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studied by renormalization group analysis
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We investigate the interplay of Coulomb interactions and short-range-correlated disorder in three-dimensional
systems where absent disorder the noninteracting band structure hosts a quadratic band crossing. Though the
clean Coulomb problem is believed to host a non-Fermi liquid phase, disorder and Coulomb interactions have the
same scaling dimension in a renormalization group (RG) sense, and thus should be treated on an equal footing.
We therefore implement a controlled ε expansion and apply it at leading order to derive RG flow equations valid
when disorder and interactions are both weak. We find that the non-Fermi liquid fixed point is unstable to disorder,
and demonstrate that the problem inevitably flows to strong coupling, outside the regime of applicability of the
perturbative RG. An examination of the flow to strong coupling suggests that disorder is asymptotically more
important than interactions, so that the low-energy behavior of the system can be described by a noninteracting
sigma model in the appropriate symmetry class (which depends on whether exact particle-hole symmetry is
imposed on the problem). We close with a discussion of general principles unveiled by our analysis that dictate
the interplay of disorder and Coulomb interactions in gapless semiconductors, and of connections to many-body
localized systems with long-range interactions.
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I. INTRODUCTION

Semimetals, gapless semiconductors with properties inter-
mediate between metals and insulators, provide a fascinating
playground for exploration of condensed matter physics. The
past decade his witnessed an explosion of activity studying
such semimetals (for a recent review, see Ref. [1]). Interest
has focused for the most part on two-dimensional systems
such as graphene [2,3] and topological insulator surface states
[4,5], but in recent years has broadened also to include
three-dimensional systems such as Weyl and Dirac semimetals
[6–16]. A particularly rich problem, first examined by
Abrikosov in 1971, involves three-dimensional systems with
quadratic band crossings and Coulomb interactions, argued
to be in a non-Fermi liquid phase. Interest in this problem
has recently been revived [17–19] because of its relevance
for pyrochlore iridates. However, theoretical explorations of
this unusual three-dimensional system have largely been
confined to the clean (disorder-free) problem, whereas realistic
materials are always disordered to some degree.

The interplay of disorder and interactions has separately
generated enormous theoretical and experimental activity, cat-
alyzed most recently by a surge of interest in many-body local-
ization (MBL) [20–24]. While research into MBL has focused
primarily on systems at high (even infinite) temperatures, the
combined role of disorder and interactions at zero temperature
is also worthy of study. Three-dimensional quadratic band
crossings are a particularly promising setting for exploring
the zero-temperature interplay of disorder and interactions,
because both short-range-correlated disorder and Coulomb
interactions are relevant with the same scaling dimension,
indicating that they should be treated on an equal footing.

Here, we investigate this interplay of interactions and disor-
der at zero temperature in three-dimensional materials hosting

quadratic band crossings. We use a renormalization-group
(RG) procedure to analyze the scaling behavior of weak short-
range-correlated disorder and Coulomb interactions, working
with the most general (symmetry-constrained) Hamiltonian
for these systems. Unlike earlier work [25] that employed
an uncontrolled truncation of perturbation theory, we use a
controlled ε-expansion RG scheme that treats disorder and
interactions on an equal footing. We derive the perturbative
RG equations to O(ε), and demonstrate that the Abrikosov
fixed point is unstable to disorder. We further demonstrate
that there are no stable fixed points within the domain of
validity of the perturbative RG, and the problem flows to
strong coupling. An analysis of the flow to strong coupling
reveals that disorder is asymptotically more important than
Coulomb interactions, so that the problem at strong coupling
should admit a noninteracting sigma model description. We
argue that at strong coupling there should exist a localized
phase, even though the bare Hamiltonian contains power-law
long-range interactions. We discuss how this result interfaces
with the claimed obstructions to MBL in higher dimensions
and with long-range interactions [26–28]. We conclude with a
discussion of general principles revealed by our analysis.

The remainder of this paper is structured as follows. We
begin in Sec. II with a discussion of the basic symmetry-
constrained action, and the RG scheme that will be employed
to analyze it. In Sec. III we derive the RG flow equations to
O(ε), and analyze these in Sec. IV. We demonstrate that there
are no stable fixed points within the domain of applicability of
perturbative RG, and that the Abrikosov fixed point is unstable
to disorder. Section V examines the flow to strong coupling,
and the likely behavior of the system in this limit. We close
with a discussion of general principles revealed by the analysis,
as well as the connections to recent developments in MBL, in
Sec. VI.
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II. PRELIMINARIES

A. Symmetry-constrained action

For three-dimensional quadratic band crossings, the low-
energy bands form a four-dimensional representation of the
lattice symmetry group [17], and the k · p Hamiltonian for the
clean noninteracting system takes the form [18]

H0 =
N∑

a=1

da(k)

2m
�a, (1)

where the �a are the rank-four irreducible representations of
the Clifford algebra relation {�a,�b} = 2δab1, where {A,B} =
AB + BA is the anticommutator. There are N = 5 such ma-
trices, which are related to the familiar gamma matrices from
the Dirac equation (plus the matrix conventionally denoted as
γ5), but are not quite identical because we are working with
Euclidean metric {�a,�b} = 2δab1 instead of the Minkowski
metric {�a,�b} = 2 × diag(−1, + 1, + 1, + 1). Throughout,
we will make extensive use of the defining Clifford algebra
relation, and the fact that

∑
a �a�a = N . Meanwhile the da(k)

are l = 2, spherical harmonics of the form

d1(k) =
√

3kykz, d2(k) =
√

3kxkz, d3(k) =
√

3kxky,

d4(k) =
√

3

2

(
k2
x − k2

y

)
, d5(k) = 1

2

(
2k2

z − k2
x − k2

y

)
. (2)

A lattice system is allowed to have anisotropy terms in the
k · p Hamiltonian, reflecting the reduced rotational symmetry,
and also an isotropic k2

2m′ term with no spinor structure.
These additional terms were shown to be irrelevant in the
RG sense in the presence of Coulomb interactions [17,29] and
we therefore ignore them here. In principle it is worth revisiting
the irrelevance of these anisotropy terms in the presence of
disorder, but this is beyond the scope of the present work.
Henceforth, we restrict our considerations to the idealized
Hamiltonian (1), which contains the most relevant terms in
the k · p Hamiltonian of the clean system.

We note in passing that the 3D quadratic band crossing
problem is very different, both qualitatively and in detail, from
the 3D Schrödinger problem of free fermions in the continuum,
which also have an E ∼ k2 dispersion. In the Schrödinger
problem, the quadratic dispersion arises when the chemical
potential is placed at the bottom of the band, i.e., when the
system is prepared at zero density. This problem is effectively
single particle in nature. In contrast, in the 3D quadratic band
crossing considered here, the chemical potential is placed at
the intersection of two bands, and this is a truly many-body
problem exhibiting phenomena such as screening, which are an
integral part of the analysis. Additionally, of course, the Dirac
structure of the problem quantitatively effects the detailed
structure of the loop corrections.

We now discuss the symmetry properties of the Hamilto-
nian. Note that of the five � matrices, three can be chosen
purely real (e.g., �1,2,3) and two purely imaginary (�4,5). The
Hamiltonian then has a time-reversal symmetry with a time-
reversal operator that can be represented [18] as T = �4�5K ,
where K is complex conjugation; we see that T 2 = −1.

We wish to examine the interplay of Coulomb interactions
and disorder in these quadratic band crossing materials,

treating disorder using a replica field theory. The most general
Euclidean time action with these properties may be written
S = S0 + Ss + Sv , where

S0 =
n∑

i=1

∫
dτddx

[
ψ

†
i [∂τ − H0 + ieϕi]ψi + c

2
(∇ϕi)

2

]
(3)

describes a clean quadratic semimetal with Coulomb interac-
tions propagated by a scalar boson field ϕ, and

Ss = −
n∑

i,j=1

W0

∫
dτdτ ′ddx(ψ†

i ψi)τ (ψ†
j ψj )τ ′ ,

Sv = −
∑

M,N,i,j

WMN

∫
dτdτ ′ddx(ψ†

i Mψi)τ (ψ†
j Nψj )τ ′ (4)

are terms representing short-range-correlated disorder with
and without spinor structure (which we refer to as scalar
and vector disorder, respectively), parametrized by constants
W . We treat disorder in the replica formalism with replica
indices i,j ; as is usual, we will take the number of replicas
n → 0 at the end of our computation. The sums over M and
N range over all independent 4 × 4 nonidentity Hermitian
matrices in the spinor space. We note that we have neglected
short-range interactions in S0 since these are less relevant in
an RG sense than either long-range (Coulomb) interactions or
short-range-correlated disorder.

Reasonable assumptions on disorder and the use of symme-
tries allow a considerable simplification of the vector disorder
term. First, assuming that the different components of vector
disorder are independent we may fix WMN = WMδMN , so that

Sv = −
∑
M,i,j

WM

∫
dτdτ ′ddx(ψ†

i Mψi)τ (ψ†
j Mψj )τ ′ . (5)

This may be further simplified by noting that the sum over M in
(5) ranges over all possible (nonidentity) Hermitian rank-four
matrices. In d = 3, the space of 4 × 4 Hermitian matrices is
spanned by the identity matrix, the five 4 × 4 Gamma matrices
�a and the ten matrices �ab = 1

2i
[�a,�b]. Now, rotations in the

spinor space transform the �a into one another (and likewise
the �ab), and so if we assume that disorder respects the isotropy
of the problem in spinor space, then in d = 3 we have only
two independent vector disorder parameters:

Sv = −W1

∑
(a)

n∑
ij=1

∫
dτdτ ′ddx(ψ†

i �aψi)τ (ψ†
j �aψj )τ ′

−W2

∑
(ab)

n∑
ij=1

∫
dτdτ ′ddx(ψ†

i �abψi)τ (ψ†
j �abψj )τ ′ .

(6)

(Henceforth we will explicitly show summations over replica
indices, but not over spatial indices of � matrices. From
now, we will adopt the Einstein convention for the latter;
i.e., repeated indices are summed.) We now note that the
matrices �ab are odd under time reversal, so disorder of
this form locally breaks time-reversal symmetry [18], even
while preserving time-reversal symmetry on average. We will
impose exact time-reversal symmetry, thereby setting W2 = 0
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henceforth (extending the analysis to incorporate W2 �= 0
would be an interesting avenue for future work). It will further
be convenient to treat Coulomb interactions and disorder on an

equal footing, and therefore we integrate out the scalar boson φ

to obtain the Coulomb interaction as an effective four-fermion
term. This then yields a final action

S =
n∑

i=1

[ ∫
dτddx ψ

†
i [∂τ − H0]ψi + e2

2c

∫
dτddq ddp ddp′ V (q)ψ†

p,iψ
†
p′,iψp′−q,iψp+q,i

]

−W0

n∑
i,j=1

∫
dτdτ ′ddx(ψ†

i ψi)τ (ψ†
j ψj )τ ′ − W1

n∑
i,j=1

∫
dτdτ ′ddx(ψ†

i �aψi)τ (ψ†
j �aψj )τ ′ , (7)

where the Coulomb interaction V (q) = 1
q2 has been written in

momentum space.
We may also consider particle-hole symmetry, implemented

[30] by taking � → −�∗ and simultaneously complex con-
jugating the Hamiltonian. If the � matrices are written in
the Weyl basis, this can be implemented by taking [31]
C = iσ1 ⊗ σ2K , that manifestly squares to −1. The W0 term
locally breaks particle-hole symmetry, and thus if we demand
that disorder locally preserve particle-hole symmetry then we
can further set W0 = 0. We shall discuss the RG flows both in
the presence and in the absence of particle-hole symmetry.

If we set the scaling dimensions [x−1] = 1 and [τ−1] = z,
then invariance of the bare action fixes [ψ] = d/2, [m] =
2 − z and [ϕ] = d+z−2

2 , where z = 2 at tree level from (1).
Power-counting the quartic terms then gives

[e2] = z + 2 − d, [WM ] = 2z − d − 2ηM, (8)

where we have allowed for anomalous exponents [ψ†ψ] =
d + η0 and [ψ†�ψ] = d + η1 (here, we only consider M =
0,1, though W2 and indeed all the WMN have similar tree-level
scaling). The anomalous exponents are zero at the Gaussian
fixed point. Note that Coulomb interactions and disorder are
both relevant at tree level with the same exponent, at least at
the Gaussian fixed point about which we will be perturbing,
and so must be treated on an equal footing.

B. Regularization schemes

We wish to analyze the action (7) using a controlled
renormalization scheme that treats disorder and interactions
on an equal footing. The RG scheme first employed to treat
three-dimensional quadratic band crossings [29,32] involves a
continuation to d = 4 − ε dimensions. In d = 4, the Coulomb
interaction is marginal at tree level, and loop corrections can
therefore be computed to order ε (a description of the physical
situation requires a continuation to ε = 1, which could be
problematic [18]). At first glance, disorder is also marginal at
tree level in d = 4, so dimensional continuation would seem
appropriate. However a straightforward application of the
Abrikosov dimensional continuation technique is not suitable
for the disordered problem, for reasons that we now describe.

A straightforward generalization of (1) to four spatial
dimensions extends the theory to include N = 9 gamma
matrices, each of which is rank sixteen. Thus (1) in d =
4 is defined in terms of 16-component spinor fields, and
hence with 16 × 16 matrices M in (5). In d = 4 the gamma
matrices and their commutators do not provide a complete

basis for the space of Hermitian rank-16 matrices, and so the
most general action containing short-range disorder in d = 4
contains unphysical disorder types with no analog in the d = 3
problem of interest. Additionally, while the theory in d = 4
still has a time-reversal symmetry (TRS), the time-reversal
operator squares [18] to +1; therefore, analytic continuation
in dimensionality changes the representation of time reversal,
potentially crucially altering the disorder physics. (A dramatic
example of the sensitivity of disorder to the representation
of TRS is the existence of a localization transition in d = 2
disordered spin-orbit coupled systems in the symplectic class
with T 2 = −1, and its absence for spin-rotationally invariant
systems where T 2 = +1 that are always localized.)

An alternative regularization scheme developed by Moon
et al. [17] involves continuing to four dimensions while
assuming that the angular and gamma matrix structure remains
as in d = 3; i.e., radial momentum integrals are performed
with respect to a d = 4 − ε dimensional measure

∫
p3−εdp

(2π)4−ε ,
but angular momentum integrals are performed only over the
three-dimensional sphere parametrized by polar and azimuthal
angles θ and ϕ. Nevertheless, the overall angular integral of
an angle-independent function

∫
�̂

·1 is taken to be 2π2 (as is
appropriate for the total solid angle in d = 4), and angular
integrals are normalized accordingly. Therefore, the angular
integrations are performed with respect to the measure

∫
dS(. . .) ≡ π

2

∫ π

0
dθ

∫ 2π

0
dϕ sin θ (. . .), (9)

where the π/2 is inserted for the sake of normalization. We
refer to this as the Moon scheme and employ it henceforth in
our analysis.

III. COMPUTATION OF RG EQUATIONS

A. Non-Fermi liquid in the clean system

We begin by developing the analysis for the clean system,
setting W0 = 0 and W1 = 0. This allows us to compare to
existing results in the literature. Loop corrections will all be
calculated in d = 4, whereupon there will be log divergences
in integrals instead of the ∼ 1/ε scaling that will obtain at
nonzero ε. Any log divergence should therefore be understood
as a shorthand for 1/ε. Note that an alternative is to compute
the loop integrals directly in d = 4 − ε; however a potential
drawback with this approach is that it can on occasion yield
spurious O(ε) contributions to β functions, in situations where
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(a) (b)

FIG. 1. The two diagrams shown above determine the O(ε)
correction to the Green’s function. Solid lines represent the bare
Green’s function. The dashed line may represent either disorder or
the Coulomb interaction. If the dashed line represents disorder, then it
connects two fermion lines at the same point in real space, but the two
fermions may have different time indices and replica indices. In this
case the diagram (b) is proportional to n, the number of replica flavors,
and vanishes upon taking the replica limit n → 0. If the dashed line
represents the Coulomb interaction, then it connects two fermions
with the same time index and same replica index, but with different
spatial position.

a naive log divergence is rendered finite owing to a nontrivial
angular dependence of the integrand.

For the clean system we can drop the replica indices, since
the interaction is replica-diagonal. We work perturbatively,
expanding the path integrals in powers of e2/2c, assumed
small. At leading order, we obtain

e2

2c

∫
ddp ddp′ ddq

(2π )3d
V (q)ψ†

pψ
†
p′ψp′−qψp+q. (10)

There are two possible contractions (matching one ψ† with
one ψ) of this term that renormalize the electron Green’s
function (see Fig. 1). Hartree contractions of the real-space
form 〈ψ†

xψx〉ψ†
x ′ψx ′ correspond to tadpole diagrams, which

simply shift the overall chemical potential and can be ignored
(we assume the renormalized chemical potential is at the
quadratic band crossing point), but exchange contractions
of the form 〈ψ†

xψx ′ 〉ψ†
x ′ψx cannot be ignored. Upon re-

exponentiating, these correct the electron Green’s function, via
G−1 = G−1

0 − �, where G−1
0 is the bare Green’s function and

�(ω,k) = −2 e2

2c

∫
q
V (q)G0(� + ω,k + q) is the self-energy,

and the combinatorial factor of 2 is because there are the
two possible exchange contractions. Since the bare Green’s
function can be written as

G0(ω,k) = iω + d(k) · �

ω2 + |d(k)|2 , (11)

where |d(k)|2 = ( k2

2m
)2, the self-energy takes the form

�(k)=−e2

c

∫ ∞

−∞

d�

2π

∫
ddq

(2π )d
i(ω + �) + d(k + q) · �

(ω + �)2 + |d(k + q)|2 V (q).

(12)

Shifting � → ω + � removes the dependence on ω; perform-
ing the remaining integral over � by the method of residues
and then shifting k + q → q, we obtain

�(k) = − e2

2c

∫
ddq

(2π )d
dq · �

|dq| V (|q − k|). (13)

The k = 0 component of this just renormalizes the chemical
potential (in fact, this precisely cancels the contribution of the

tadpole diagrams, which have a relative minus sign due to the
fermion loop). Subtracting off the k = 0 piece, we therefore
obtain a self-energy

�(k) = − e2

2c

∫
ddq

(2π )d
dq · �

|dq| [V (|q − k|) − V (q)]. (14)

In the spirit of the RG, the internal momenta q should
be taken to be much larger than the external momenta k

(any divergences coming from q < k are spurious). We can
therefore expand the term in square brackets in powers of k/q

and thus evaluate the integral:

�(k) = − e2

2c

∫
q3dq

(2π )4

∫
dS d̂q · �

1

q2

[
2
k

q
cos θ

− k2

q2
+ 4k2 cos2 θ

q2

]
, (15)

where we choose k to lie along the z axis without loss of
generality, dS represents the angular measure (9) in the Moon
scheme, and d̂q = d(q)

|d(q)| is an angular function independent of
the magnitude of k, that may be computed from (2). With k
chosen to lie along the z axis, the angular integral vanishes for
�1−4 and we obtain

�(k) = − e2

2c

π

2
k2�5

∫
q3dq

(2π )3q4

∫ π

0
sin θdθ

× 1

2
(2 cos2 θ − sin2 θ )(−1 + 4 cos2 θ ), (16)

where the factor of π/2 is from the Moon scheme (9). The
integrals may now be performed (the radial integral is log
divergent in UV and IR and needs to be regulated), and yields,
after a little algebra,

�(k) = − me2

15π2c
log

�UV

�IR
d(k) · �. (17)

We have made use of rotational symmetry to note that even
though the self-energy is proportional to d5�5 for k along the
z axis, the full self-energy for general k must be of the form
d · � (rearranging in this form also generates the overall factor
of m). In order to determine the RG flows, it is convenient to
return to the spirit of the momentum-shell approach and take
�IR = �UVe−l where l is the RG flow parameter, assumed
small: in other words, we only consider internal momenta
within a shell near the cutoff. In this fashion, we find that the
one-loop renormalized Green’s function becomes

−G−1 = iω − d(k) · �

(
1 − me2

15π2c
l

)
. (18)

From this, we see that the mass has scaling dimension [m] =
2 − z − me2

15π2c
, so that in order for it to be invariant under RG

we must alter the dynamic exponent to

z = 2 − me2

15π2c
, (19)

in agreement with Ref. [17].
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FIG. 2. Diagrams that determine the O(ε) correction to the four-fermion vertices (either disorder or interaction). These diagrams may
be denoted respectively as ZS, BCS, ZS′, and VC, following the naming convention from Ref. [33]. Solid lines denote the fermion Green’s
function. Dashed lines may represent either disorder (α,β = 0,1) or the Coulomb interaction (α,β = c). If the dashed line represents disorder,
then it connects two fermion lines at the same point in real space, but the two fermions may have different time indices and replica indices. If
the dashed line represents the Coulomb interaction, then it connects two fermions with the same time index and same replica index, but with
different spatial positions. Note that unlike the ZS, BCS, and ZS′ diagrams, the VC diagrams are generically not symmetric under interchange
of indices, i.e., �VC

αβ �= �VC
βα .

At the next order in the expansion of the action, we generate
a term (in real space) of the form

(
e2

2c

)2 ∫
dτdxdx ′dx ′′dx ′′′ 1

2

[
(ψ†

xψxψ
†
x ′ψx ′ )

× (ψ†
x ′′ψx ′′ψ

†
x ′′′ψx ′′′ )

1

|x − x ′||x ′′ − x ′′′|
]
. (20)

Performing two contractions, we obtain a correction to the
Coulomb interaction. This can be represented diagrammat-
ically; as usual, only fully connected diagrams contribute,
which can be labeled, in the standard terminology of Ref. [33],
as ZS, BCS, and ZS′, as well as a vertex correction (VC)
(Fig. 2).

The ZS diagram corresponds to contracting fermion lines
in the bubble topology. The four distinct ways to do this lead

to an overall combinatorial factor of four, and the fermion loop
adds a factor of −Nf (Nf is the number of fermion flavors),
resulting in a correction to the action of the form

δS =
∫

ddp ddp′ ddq

(2π )3d
�ZS

cc (q)ψ†
pψ

†
p′ψp′+qψp−q, (21)

where

�ZS
cc (q) = −4Nf

2q4

(
e2

2c

)2

Tr
∫

dω

2π

dk

(2π )d
G(ω,k + q)G(ω,k),

(22)

and the trace (denoted Tr ) is over the spinor indices. We use
the subscript “cc” to indicate that this diagram emerges from
contractions of the product of two Coulomb terms, and the ZS
labels the diagram topology. Using the form of the Green’s
function (11), we obtain

�ZS
cc (q) = −2Nf

q4

(
e2

2c

)2 ∫
ddk

(2π )d
Tr

∫
dω

2π

[iω + d(k + q) · �][iω + d(k) · �]

[ω2 + |d(k + q)|2][ω2 + |d(k)|2]
. (23)

Performing the ω integral by the method of residues, and dropping terms that will manifestly vanish upon performing the angular
integral, we find

�ZS
cc (q) = − rNf

q4

(
e2

2c

)2 ∫
ddk

(2π )d
1

|d(k + q)| + |d(k)|
(

d(k + q) · d(k)

|d(k + q)||d(k)| − 1

)
, (24)

where r ≡ Tr 1 = 4 is the dimension of the � matrices. The
above integral manifestly vanishes for k = 0. Taylor expanding
in small k, we obtain

�ZS
cc (q) = − rNf

q4

(
e2

2c

)2 ∫
ddk

(2π )d
2m

|k + q|2 + |k|2
3q2

2k2
sin2 θ

= − rNf

q4

(
e2

2c

)2 ∫
ddk

(2π )d
m

k2
× 3q2

2k2
sin2 θ, (25)

where again we have taken q to lie along the z axis. Performing
angular integrals in the Moon scheme (where r = 4) we find

�ZS
cc (q) = Nf

q2

(
e2

2c

)2
m

2π2

∫ �UV

�IR

k3dk
1

k4

= Nf

q2

(
e2

2c

)2
m

2π2
log

�UV

�IR
. (26)

Re-exponentiating and again using �IR = �UVe−l we find
that this term renormalizes the Coulomb interaction, changing
its coefficient via e2

2c
→ e2

2c
[1 − me2

4π2c
Nf l]. As we show in

Appendix A, the remaining diagram topologies (VC, ZS′,
BCS) do not contribute to the clean-system RG flows. Defining
a dimensionless interaction parameter u = me2

8π2c
we obtain the

RG equations

z = 2 − 8

15
u, (27)

du

dl
= (z + 2 − d)u − 2Nf u2 = εu − 30Nf + 8

15
u2, (28)

where we used d = 4 − ε and incorporated feedback from the
dispersion renormalization. These are the same equations as
Ref. [17], and have two fixed points. First, there is a trivial
(Gaussian) fixed point at u = 0 with z = 2, which is unstable,
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and a (stable) non-Fermi liquid fixed point, where

u∗ = 15

30Nf + 8
ε, z = 2 − 4

15Nf + 4
ε. (29)

It is the fate of this non-Fermi liquid fixed point upon the
addition of scalar and vector disorder that is our central interest
in the balance of this paper.

B. The disordered noninteracting problem

We now introduce disorder. Before considering (7) in its
entirety, we begin by determining the RG flow equations in
the presence of disorder alone, and only then turn to the
interplay of disorder and Coulomb interactions. As before,
all calculations are done directly in d = 4, using the Moon
regularization scheme for angles.

We therefore begin by considering (7) with V (q) set to zero,
and work perturbatively in weak disorder, as parametrized
by W0 and W1. At leading order, we obtain diagrams
renormalizing the Green’s function which are shown in Fig. 1.
Upon taking the replica limit n → 0 we obtain a self-energy
that is diagonal in the replica space and takes the form (repeated
indices are summed)

�(ω,k) = 2W0

∫
ddp

(2π )d
G(ω,p)

+ 2W1

∫
ddp

(2π )d
�aG(ω,p)�a

= (W0 + NW1)
im2ω

π2
log

�UV

�IR
, (30)

where the relative minus sign compared to the Coulomb
diagram reflects the relative sign between the two terms in the

action. We have performed angular integrals with the Moon
scheme, and used the fact that an integral of an isolated l =
2 harmonic vanishes, i.e.,

∫
dSd̂a(k) = 0. Re-exponentiating,

we obtain a Green’s function

− G−1 = iω

(
1 − m2(W0 + NW1)

π2
log

�UV

�IR

)
− d(k) · �

≈
(

1 − m2(W0 + NW1)

π2
log

�UV

�IR

)

×
[
iω−

(
1+ m2(W0+NW1)

π2
log

�UV

�IR

)
d(k) · �

]
,

(31)

where the last approximation is valid in the perturbative
regime, where W0,1 log �UV

�IR
< 1. This implies that the quasi-

particle residue Z renormalizes according to

dZ−1

dl
= −m2(W0 + NW1)

π2
. (32)

We also infer that the mass has scaling dimension

[m] = 2 − z + m2(W0 + NW1)

π2
, (33)

so that requiring its invariance under the RG yields a dynamical
exponent

z = 2 + m2

π2
(W0 + NW1). (34)

We now turn to the loop corrections to the disorder
lines themselves. These come from the fully connected
contractions of

δS = 1

2

∫
dτdτ ′dτ ′′dτ ′′′ddxddx ′

n∑
i,j,k,l=1

[
W 2

0 (ψ†
i ψi)

τ
x(ψ†

j ψj )τ
′

x (ψ†
kψk)τ

′′
x ′ (ψ†

l ψl)
τ ′′′
x ′

+ W 2
1

(
ψ

†
i �

i
aψi

)τ

x

(
ψ

†
j �

j
aψj

)τ ′

x

(
ψ

†
k�

k
bψk

)τ ′′

x ′
(
ψ

†
l �

l
bψl

)τ ′′′

x ′ + 2W0W1(ψ†
i ψi)

τ
x(ψ†

j ψj )τ
′

x

(
ψ

†
k�

k
bψk

)τ ′′

x ′
(
ψ

†
l �

l
bψl

)τ ′′′

x ′
]
, (35)

where repeated �-matrix indices are as usual summed over, and
we have kept track of the replica indices on � matrices. As be-
fore, the contractions lead to four distinct diagram topologies
(Fig. 2), that we will denote by the same labels as the one-loop
corrections to the interaction in the clean case. We now discuss
each of these in turn. In doing so it is useful to recall that
while � matrices with the same replica index anticommute,
� matrices with different replica indices act on independent
spaces and hence commute. The vertex that a given one-loop
diagram renormalizes can be read off from its final �-matrix
structure; diagrams with no � matrices are to be understood as
proportional to identity in the spinor space. We will continue
to sum over repeated indices, even when not explicitly stated.

(i) ZS. This diagram comes with a factor of n (the number
of replica indices) and thus vanishes upon taking the replica
limit n → 0.

(ii) VC. This has an overall minus sign relative to ZS be-
cause of the absence of a fermion loop; the results (summarized
in Table I) depend on the number of scalar and vector disorder
lines that enter the diagram. A VC diagram with two scalar

(W0) lines can emerge in 8 distinct ways; including factors
from (35) we find a correction to the scalar vertex from

�VC
00 = 4W 2

0

∫
ddk

(2π )d
(iω + dk · �j )(iω + dk · �j )

[ω2 + k4/(2m)2]2

= 4W 2
0

∫
ddk

(2π )d
−ω2 + k4/(2m)2

[ω2 + k4/(2m)2]2

= (2m)2

2π2
W 2

0 log
�UV

�IR
, (36)

TABLE I. Contributions to the β functions from the VC diagrams.

Here, λi = 2m2Wi

π2 , u = me2

8π2c
, and l is the RG flow parameter.

Coupling λ0 λ1 u

λ0 δλ0 = λ2
0l δλ1 = −N−2

N
λ0λ1l δu = λ0ul

λ1 δλ0 = Nλ0λ1l δλ1 = (N−2)2

N
λ2

1l δu = Nλ1ul

u 0 δλ1 = 2 N−1
N

λ1ul 0
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where we have used da(k) = k2d̂a(k),
∫

dS d̂a(k)d̂b(k) =
2π2δab/N, and |d(k)|2 = k4/(2m)2 to simplify the numerator
and drop terms that vanish upon angular integration. In the
final step, we have used the fact that disorder is static, so
that ω is an external frequency that can be set to zero to
evaluate the diagram, yielding the logarithmic correction. We
note parenthetically that, if we were to take ω �= 0, it may serve
as the IR cutoff (a similar result holds for all the other diagrams
discussed in this section). However, as we are interested in the
situation where internal momenta are near the UV cutoff, we
may take the IR cutoff to be much greater than ω and thereby set
ω to zero safely. Returning to the scalar-scalar VC diagram and
re-exponentiating (with the appropriate fields for the external
legs included), we find that this makes a correction to the scalar
disorder term of the form δW0 = + 2m2

π2 W 2
0 l.

A VC diagram with two vector (W1) lines may also emerge
from 8 distinct contractions, and after setting the external
frequency ω = 0 and simplifying leads to

�VC
11

(2m)2
= 4W 2

1 �i
a

∫
ddk

(2π )d
�

j

b [d̂k · �j ]�j
a [d̂k · �j ]�j

b

k4

= W 2
1

2Nπ2
× �i

a�
j

b�
j
c �

j
a�

j
c �

j

b × log
�UV

�IR

= − (N − 2)W 2
1

2Nπ2
�i

a�
j

b�
j
a�

j

b × l

= (N − 2)2W 2
1

2Nπ2
�i

a�
j
a × l, (37)

where we have relied on identities similar to those in �VC
00

in completing the angular integrals and used �IR = �UVe−l .
Note the index structure of the right-hand side, indicating that
this corrects the vector disorder term. Inserting fields for the
external legs of this diagram and re-exponentiating, we find
that δW1 = 2(N−2)2m2

Nπ2 W 2
1 l.

Finally, VC diagrams with mixed W0 and W1 lines can
emerge in one of two ways, each of which corrects a different
bare vertex and comes with a combinatorial factor of 4.
Including the factors from (35), we find that the scalar vertex
receives a contribution from

�VC
01

(2m)2
= 4W0W1

∫
ddk

(2π )d
�

j

b [d̂k · �j ][d̂k · �j ]�j

b

k4

= W0W1

2Nπ2
× �

j

b�
j
c �

j
c �

j

b × log
�UV

�IR

= NW0W1

2π2
× l, (38)

that, following previous examples, yields δW0 = 2Nm2

π2 W0W1l.
Similarly, the vector disorder vertex is corrected via

�VC
10

(2m)2
= 4W1W0�

i
μ

∫
ddk

(2π )d
[d̂k · �j ]�j

a [d̂k · �j ]

k4

= W1W0

2Nπ2
�i

alog
�UV

�IR
�

j

b�
j
a�

j

b

= − (N − 2)W1W0

2Nπ2
× l × �i

a�
j
a , (39)

TABLE II. Sum of contributions to the β functions from the BCS
and ZS′ diagrams, with the same conventions as in Table I.

Coupling λ0 λ1 u

λ0 λ1 = 1
N

λ2
0l δλ0 = 2λ0λ1l 0

λ1 0 δλ1 = 3N−2
N

λ2
1l 0

u 0 0 0

and renormalizes the vector disorder term as δW1 =
− 2(N−2)m2

Nπ2 W0W1l.

(iii) BCS and ZS′. Each of these one-loop corrections
(summarized in Table II) comes with a combinatorial factor
of 4, and depends on the nature of the internal disorder
lines. Scalar-scalar BCS and ZS′ diagrams give identical
contributions of the form

�BCS
00

(2m)2
= �ZS′

00

(2m)2
= 2W 2

0

∫
ddk

(2π )d
[d̂k · �i][d̂k · �j ]

k4

= 2W 2
0 �i

a�
j

b

∫
ddk

(2π )d
d̂a(k)d̂b(k)

k4

= W 2
0

4Nπ2
�i

a�
j
a log

�UV

�IR
. (40)

Adding the two together and reexponentiating gives a correc-
tion δW1 = + 2m2

Nπ2 W
2
0 l to the vector disorder term.

In the vector-vector case, the BCS diagram gives

�BCS
11

(2m)2
= 2W 2

1

∫
ddk

(2π )d

[
�i

a d̂k · �i�i
b

][
�

j
a d̂k · �j�

j

b

]
k4

, (41)

whereas the ZS′ diagram has a different gamma-matrix index
structure,

�ZS′
11

(2m)2
= 2W 2

1

∫
ddk

(2π )d

[
�i

a d̂k · �i�i
b

][
�

j

b d̂k · �j�
j
a

]
k4

. (42)

Adding these together and simplifying we find

�BCS
11

(2m)2
+ �ZS′

11

(2m)2

= W 2
1

4Nπ2
log

�UV

�IR
�i

a�
i
c�

i
b

(
�j

a�
j
c �

j

b + �
j

b�
j
c �

j
a

)

= W 2
1 (3N − 2)

2Nπ2
�i

a�
j
a × l, (43)

leading to a correction to the scalar disorder term of the form
δW1 = (3N−2)m2

2Nπ2 W 2
1 l.

Finally turning to the vector-scalar cross terms, we find

�BCS
01

(2m)2
+ �ZS′

01

(2m)2

= 4W0W1

∫
ddk

(2π )d

[
�i

a d̂k · �i
]

k4

[
�j

a d̂k · �j + d̂k · �j�j
a

]
= W0W1

2Nπ2
log

�UV

�IR
�i

a�
i
b

{
�j

a ,�
j

b

}
= W0W1

π2
l, (44)
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thereby correcting the scalar disorder term via δW0 =
4m2

π2 W0W1l.
Combining all our results, defining rescaled [34] disorder

variables

λi = (2m)2

2π2
Wi, (45)

and recalling that the tree-level scaling dimension of the
disorder term is (2z − d), where

z = 2 + 1
2 (λ0 + Nλ1) (46)

is the dynamical exponent, we find the flow equations

dλ0

dl
= λ0[ε + 2λ0 + 2(N + 1)λ1],

dλ1

dl
= ελ1 +

[
λ2

0

N
+ 2N2 − N + 2

N
λ2

1 + 2

N
λ0λ1

]
, (47)

where we recalled that ε = 4 − d. Recall also that the initial
disorder couplings are non-negative. Now we can readily
verify that both β functions are strictly positive except at
λ0 = 0 = λ1. In other words, the trivial Gaussian fixed point
is unstable and the system flows to strong disorder: the
noninteracting disordered problem does not have any stable
fixed points at weak disorder, within the regime of applicability
of a perturbative calculation.

C. Coulomb interactions and disorder

We finally turn to the full problem, including both Coulomb
interactions and disorder. Our first step is to examine the
correction to the electron Green’s function; at leading order
it may be obtained simply by combining the contributions
of interactions and disorder acting separately. This leads
us to conclude that, at this order, the quasiparticle residue
renormalizes according to

dZ−1

dl
= −λ0 + Nλ1

2
, (48)

and that the dynamical exponent must be

z = 2 + λ0 + Nλ1

2
− 8

15
u (49)

in order that the mass remain invariant under the RG.
Meanwhile, the four-fermion pieces of the action—both the
Coulomb interaction and the replicated disorder terms—
acquire an additional renormalization from fully connected
contractions of

δS = − e2

2c

∫
dτdτ ′dτ ′′ddxddx ′ddx ′′

×
n∑

i,j,k=1

(ψ†
kψk)τ ′′,x ′ (ψ†

kψk)τ ′′,x ′′

|x ′ − x ′′|2
[
W0(ψ†

i ψi)τ,x(ψ†
j ψj )τ ′,x

+ W1
(
ψ

†
i �

i
aψi

)
τ,x

(
ψ

†
j �

j
aψj

)
τ ′,x

]
. (50)

Note the absence of an overall factor of 1
2 in this expression

compared with (35). Once gain the fully connected contrac-
tions may be labeled ZS, VC, ZS′, and BCS, but now involve
one Coulomb line and one disorder line. We discuss the new
contributions to the RG equations from each of these mixed

diagrams in turn, labeling the corresponding bubbles using a
convention similar to the one used before.

(i) ZS. The ZS diagram with one Coulomb line and one W1

line attached vanishes upon tracing over spinor indices, �ZS
c1 =

0. Meanwhile, the ZS diagram with one Coulomb line and one
W0 line attached is nearly identical to the Coulomb-only ZS
diagram, except that one factor of e2

2cq2 (where q is external
momentum) is replaced by W0, the sign is reversed owing to
the relative sign between Coulomb and disorder terms, and
there is an overall factor of 2 owing to the combinatorics
of swapping Coulomb and disorder lines. [Note that these
differences are evident when comparing (20), (35), and (50).]
From the external legs of such a contraction we determine that
it corrects the scalar disorder term, and from the discussion
above and (26) we see that it evaluates to

�ZS
c0 = −2W0 × 2cq2

e2
�ZS

cc = −Nf

me2

2π2c
W0 log

�UV

�IR
. (51)

Note that at leading order �ZS
c0 is independent of the external

momentum, q; if we re-exponentiate and Fourier transform,
we find that it corrects the strength of scalar disorder via
δW0 = −Nf

me2

2π2c
W0 = −4Nf uW0. The additional minus sign

is due to the overall negative sign in the replicated disorder
term; physically, this reflects the intuitive fact that Coulomb
interactions tend to produce screening of chemical potential
fluctuations. Finally, we observe that the overall prefactor of
Nf stems from the assumption that the disorder coupling is
“all to all” in fermion-flavor space, just like the Coulomb
interaction. A modification of this assumption would change
the overall prefactor for this diagram, but we do not consider
this possibility here. The result for all ZS diagrams is
summarized in Table III.

(ii) VC. We next turn to the mixed VC diagrams, that
determine how the Coulomb interaction corrects a disorder
vertex, and vice versa. The Coulomb correction to a W0

disorder vertex will vanish, �VC
0c = 0, just like the pure

Coulomb VC diagram. However, the Coulomb correction to
the W1 vertex takes the form

�VC
1c = −4W1

e2

2c
�i

a

∫
dω

2π

d4p

(2π )d
G(ω,p)�j

aG(ω,p)

= 2e2W1

c
�i

a�
j
a

∫
dω

2π

d4p

(2π )d
ω2 + N−2

N

p4

4m2

p2
(
ω2 + p4

4m2

)2 , (52)

where the combinatorial factors are similar to those for �VC
10 ,

but there is an overall minus sign because of the relative
sign between (35) and (50), and in the second line we have
commuted through the � matrix as when computing �VC

10 .

TABLE III. Contributions to the β functions from the ZS diagram,
with the same notation as in Tables I and II.

Coupling λ0 λ1 u

λ0 0 0 δλ0 = −4Nf λ0u

λ1 0 0 0
u 0 0 δu = −2Nf u2
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Integrating out ω and then integrating over p we obtain

�VC
1c = mW1e

2

4π2c

(N − 1)

N
�i

a�
j
a

�UV

�IR
. (53)

Upon re-exponentiating, we obtain a correction to the disorder
term of form δW1 = W1(1 + 2uN−1

N
l). Note that the Coulomb

term tends to enhance the vector potential disorder. At the
Abrikosov fixed point, where u∗ = 15

30Nf +8 , W1 acquires a

total vertex correction of 12
15Nf +4 . Given that the term entering

the action is W1(ψ†�ψ)2, this is equivalent to the statement
that the operator (ψ†�ψ) acquires an anomalous dimension
of − 6

15Nf +4 at the Abrikosov fixed point, consistent with the
results of Ref. [17].

Meanwhile, the diagrams corresponding to disorder correc-
tions to the Coulomb vertex evaluate similarly to the disorder
corrections to the W0 vertex (i.e., to �VC

00 , �VC
01 ), except for an

additional minus sign from (50), and the replacement of one
factor of W0 by e2

2cq2 . For the scalar correction to the Coulomb
vertex we have, using (36), that [35]

�VC
c0 = − e2

2cq2W0
× �VC

00 = − (2m)2

2π2

e2

2cq2
W0 log

�UV

�IR
,

(54)

whereas for the vector correction we find from (38) that

�VC
c1 = − e2

2cq2W0
× �VC

01 = − (2m)2

2π2
N

e2

2cq2
W1 log

�UV

�IR
.

(55)

Re-exponentiating, we find that these shift the interaction by

δu = (2m)2

2π2
(W0 + NW1)ul, (56)

where we have picked up an additional sign change when
reincorporating the correction into the Coulomb term.

(iii) BCS and ZS′. Finally, we consider the ZS′ and
BCS diagrams. However, such diagrams with mixed disorder
and Coulomb lines make a vanishing contribution to the β

functions. This follows from the fact that such contractions
always involve four external fermions with identical time
index, and hence contribute solely to the renormalization of the
Coulomb interaction. However, the analogous diagrams with
two Coulomb lines already do not contribute to the β function
for u; those with mixed lines are less relevant, since there is
one fewer factor of 1/p2 in the integrand.

With this, we have computed all the contributions to the
one-loop β function in the full (i.e., disordered and interacting)
problem, and can now turn to analyzing the RG flows.

IV. FIXED POINTS AND RG FLOWS

With the computation of the full one-loop RG structure of
the theory in the previous section, we are now in a position
to analyze the RG flows in the three-dimensional parameter
space that includes Coulomb interactions and both scalar and
vector disorder. Introducing rescaled couplings u,λ0,λ1 as
before, recalling the tree-level scaling dimensions of these,
and collecting the results of Tables I, II, and III, we have the

one-loop flow equations

dλ0

dl
= λ0[(2z − d) + λ0 + (N + 2)λ1 − 4Nf u], (57)

dλ1

dl
= λ1

[
(2z − d) − λ0

N − 2

N
+ λ1

N2 − N + 2

N

+ 2u
N − 1

N

]
+ 1

N
λ2

0, (58)

du

dl
= u[(z + 2 − d) − 2Nf u + (λ0 + Nλ1)]. (59)

Upon substituting in (49) for the anomalous dimension and
using d = 4 − ε, we obtain

dλ0

dl
= λ0

[
ε + 2λ0 + 2(N + 1)λ1 − 60Nf + 16

15
u

]
, (60)

dλ1

dl
= λ1

[
ε + λ0

2

N
+ λ1

2N2 − N + 2

N

+ 2u

(
N − 1

N
− 8

15

)]
+ 1

N
λ2

0, (61)

du

dl
= u

[
ε − 30Nf + 8

15
u + 3

2
(λ0 + Nλ1)

]
. (62)

These equations do not have any fixed points at nonzero
disorder. To see this, note that the β function for λ1 is strictly
positive, so λ1 inevitably grows under RG. Even if we start
with λ1 = 0, this term is generated by λ0, so in the presence
of disorder the RG inevitably flows to large λ1. This in turn
makes the β functions for u and λ0 positive, driving a growth
in these parameters as well. Thus, there are no finite-disorder
fixed points, and the problem flows to strong disorder and
strong interactions whereupon the perturbative RG is no longer
controlled.

In principle we should also account for the fermion
anomalous dimension (coming from the renormalization of the
residue), which in our notation would correspond to studying
the flow of λZ2 and uZ2. However, since Z flows to large
values, and λ and u also flow to large values, this will not in
any way affect our conclusions.

We note also that while the β functions obtained in
Ref. [25] differ from ours (perhaps due to the different
regularization schemes used) the basic conclusions reached
here—namely, that the problem flows to strong disorder and
strong interactions—are in agreement with Ref. [25].

We now turn to the perturbative stability of the zero-disorder
Abrikosov fixed point against the inclusion of a small amount
of quenched disorder. The relevance of vector disorder is
controlled by a strictly positive β function, so the Abrikosov
fixed point is manifestly unstable to its addition. Meanwhile,
the scaling dimension of scalar disorder at the Abrikosov
fixed point is −ε; i.e., pure scalar disorder is irrelevant at the
Abrikosov fixed point. However, it inevitably produces vector
disorder that grows under the RG and ultimately destabilizes
the phase. Thus, introducing any disorder ultimately drives the
flow away from the Abrikosov fixed point to strong coupling;
the Abrikosov fixed point is thus unstable to disorder (see
Fig. 3). We thus conclude that quadratic band crossings with
disorder and interactions inevitably flow to strong coupling
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FIG. 3. RG flows in the three-dimensional λ0,λ1,u space (recall

that λi = 2m2Wi

π2 and u = me2

8π2c
are the rescaled couplings). When u = 0

the flow is governed by the analysis of the noninteracting disordered
problem in Sec. III B, and is confined to the u = 0 plane since there
is no way to generate a long-range interaction starting from purely
short-range disorder. In the u = 0 plane there is only one (Gaussian)
fixed point (blue dot), and this is unstable. The flow is to strong
disorder. Meanwhile, on the λ0 = λ1 = 0 line the flow is given by the
clean system analysis of [29]. The Gaussian fixed point is unstable
and there is a stable fixed point at u = O(ε) (red dot). However, this
is unstable to turning on disorder, with λ1 being a relevant direction.
In the λ0 = 0 plane, the system has exact particle-hole symmetry
(PHS), and the flow is confined to this plane because a nonzero λ0

would break particle-hole symmetry (and hence cannot be generated
by loop corrections if absent in the bare theory); the flow is to strong,
purely vector disorder. Finally, when all three couplings are nonzero
the flow is also to strong disorder, but this time to strong λ0 and λ1.
Note that even if λ1 = 0 in the bare theory, nonzero λ0 generates
nonzero λ1, so there are no flows confined to the plane of pure scalar
disorder and interactions.

where the perturbative RG analysis is no longer controlled:
arbitrarily weak disorder destroys the putative non-Fermi
liquid phase.

In a sense, this is as far as the RG can take us, as long as
we restrict ourselves to strictly perturbatively valid statements.
However, we may push the RG one step further and analyze
the behavior of various couplings as we exit the perturbative
regime en route to strong coupling, and attempt to make some
sense of the strongly disordered interacting theory.

V. STRONG-COUPLING TRAJECTORIES

We now turn to an analysis of the manner in which the
system flows to its strong-coupling limit, and out of the regime
of the perturbative RG employed here. From (61) we find that
λ1 has a strictly positive β function; i.e., it is monotonically
increasing under the RG. Therefore, we may view this as an
RG time; reparametrizing the flow in terms of λ1 reduces the
problem to a pair of flow equations for u,λ0: from (60) and

(62) we have

dλ0

dλ1
= dl

dλ1
λ0

[
ε + 2λ0 + 2(N + 1)λ1 − 60Nf + 16

15
u

]
,

du

dλ1
= dl

dλ1
u

[
ε − 30Nf + 8

15
u + 3

2
(λ0 + Nλ1)

]
, (63)

where dl
dλ1

may be determined from (61). Next, we observe that
ε/λ1 → 0 under the RG. Therefore, along the flow to strong
coupling this tree level term is eventually unimportant, and
we can simply look at the flow of ratios of couplings, viz.,
x = λ0/λ1 and y = u/λ1. Setting ε/λ1 to zero and rewriting
we obtain [36]

dx

d ln λ1
= x

[
−1 + 2x + 2(N + 1) − 60Nf +16

15 y

2x
N

+ 2N2−N+2
N

+ 2y
(

N−1
N

− 8
15

) + x2

N

]
,

(64)

dy

d ln λ1
= y

[
−1 + − 30Nf +8

15 y + 3
2 (x + N )

2x
N

+ 2N2−N+2
N

+ 2y
(

N−1
N

− 8
15

) + x2

N

]
.

(65)

Fixed points of these equations represent fixed trajectories
of the flow to strong coupling. Setting N = 5 we find that the
fixed trajectories are determined by the simultaneous equations

0 = x

[
−1 +

[
2x + 12 − 60Nf +16

15 y
]

[
x 2

5 + 47
5 + y 8

15

] + 1
5x2

]
, (66)

0 = y

[
−1 +

[− 30Nf +8
15 y + 3

2 (x + 5)
]

[
x 2

5 + 47
5 + y 8

15

] + 1
5x2

]
, (67)

with the additional constraint that (x,y) are real and non-
negative, corresponding to physical solutions accessible via
the flow equations.

One obvious solution is (x∗,y∗) = (0,0), but this is unstable:
the linearized flow equations in the vicinity of this fixed point
are

d

d ln λ1

∣∣∣∣
(x∗,y∗)=(0,0)

(
δx

δy

)
≈

(
13
47 0

0 − 19
94

)(
δx

δy

)
, (68)

so that it is stable against nonzero y but unstable against
nonzero x. This is the fixed trajectory corresponding to flows
in the (u,λ1) plane: both disorder and interactions increase
in strength but the theory is asymptotically dominated by a
strong-coupling fixed point where vector disorder dominates
the interactions. As noted previously, enforcing particle-hole
symmetry permits us to set scalar disorder to zero (i.e., take
x = 0); breaking this symmetry inevitably introduces some
x > 0, upon which we flow to a different fixed trajectory, that
we now determine.

We next seek solutions where only one out of x and y

is nonzero. There are no solutions with x = 0 and y > 0.
However, we find a solution with y∗ = 0 and x∗ = 4 + √

29 ≈
9.38. We have already determined that x is a relevant
perturbation along the y = 0 line, from inspection of (64)
that the flow for large x is to smaller x. As there are no other
fixed points along this line, we conclude that this fixed point is
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FIG. 4. Flow of the ratios x = λ0/λ1 and y = u/λ1 as the
system flows to strong coupling, obtained by extrapolation from the
perturbative RG equations at one loop. Note that y flows to zero
so the theory is asymptotically noninteracting. Exact particle-hole
symmetry (x = 0) is preserved by the RG, so that we stay at x = 0
if the bare theory has this symmetry; otherwise the system flows to a
particular ratio λ0/λ1 ≈ 9.38.

stable along x. The stability to changes in y may be determined
straightforwardly: we find that

dδy

d ln λ1

∣∣∣∣
(x∗,y∗)≈(9.38,0)

≈ −0.30δy, (69)

indicating that y flows back to zero, so that this fixed point is
stable to changes in both x and y. This corresponds to an RG
trajectory along which both vector and scalar disorder grow;
while interactions grow slower and are hence dominated by
disorder, the ratio of scalar and vector disorder flows to a fixed
value of 9.38.

Finally, we find that there are no solutions where both x

and y are positive, with Nf a positive integer: there are no
fixed trajectories along which interactions grow as quickly as
disorder.

The resulting flow diagram is sketched in Fig. 4. In
both cases—with or without the imposition of particle-hole
symmetry—the problem flows to an effectively noninteracting,
strongly disordered theory. The physics in this limit may
therefore be accessible within a noninteracting sigma model
description—an enormous simplification with respect to the
long-range interacting model (7) with which we began. We
find an additional simplification emerges en route to strong
coupling: the fixed-point trajectories are be characterized
by a fixed ratio of scalar to vector disorder (λ0/λ1 ≈ 9.38
within the perturbative theory, though the precise value is
likely modified). Thus, we conjecture that the strong-coupling
behavior is controlled by a single fixed point where both scalar
and vector disorder are strong and scale similarly.

VI. CONCLUDING REMARKS

We have found that a system hosting a quadratic band
crossing, whose microscopic Hamiltonian contains Coulomb
interactions and short-range-correlated disorder, flows, on
long length scales, to a strongly coupled phase that lies
outside the perturbative renormalization group framework.
An analysis of this flow to strong coupling suggests that
disorder grows asymptotically faster than interactions, so that
the strong-coupling phase likely can be described within a
noninteracting sigma model. This, in turn, suggests that the

complex long-range interacting problem maps (at least as far
as its low-energy properties are concerned) to a noninteracting
problem whose solution may be found in the extensive
literature on Anderson insulators. Of course, insofar as this
conclusion is based upon extrapolating the one-loop flow to
strong coupling, it is potentially suspect, and these conclusions
should in principle be verified through an interacting sigma
model calculation. Crucially, however, our one-loop results
do suggest that the sigma model need not treat disorder and
Coulomb interactions on an equal footing; rather it should be
adequate to begin with a disorder-only sigma model, add the
Coulomb interaction as a weak perturbation, and examine the
relevance or irrelevance thereof.

The specific disorder-only noninteracting sigma model
that is a candidate to describe our systems depends on the
particular symmetries at hand. In the general case, when
scalar potential disorder (that breaks particle-hole symmetry)
is present, the only remaining antiunitary symmetry is time
reversal; as this squares to −1, the problem falls into the
three-dimensional symplectic class (Hamiltonian class AII in
the Altland-Zirnbauer classification [37]). Note that the ratio of
scalar to vector disorder flows to a constant value 4 + √

29 ≈
9.38, so even though the sigma model will contain both vector
and scalar disorder, there will be only one independent stiffness
parameter. In principle, the sigma model can also contain a
Z2 topological term [38]. There should thus be two distinct
possible behaviors at strong coupling, depending on whether
or not the system is topologically nontrivial (a distinction that
is immaterial for our perturbative analysis, but which should
become important at strong coupling). The topologically trivial
sigma model is believed to support both a diffusive metallic
phase and a localized phase, with a localization transition that
may be described using methods outlined in, e.g., Ref. [37].
The topologically nontrivial sigma model may support a still
richer behavior, but has not been solved as far as we are aware.
As the bare Hamiltonian contains Coulomb interactions, our
analysis thus presents an intriguing scenario: a rare example
where a (zero-temperature) many-body localization transition
with long-range interactions may be analytically tractable,
because the system flows to an effectively noninteracting
description. We also flag the possible role of statistical particle-
hole symmetry in modifying details of such a sigma model
analysis.

If exact particle-hole symmetry is imposed on the
problem—by setting W0 = 0 in the bare theory—the flow to
strong coupling is described asymptotically by a flow to strong
vector potential disorder alone (i.e., x = 0). The resulting
theory has both C2 = −1 and T 2 = −1, and corresponds
to the chiral symplectic class [39] (Hamiltonian class CII
in the Altland-Zirnbauer classification) in three dimensions.
Again there will be a localized and a delocalized phase,
with the transition now being governed by the sigma model
appropriate to the chiral symplectic class. Additionally, the
localized phase may itself have anomalous features, such as
a singular low-energy density of states [40] (note that this is
forbidden on general grounds in the absence of particle-hole
symmetry [41]). As in the W0 �= 0 case, there is the possibility
of realizing an analytically tractable zero-temperature many-
body localization transition, for a three-dimensional system
with long-range interactions, but now in a different universality
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class. Finally, this symmetry class too can support a Z2

topological term [38], that may produce still richer behavior if
present.

Again, we note that a more careful analysis would examine
the role of interactions in the vicinity of the putative sigma
model critical point. However, the results of the perturbative
RG do offer hope that such a procedure may indeed yield
an interesting and analytically tractable example of an MBL
transition; exploring this would be a worthwhile challenge for
future work. More prosaically, it could provide a valuable toy
model for the three-dimensional electron glass [42], a system
whose analytical understanding remains poor to date. All these
facts serve as additional motivation for performing the sigma
model calculation, that we defer to future work.

We now comment on the interplay of the physics discussed
herein with short-range interactions. Short-range interactions
are irrelevant at tree level at the Gaussian fixed point about
which we are perturbing, and thus will not affect our results
at O(ε). However, as one moves away from the Gaussian
fixed point to regimes where ε is no longer small, short-
range interactions may become important. This scenario was
discussed at length for the clean problem in Ref. [18],
where it was demonstrated that short-range interactions could
destabilize the Abrikosov fixed point when ε ∼ O(1). The
question then becomes whether the fixed point becomes
destabilized before or after the physical value of ε = 1, and
also the reliability of the extrapolation to ε of order one. In
contrast, the destabilization of the Abrikosov fixed point by
disorder discussed in the present work is of a very different
character, in that it occurs already at infinitesimal ε, when the
Abrikosov calculation is well controlled.

One issue we have not thus far addressed is that of
rare-region (Griffiths) effects, that are known to dominate the
low-energy behavior for noninteracting Weyl semimetals with
scalar disorder [15,16]. Since in the present case the problem
flows to strong disorder already at the perturbative level, we
might conjecture that Griffiths effects will be less important
than in the Weyl semimetal [15]. However, Griffiths effects
also dominate the low-energy behavior for two-dimensional
particle-hole symmetric localization [43]. The relevance of
such effects for our problem remains an open question.

We now discuss one further subtlety. We assumed in the
discussion above that a localized phase could be realized at
strong disorder. However, it has been argued that localization
is incompatible with Coulomb interactions because they are
too long ranged [27]. Separately, it has also been argued that
MBL is incompatible with particle-hole symmetry [44], a fact
related to its non-Abelian structure. Systems in dimensions
greater than one have also been argued to be nonlocalizable
[26]. However, the arguments of Refs. [26,27,44] all consider
systems at finite energy density (nonzero temperature), and
hence do not apply directly to the zero-temperature scenario
that we consider here. It could be interesting to consider
turning on a small but nonzero temperature and investigating
thermalization in the resulting system. References [26,27,44]
suggest that localization in the strongly disordered phase
should be instantly destroyed upon turning on a nonzero
temperature. However, these are asymptotic statements valid
only beyond characteristic length and time scales, below which
the system looks localized, and that must diverge as T → 0.

An investigation of these scales and how they diverge (similar
to Ref. [45]) would also be an interesting problem for future
work. The critical point itself presumably becomes an avoided
critical point at nonzero temperature, and again, this avoided
criticality is likely worthy of further study.

Finally, in deriving the symmetry-constrained action we
made two simplifications, in assuming that (a) anisotropy terms
could be ignored and (b) exact time-reversal symmetry could
be imposed. It would be interesting to relax these assumptions
and explore the resulting physics. This too we leave to future
work.

Turning our attention now to the experimental situation, we
recall that Ref. [17] conjectured that the clean Abrikosov fixed
point should be relevant for a wide class of pyrochlore iridates.
While experimental investigations of these ideas appear to be
in their infancy, experiments [19] on the pyrochlore Pr2Ir2O7

do appear consistent with the appearance of a quadratic
band crossing. Systematic angle-resolved photoemission spec-
troscopy (ARPES) experiments exploring the variation with
temperature of quasiparticle residue Z and dynamic exponent
z may in the future be able to probe the Abrikosov non-Fermi
liquid physics, as well as its destruction by disorder. The
generation of a disorder-induced scattering time (associated
with a crossover to diffusive physics) should also be evident
both in ARPES experiments and in transport, although a
systematic comparison to transport experiments would require
the development of a sigma model. Finally, insofar as the
Abrikosov fixed point is believed to be the parent phase [17]
underlying the phase diagram of various pyrochlore iridates,
the interplay of this parent phase with disorder is also likely to
be of relevance to the development of a unified theory picture
of these materials.

We conclude by discussing other settings to which cal-
culations analogous to those reported here may apply. The
fundamental property of the problem is that long-range
interactions and disorder are both relevant, with the same
scaling dimension, and thus must be treated on an equal
footing. Let us consider a general problem with dynamic
exponent z, Fermi surface codimension d, and a long-range
interaction that obeys Gauss’s law in D spatial dimensions.
Note that we require that D � d for the problem to be
physically sensible. The interaction potential will then fall
off as 1/rD−2. We can verify that disorder will have tree-level
scaling dimension 2z − d, whereas the long-range interaction
will have scaling dimension z − D + 2; the two are equally
relevant if these scaling dimensions coincide, i.e., if

z = d − D + 2. (70)

(Note that as properties of the clean, noninteracting theory,
z,d,D must all be positive integers.) The scaling dimension is
2z − d, and the perturbation theory is developed about d = 2z.
The quadratic semimetal studied here corresponds to D = d

and z = 2, and the perturbation theory was developed about
d = 4 − ε. One could also consider d = D − 1 and z = 1, and
develop the perturbation theory about d = 2. This situation
describes graphene (where the Fermi surface codimension is
two but the Coulomb interaction lives in three dimensions),
and was analyzed in Refs. [46–48]. However, it also describes
three-dimensional systems with line nodes and 1/r interaction,
as well as two-dimensional systems with a Fermi surface
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(codimension 1) and log(r) interactions. In these settings there
is reason to expect interesting new physics [49–52], but the
interplay of disorder and interactions has not been explored. It
would be interesting to do so in the future.
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APPENDIX: ABSENCE OF VC, BCS, ZS′ CONTRIBUTIONS
IN THE CLEAN SYSTEM

In this appendix, we show that the VC, BCS, and ZS′

diagrams do not contribute to the clean-system RG flow.
Since (as we demonstrate) these diagrams make vanishing
contribution we will not be precise about combinatorial factors,
but simply focus on showing that there is no logarithmic
divergence in these channels. The VC diagram with two
Coulomb lines cannot make a contribution, since the residue
is not renormalized by the Coulomb interaction and there is a
Ward identity on the product of vertex and residue. Explicitly,
the vertex correction from Coulomb lines to Coulomb lines
has a relative minus sign compared to ZS and takes the form

�VC
cc ∝ − e4

c2q2

∫
dωd4p

G(ω,p)G(ω,p + q)

p2
. (A1)

After noting that terms odd in frequency vanish upon inte-
grating over frequency and canceling terms that vanish upon
angular integration over p we have

�VC
cc ∝ 2

e4

q2

∫
dωdp4 −ω2 + ∑

α dα(p)dα(p + q)

p2(ω2 + p4)(ω2 + |p + q|4)

≈ − e4

2q2

∫ −∞

∞
dω

∫ ∞

0
dp4 −ω2 + p4

p2(ω2 + p4)2
, (A2)

where in the last step we have expanded the integral to leading
order in small q, with higher-order terms being less relevant
(producing a short-range interaction rather than a long-range
Coulomb interaction). Now the frequency integral (which can
be done exactly by the method of residues) vanishes, such
that the Coulomb correction to the Coulomb vertex is zero,
consistent with what we would expect from the Ward identity.

We turn next to the ZS′ and BCS diagrams. These
correspond to ladder and twisted-ladder diagram topologies
(Cooperon and diffuson). It is important when evaluating these
to keep track of the total momentum transfer [53,54]. Let the
incoming momenta be k1 and k2, and the outgoing momenta
be k1 + q and k2 − q. The external momenta k1 and k2 can be
set to zero, but the momentum transfer q cannot; it is needed
to split a high-order pole in the integrand coming from the
doubled Coulomb line. The sum of these two diagrams with
two Coulomb lines attached (and q kept track of) yields (note
the overall minus sign with respect to ZS)

�ZS′
cc + �BCS

cc

∝ −e4
∫

dωd4p

p2|p − q|2 G(ω,p)[G(ω,p − q) + G(−ω, − p)]

= −e4
∫

dωd4p

p2|p − q|2
d(p) · d(p − q) + |p − q|4
(ω2 + p4)(ω2 + p − q|4)

, (A3)

where we have simplified, used d(−q) = d(q), and dropped
terms that vanish upon frequency or angular integration. The
integral over frequency may then be performed and yields

�ZS′
cc + �BCS

cc ∝ −e4

2

∫
d4p

d(p) · d(p − q) + |p − q|4
p4|p − q|4(p2 + |p − q|2)

.

(A4)

We now see that we cannot simply set q to zero because
the integral in (A4) diverges as 1/q2; i.e., it produces
a correction to the Coulomb line. Formally, this diagram
diverges logarithmically, but this divergence originates in
momenta p � q. Since we are performing an RG calculation,
we should assume external momenta are much smaller than
internal momenta, i.e., take q � p. In that case we can evaluate
the integral by Taylor expanding the integrand in small q to
get

�ZS′
cc + �BCS

cc ∝ −e4

2

∫
d4p

1

p8

2p4

2p2
∼

∫
d4p

p6
, (A5)

where q provides an infrared cutoff on the integral, and we have
dropped terms at higher orders in q which are less relevant.
This then yields an integral that scales as 1

q2 with no logarithmic
divergence. Thus, done correctly, the ZS′ and BCS diagrams
produce a constant correction of the Coulomb line, but not a
log divergent contribution, and thus they do not contribute to
the β functions.
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