite values of
ν, (b), (c), (e), and (f), the ZBP remains in a range of impurity strengths
(�w = wU − wL) and the robustness increases with increasing SOC.
Note that �w for a single impurity is the same as those for multiple
impurities at the finite values of the SOC strength ν.

no magnetic field applied. Figures 3(e) and 3(f) illustrate the
robustness of the ZBSs to the magnetic field hext.

In addition to robustness to applied magnetic field, in
the presence of SOC and low energy quasiparticle states
within the gap, the ZBSs in s+−-wave superconductors also
become robust to variations in the magnitude of the impurity
scattering potential. This is important because without SOC
the appearance of the ZBS at magnetic impurity sites in
s+− superconductors requires fine tuned scattering potential
at criticality wc(ν = 0) [5]. In contrast, SOC enforces the
appearance of ZBS in a range of magnetic impurity scattering
potential above the critical value w = wc(ν). Figures 4(b),
4(c), 4(e), and 4(f) show that the presence of SOC facilitates the
emergence of ZBSs in a broad range of the impurity strength,
whereas in the absence of SOC, a ZBS is allowed only at the
critical impurity scattering w = wc(ν) [Figs. 4(a) and 4(d)].
In this plot, to illustrate the impurity strength dependence
of the peak positions, Nσ is normalized by the height as
Ñσ = Nσ/max(|Nσ |).

In contrast to unconventional sign-changing s+− pairing
superconductors, magnetic impurity-induced ZBSs in conven-
tional s++ pairing (s-wave gap of the same sign on both hole
and electron pockets) are not robust to applied magnetic fields
even in the presence of SOC. Figure 5 shows the spin-resolved
LDOS Nσ at a given impurity site (rI = 0) for a spin-orbit
coupled superconductor (ν = 0.25t1) with s++ pairing order
parameter (�k = �0) for various values of applied magnetic
field and the magnitudes of impurity strengths. Figure 5(a)
shows the appearance of the ZBS at w = wc(ν = 0.25t1) at
zero applied magnetic field and (b) shows the pronounced
Zeeman splitting of the peaks even in the presence of SOC,
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FIG. 5. Effects of magnetic field and impurity strength on the
in-gap states for s++ pairing induced by eight magnetic impurities in
the presence of SOC. (a) At wc, the peaks for σ =↑ and ↓ are located
at zero bias ω = 0 for hext = 0. (b) Magnetic field splits into double
peaks even in the presence of SOC (ν = 0.25t1). (c) and (d) illustrate
the ZBPs are sensitive to values of impurity strengths at ν = 0.25t1.
Insets illustrate the robustness of the ZBPs for s+− pairing against
the magnetic field and impurity strengths at the same SOC strength,
ν = 0.25t1.

which is in stark contrast to the case of s+− pairing as shown
in the insets. It is noteworthy that the ZBSs for the s++
pairing requires fine tuning in the impurity potential even in
the presence of SOC. Figures 5(c) and 5(d) show the double
peak structure for σ =↑ and σ =↓ for w < wc(ν = 0.25)
and w > wc(ν = 0.25), respectively, while the insets show
the robustness of the ZBSs with SOC to variations in the
magnitude of the impurity potentials for s+− symmetry of the
order parameter.

V. DISCUSSION AND CONCLUSION

The formation of localized subgap bound states at non-
magnetic and magnetic impurity sites in unconventional (s+−)
and conventional (s++) multiband superconductors have been
studied earlier [5–13]. Similar to the case of Yu-Shiba-Rusinov
states [19–21] in spin-singlet single-band superconductors
[2–4], it was found earlier that magnetic impurities induce
localized zero-energy bound states in multiband s± and s++
superconductors. Such zero-energy bound states, however,
occur at a critical value of the impurity scattering potential
and are unlikely to be observed in experiments without fine
tuning. Moreover, in analogy to their counterparts in single-
band superconductors, the YSR states localized at magnetic
impurities in multiband superconductors are also unstable to
applied Zeeman fields. Applied magnetic fields, therefore, are
expected to split the magnetic impurity induced STM zero
bias conductance peaks, if any, in a double peak structure.
In recent experiments [1], however, robust STM peaks have
been observed in a class of iron based superconductors, which
remain unsplit even by a magnetic field as high as ∼8T .
Concurrently, in another set of experiments [18], a substantial

spin-orbit coupling ∼5–10 meV has been observed in all
the classes of iron based superconductors in high resolution
ARPES experiments. This has prompted us to investigate
the effects of spin-orbit coupling on the Yu-Shiba-Rusinov
states induced at magnetic impurities in multiband s± and
s++ superconductors. Using a numerical T -matrix formalism
and supporting theoretical arguments we have shown that
robust zero-energy bound states (that remain unsplit even by
a magnetic field as high as ∼8T ) are induced at isolated
magnetic impurity sites in multiband unconventional sign-
changed s+− superconductors in the presence of spin-orbit
coupling. No such enhancement of robustness by the effects
of spin-orbit coupling is present for magnetic impurities in
conventional s++ multiband superconductors.

The robustness of magnetic impurity induced zero bias
states in sign-changing s± superconductors to variations in the
impurity scattering potentials as well as the applied magnetic
fields are the consequences of spin-orbit coupling along with
low energy quasiparticle states within the superconducting
gap. As we have shown, spin-orbit coupling (and also the
presence of nearby magnetic impurities) effectively reduces
the magnitude of the superconducting gap in s± (but not
in s++) superconductors. Since the impurity induced YSR
states are pinned to the subgap energies even in the presence
of a Zeeman field (see Appendix), the reduction of the
superconducting gap (on one of the Fermi surfaces) in s±
superconductors by spin-orbit coupling effectively ensures that
the YSR states will remain pinned to zero or low energies
in s± superconductors even in the presence of a substantial
magnetic field. As no reduction of the superconducting gap
occurs in s++ superconductors by the effects of spin-orbit
coupling, STM zero bias conductance peaks from magnetic
impurities in s++ superconductors remain strongly split by
magnetic fields even in the presence of spin-orbit coupling.
These simple and intuitive arguments, supported by theoretical
and numerical evidence presented in this paper, provide one
possible explanation of the recent observation [1] of robust
STM zero bias peaks at isolated magnetic impurities in
one class of iron-based superconductors, without having to
invoke exotic physics such as topological superconductivity
[1,16] and/or the absence of exchange coupling of magnetic
impurities with the underlying Fe lattice [17]. It is important to
reiterate that we find the zero-energy bound states localized at
magnetic impurity sites in conventional sign-unchanged (s++)
superconductors to be strongly sensitive to applied magnetic
fields and variations in the impurity potentials even in the
presence of spin-orbit coupling. Thus, our results, in addition
to filling the gap of analyzing the effects of spin-orbit coupling
on YSR states in multiband superconductors and providing one
possible theoretical explanation of the observation of robust
zero bias peaks in iron based superconductors, may help iden-
tify the order parameter symmetry of these superconductors as
sign-changing s+− wave.

ACKNOWLEDGMENTS

K.S. and S.T. are supported by AFOSR (FA9550-13-1-
0045). J.D.S. would like to acknowledge the University of
Maryland, Condensed Matter theory center, and the Joint
Quantum institute for startup support.

205107-6



EFFECTS OF SPIN-ORBIT COUPLING ON ZERO-ENERGY . . . PHYSICAL REVIEW B 95, 205107 (2017)

APPENDIX: SUBGAP STATES FOR WEAK COUPLING

Here we show that under quite generic circumstances there
is always a subgap state bound to magnetic impurities in two
dimensional BCS superconductor with an isotropic gap. The
bound states to an impurity in a lattice are obtained by solving
for the poles of the T matrix or equivalently the zeros of an
effective Hamiltonian that is written as

Heff(ω) = V − G(0)−1(ω), (A1)

where in the case of a single-lattice site impurity, G(0)(ω) is
calculated on one lattice site. The single-site Green function
[G(0)(ω)] can be expanded in terms of BdG eigenstates of the
bulk as

G(0)(ω) =
∑
n,k

	nk	
†
nk

ω − εnk
=

∫
dε

ρ0(ε)

ω − ε
χ (ε), (A2)

where ρ0(ε) is the DOS of BdG quasiparticles and χ (ε) =
ρ0(ε)−1 ∑

n,k 	nk	
†
nkδ(ε − εnk).

Following Ref. [34], we note that in the presence of
rotational symmetry about the z direction the Green function

conserves spin (i.e. [G(0)(ω),σz] = 0), so that it commutes with
the impurity Hamiltonian V . In this case the two operators in
the effective Hamiltonian in Eq. (A1) can be simultaneously
diagonalized and a bound state occurs whenever V = λ−1,
for some eigenvalue λ of G(0)(ω). In this appendix we focus
on weak impurity strengths, V , which could produce states
near the gap edge �1. For 2D BCS superconductors with a
rotationally symmetric gap, ρ0(ε) diverges near the gap edge as
ε → �1 and thus one can approximate the energy dependence
of χ (ε) in Eq. (A2) as χ (ε) ≈ χ0 + εχ1. Therefore, we can
ignore the energy dependence of χ (ε) ≈ χ0 in Eq. (A2)
and conclude that in the limit ω → �1, the eigenvalue of
G(0)(ω) can be approximated as λ ≈ f (ω)χ0,n, where f (ω) =∫

dε
ρ0(ε)
ω−ε

and χ0,n are eigenvalues of χ0.
Since the integral f (ω) is divergent as ω → �1 and χ0 has

at least one finite (nonzero) eigenvalue, λ−1 ∝ f (ω)−1 → 0 as
ω → �1. Therefore, the impurity strength, V = λ−1, required
to produce a bound state near the gap edge (i.e., at ω ∼ �1)
vanishes as the bound state energy ω approaches the gap edge.
This implies that there is a bound state at arbitrarily small
impurity strengths inside the spectral gap independent of how
far the gap is suppressed.
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