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Observation of spin-charge separation and boundary bound states via the local density of states
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We numerically calculate the local density of states (LDOS) of a one-dimensional Mott insulator with open
boundaries, which is modelled microscopically by a (extended) Hubbard chain at half filling. In the Fourier
transform of the LDOS we identify several dispersing features corresponding to propagating charge and spin
degrees of freedom, thus providing a visualization of the spin-charge separation in the system. We also consider
the effect of an additional boundary potential, which, if sufficiently strong, leads to the formation of a boundary
bound state which is clearly visible in the LDOS as a nondispersing feature inside the Mott gap.
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I. INTRODUCTION

One-dimensional systems remain a fascinating field in
condensed-matter physics since they constitute prime exam-
ples for the breakdown of Fermi-liquid theory, which has to
be replaced by the Luttinger-liquid paradigm [1]. Arguably
the most dramatic consequence of this is the absence of
electronlike quasiparticles, manifesting itself in the separation
of spin and charge degrees of freedom visible, for example, in
angle-resolved photoemission [2], transport [3], scanning tun-
neling spectroscopy [4], or resonant inelastic X-ray scattering
[5] experiments as well as analytical [6] and numerical studies
of several one-dimensional models [7].

The spectral properties of one-dimensional electron sys-
tems have been intensively investigated in the past. These
works considered the gapless Luttinger liquid [1,8], gapped
systems like Mott insulators or charge-density-wave states
[9], Luttinger liquids with impurities [10], corrections to
the Luttinger model due to nonlinear dispersions [11], or
the momentum dependence of the two-particle interaction
[12], as well as additional phonon degrees of freedom [13].
These investigations uncovered universal power-law behavior
at low energies as well as deviations thereof, spin-charge
separation visible in the propagation modes, and signatures
of these features in various experimental probes. Recently, the
measurement of the local density of states (LDOS) has also
been discussed in the context of ultracold atomic gases [14].

In this article we consider another situation, namely, the
microscopic study of the boundary effects on one-dimensional
Mott insulators. Specifically, we numerically study the LDOS
of one-dimensional Hubbard models with open, i.e., hard-wall,
boundary conditions, where the system is at half filling and thus
in its Mott phase. A previous field-theoretical analysis [15] has
shown that the Fourier transform of the LDOS [16] exhibits
clear signatures of propagating spin and charge degrees of
freedom, thus providing a way to detect spin-charge separation.
Furthermore, an additional boundary potential may lead to the
formation of a boundary bound state, which manifests itself as
a nondispersing feature in the LDOS. The aim of our work is
to calculate the Fourier transform of the LDOS directly in the
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microscopic lattice model using a multitarget [17,18] variant
of the density matrix renormalization group (DMRG) method
[19] employing an expansion in Chebyshev polynomials. We
find our numerical results to be fully consistent with the
analytical predictions, both qualitatively, i.e., concerning the
number of dispersion modes and their basic properties, as
well as quantitatively with respect to the numerical values
of the effective parameters, like the Mott gap and spin and
charge velocities as compared to the exact results obtained
from the Bethe ansatz [20]. Thus our work provides a
microscopic calculation of the Fourier transform of the LDOS
in a gapped, strongly correlated electron system, showing
spin-charge separation as well as the formation of a boundary
bound state.

This paper is organized as follows: In Sec. II we present the
microscopic models to be analyzed and discuss the basic setup.
In Sec. III we give a brief summary of the numerical method
we employ to calculate the single-particle Green function. Our
results for the LDOS of the Mott insulators with open boundary
conditions are discussed in Sec. IV. In Sec. V we study the
effect of a boundary potential on the LDOS, in particular, we
analyze the properties of the boundary bound state existing
for sufficiently strong boundary potentials. In Sec. VI we
summarize our results.

II. MODEL
In this work we analyze the LDOS of the one-dimensional
Hubbard model [20] at half filling. The Hamiltonian is given
by
L-2

_ T T )
H=—1 § :(Cj,o*c]‘H,U +¢it1.0Cj0)
0,j=0
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where ¢;, and c;’a denote the annihilation and creation
operators for electrons with spin o = 1,] at lattice site j
andn;, = c;ac o> the corresponding densi.ty operators. The
parameters ¢ and U > 0 describe the hopping and repulsive
on-site interaction, respectively. Furthermore, we consider a
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chain with L sites and open boundary conditions. Since the
system is assumed to be at half filling, the Fermi momentum
is given by kg = /2.

As is well known [1,20], in the Hubbard model at half
filling, i.e., when there are L electrons in the system, the
repulsive interaction opens a gap in the charge sector and
the system becomes a Mott insulator. Using bosonization the
low-energy behavior of the system is described by the massive
Thirring model [21], the LDOS of which in the presence of
boundaries has been analyzed in Refs. [15]. The main objective
of our article is the comparison of the LDOS of the Hubbard
model (1) with the field-theoretical results obtained in the
Thirring model. Hereby the effective parameters in the field
theory, i.e., the mass gap and velocities, can be obtained from
the exact Bethe-ansatz solution of the Hubbard model. This
allows us to choose the microscopic parameters such that the
expected features of the Fourier-transformed LDOS can be
easily resolved in the numerical results.

In addition to the standard Hubbard model (1) we also
consider its extension, including a nearest-neighbor interaction
V, i.e., the Hamiltonian is given by [22]

L-2
Hew=H+V Y (nj = (1 — 1), )
j=0
where n; =nj4,+n; | is the total electron density. The
low-energy regime of the extended Hubbard model (2) is still
described [21] by the massive Thirring model. However, since
(2) is no longer integrable, the explicit relation between the
microscopic parameters ¢, U, and V and the field-theory ones
is not known. Thus the investigation of the phase diagram of
the extended Hubbard model at half filling had to be performed
by numerical means [23]. Using these results we choose the
microscopic parameters such that the system is well inside the
Mott-insulating phase with an energy gap A ~ O(¢) so that
we are able to clearly resolve the interesting features in our
numerical results.

III. GREEN FUNCTION

In order to determine the LDOS, we calculate the retarded
Green function in frequency space using an expansion of
the occurring resolvent in Chebyshev polynomials [18]. An
alternative numerical approach consists in the expansion
of the Lehmann representation of the spectral function in
Chebyshev polynomials, the kernel polynomial method (KPM,
see Refs. [24]). In contrast, we specifically evaluate the
complete (real and imaginary part) Green functions

GR(w.x) = GT(w.x) — G (w.x) 3)
with
G w.x) = (Wyle; L ey, @
Eo—H+ow+in ”
G (w.x) = (Wolc, L o). )

Ey—H—-w-—1n
Here | W) denotes the ground state of the system with energy
Ey. Note that since we are interested in the LDOS, we have
already taken the electron creation and annihilation operators
to be at the same site x = jag, with ay denoting the lattice
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spacing. Furthermore, since the systems we consider possess
spin-rotation invariance, we have suppressed the formal spin
dependence of the Green functions.

In Egs. (4) and (5) we have included the convergence factor
n, which in the continuum limit should be taken as n — 0.
In the numerical evaluations it has to be larger than the finite
level splitting brought about by the finite system size. At the
same time, n has to be smaller than any physically relevant
energy scale in order to resolve the relevant features of the
spectrum. To attain a small value of n we employ a Chebyshev
polynomial expansion approach for the resolvents in (4) and
(5). More details on this approach can be found in Refs. [25]
and [18].

The applied Chebyshev expansion is based on the represen-
tation of the functions

fHw2) =

tw—z ©

in terms of Chebyshev polynomials

o= af@. -1<z<1. (]
n=0

The expansion coefficients are given by

2 ! T.(2) 1
+ n
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®
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where ani(a)) Eani(w—i—in) is a function of the artificial
broadening 7, which would theoretically allow arbitrarily

small 1. The Chebyshev polynomials 7,,(z) are defined by
their recursion relation

To(z) =1, ©))
T\(z) =z, (10)

Th11(2) = 22T, (2) — T,,—1(2),
and fulfill

nz?2, an
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as well as

To,(2) = 2T (2)* — To(2), (13)

Top—1(z) = 2T,1(2) Ty (2) — Ti(2). (14)

In order to apply the expansion (7), which is only valid for
|z] < 1, to the resolvents appearing in the Green functions, we
first have to rescale the energies. To this end we run initial
DMRG calculations to determine the ground-state energy E
as well as the smallest and the largest energies of the system
with L £ 1 electrons. This allows us to find the scaling factor
a and shift b such that the operator

a(H — Ey) — b (15)
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has a spectrum between —1 and 1 in the sectors with L £ 1
particles. Then the Green function (4) can be expressed as

GH(w,x)=a Zarf[a(a} +in) — b] y,:(x), (16)
n=0

where the Chebyshev moments
W) = (Wolej Tyla(H — Eo) — blcl ,|Wo) — (17)
(recall x = jap) can be evaluated recursively via
oy (x) = (Woleo (0)| D)) (18)

with the recursion relations
) = ¢l (x)|Wo), (19)
|®F) = [a(H — Eo) — bl|®g), (20)

|®1y1) = 2[a(H — Eo) = b|®;) — [®,_ ). (2D

Similarly, for the Green function (5) we obtain the expansion

G (@.x)=ay o, lal+in)+blu, (x), (22)
n=0

where
My, (x) = (‘I‘oIC;(, T,la(H — Ep) — bl cj o |Wo). (23)

In the numerical evaluations the sums appearing in (16) and
(22) are truncated at N /2. The moments ,u,jf are calculated
iteratively from (19)—(21) using DMRG. During the DMRG
finite-lattice sweeps we determine each state |<I>(f), ceey |<I>ﬁ )
and include it in a modified density matrix. By performing a
singular-value decomposition of this modified density matrix
we ensure that all the states |<I>5t),...,|<bﬁ /p) are part of
the Hilbert space after the DMRG truncation. The mo-
ments for n = N/2+1,...,N are then obtained employing
(13) and (14) as p5, = 2(®E|dE) — (dF| ;) and 3, | =
2{dE || DF) — (D7 |DT).

Finally, we note that the Chebyshev moments uF are
typically strongly oscillating with respect to the index n.
Therefore, the final results oscillate slightly when changing
the value of N. On the other hand, we find small oscillating
parts in the spectral function if we choose N too small. Both
effects can be avoided by implementing a smoothing window
for the last Ng moments. Throughout this article we use a
cos? filter for the last Ny = N /5 moments. This way one can
obtain a good approximation for the spectral function using a
smaller number of moments N. Previously it was observed [18]
that the number of required Chebyshev moments sufficient to
approximate the Green function is inversely proportional to the
width of the spectrum a and the desired artificial broadening
n,i.e., N =~ (an)~!. Throughout this work we use N > 1000
Chebyshev moments for the series expansion of the Green
function. Furthermore, 1 is chosen such that the resulting
curves become smooth and artificial features are suppressed
(see Fig. 3 for an example).

We note that while the Chebyshev expansion is efficient in
getting the complete frequency range of the Green function,
a correction-vector-based method [26,27] would enable a
better frequency resolution. However, in contrast to impurity
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problems, where one can increase the energy resolution via
an energy-dependent discretization schemes [25,27], here one
can increase the inherent discretization only by increasing the
system size. In addition to solving the LDOS for all lattice
sites, one would have to perform a run for each desired
frequency.

IV. LDOS

The LDOS is obtained from the retarded Green function
(3) in the usual way. As was noted by Kivelson et al. [16]
in the study of Luttinger liquids with boundaries, it is useful
to consider the Fourier transform of the LDOS, as physical
properties like the dispersions of propagating quasiparticles
can be more easily identified. Since we consider a finite chain
of length L we analyze

1 [ 2 L2 . . _
N(,Q) = —;,/L—+1 ;0 Im GR(w,x) sin[Q(j + 1],

(24)

where the momenta Q take the values Q = nwk/(L + 1),
k=1,...,L. We note that the LDOS is directly related
to the tunneling current measured in scanning tunneling
microscopy experiments, and thus its Fourier transform (24)
is experimentally accessible. In the following we focus on the
LDOS for positive energies; the LDOS for negative energies
can be analyzed analogously.

The LDOS of the low-energy effective field theory of
the Hubbard models (1) and (2) has been analyzed [28] in
Refs. [15]. In the field-theoretical description the momentum
regimes Q ~ 0 and Q ~ +2kp = m are treated separately.
For small momenta Q & 0 the main features of the Fourier
transform (24) are a strong divergence at Q = 0 as well as a
propagating excitation in the gapped charge sector above the
Mott gap. In contrast, the behavior at momenta Q & 2k shows
adivergence at Q = 2kr, a propagating excitation in the charge
sector, as well as a linearly dispersing excitation in the gapless
spin sector. Furthermore, there exists a critical momentum
above which a second linearly dispersing mode becomes
visible. In addition, it was shown that certain boundary
conditions lead to the formation of boundary bound states
which manifest themselves as nonpropagating features in the
LDOS.

The main aim of our article is the calculation of the Fourier
transform of the LDOS (24) in the microscopic models (1)
and (2) and its comparison to the field-theoretical predictions
[15]. We start with the standard Hubbard chain (1) before
considering the extended version (2). In Sec. V we then analyze
the effect of additional boundary potentials, which give rise to
the existence of boundary bound states.

A. Standard Hubbard model

We first consider the Fourier transform of the LDOS (24) in
the standard Hubbard model (1). The results in the vicinity
of 0 =0 and Q = 2kg = m are shown in Figs. 1 and 3,
respectively, where we have chosen a repulsive interaction of
U = 4.5t corresponding to the dimensionless Hubbard param-
eteru = U/(4t) = 1.125 and L = 90 lattice sites. Throughout
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LDOS: Q = 0,n=0.2
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FIG. 1. Fourier transform of the LDOS N(w, Q) for interaction
u=U/4=1.125(recallt = 1), L = 90]lattice sites, broadening =
0.2, and momenta Q = 7/91,27/91,...,187/91 (from bottom to
top). The curves are constant Q scans that have been offset along
the y axis by a constant with respect to one another. N(w,Q) is
dominated by a strong peak at Q = 7 /91 & 0 which is only partially
displayed in the figure in order to improve visibility for the other cuts
(see also Fig. 2). We clearly observe the Mott gap A, as well as a
dispersing feature indicated by the arrow. This feature corresponds
to propagating charge excitations; it follows the dispersion relation
E.(Q) given in (29) with v, >~ 2.67 obtained from (26).

our article we use the hopping parameter + = 1 as our unit of
energy.

As is well known, the Hubbard model (1) is exactly solvable
by Bethe ansatz [20]. In particular, the velocities of the spin
and charge excitations v, and v, as well as the Mott gap A can
be determined analytically; the results in the thermodynamic

N(w,Q = 7/91)

wN(
oo
= 3
T T
o]
1 1

di
o
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T
o
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0 01 02 03
Artificial broadening 7

Energy w/A

FIG. 2. LDOS N(w,Q) at Q = /91 and for different broaden-
ings 1. All other parameters are as in Fig. 1. We observe that the jump
at w = A becomes sharper for  — 0; however, artificial oscillations
due to the Gibbs phenomenon increase. Inset: Integrated spectral
weight inside the gap as a function of the broadening 7.
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LDOS: Q ~ 2kp, n=0.2
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FIG. 3. N(w,2kg — g) for momenta in the vicinity of Q =
2kg = m withg = 2kp — Q = 7/91,27/91, ...,197 /L (from top to
bottom). All other parameters are as in Fig. 1. The curves are constant
g scans that have been offset along the y axis by a constant with respect
to one another. We observe two dispersing features (indicated by the
arrows) at E.(¢q) and E(g) originating from propagating charge and
spin excitations, respectively.

limit read
A=—-2+2u+ 2/oo do Ji@)e™ (25)
o @ cosh(uw)
e Vi—1+611wy1 -8,  (26)
= (j_“), @7
Io(3;)
. ® dw o™ J,(w)
Emn(u) =2 fo T+ o)’ (28)

where J,(z) and I,,(z) denote the Bessel functions and modified
Bessel functions of the first kind, respectively. Our chosen
parameters for the microscopic system correspond to [28]
Ve > Us.

In Fig. 1 we plot N(w, Q) in the vicinity of small momenta
Q ~ 0.The LDOS is dominated by a strong peak at Q = 7 /91.
For this the spectral weight inside the gap is a result of the finite
broadening 7, as shown in Fig. 2. Thus all features appear at
energies w > A, clearly showing that the system is in a gapped
phase. The observed energy gap A agrees perfectly with the
value A(u = 1.125) ~ 0.83 obtained from the Bethe ansatz
(25) in the thermodynamic limit. This suggests that the length
of our chain is long enough to avoid significant finite-size
effects in our results.

The Fourier transform of the LDOS for small momenta is
dominated by a global maximum at Q = /91 ~ 0. This peak
is attributed to a spin-density wave pinned at the boundary; it
is also well visible in the field-theoretical results [15]. At low
energies above the energy gap we further observe a dispersing
feature indicated by the arrow. This again agrees well with the
results from the field theory that predict a gapped, dispersing
charge excitation with the dispersion relation

E.(q) = (v;q>z + A2, (29)
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where ¢ = Q and v, is the velocity of the charge ex-
citations. The Bethe-ansatz solution (26) gives the value
ve(u = 1.125) =~ 2.67, which is in excellent agreement with
the velocity observed in the plot. The physical origin of this
dispersing feature is the decay of the electronic excitation into
gapped charge and gapless spin excitations. In the process of
giving rise to Eq. (29) the external momentum ¢ is taken
by the charge excitation propagating through the system
and eventually getting reflected at the boundary, while the
spin excitation does not propagate and thus possesses zero
momentum. The appearance of v. /2 in (29) originates from the
fact that the charge excitation has to propagate to the boundary
and back, thus covering the distance 2x.

In addition, in Fig. 1 we observe a second feature at higher
energy w = A, ~ 2.4 A. This feature seemingly follows the
dispersion relation (29), albeit with the gap value replaced
by A,. While the first dispersing feature can be identified
with the propagation of a single excitation in the massive
charge sector of the field theory, this second feature cannot
be accounted for in the field theory. In particular, higher-order
processes containing more than one excitation in the charge
sector are found to be strongly suppressed and do not possess
any nontrivial features. Thus we conclude that the field theory
cannot explain the dispersing feature observed in Fig. 1 at
o =~ 2.4 A. Furthermore, the field theory makes predictions
about the power-law decay of N(w,Q) at Q =0 which,
however, cannot be resolved in our numerical data. For the
observation of such features we would require a significantly
higher resolution, both in energy and momentum. This can in
turn only be achieved by turning to a significantly larger system
size and a higher amount of calculated Chebyshev moments.

We now turn our attention to momenta in the vicinity of
Q = 2kg = . We first note that features in this momentum
regime originate from umklapp processes coupling left-
and right-moving modes which are absent in translationally
invariant systems and thus constitute a particularly clean way
to investigate the boundary effects. In Fig. 3 we again observe
the existence of the Mott gap as well as two dispersing features
at E.(q) as defined in (29) and

vslq|

Ey(q) = +A, (30)
both indicated by the arrows. The spin velocity observed
in the plot is in excellent agreement with the Bethe-ansatz
result (27), giving vg(u = 1.125) ~ 1.14. While the feature
adhering to (29) is again due to a propagating charge excitation,
the feature following (30) originates from the propagation
of spin excitations with the charge excitation possessing
zero momentum. Furthermore, we note that in contrast to
the field-theoretical prediction, we observe only one linearly
dispersing mode. In order to understand this we recall that the
two linearly dispersing modes are energetically separated by
[15] A[1 — /1 — (vs/ve)?*] =~ 0.1A &~ 0.08, where in the last
step we have put in the parameters used in Fig. 3. Assuming
that we need about four points to clearly distinguish the
two maxima, we were to require an energy resolution of
Aw = 0.02. On the other hand, our resolution in energy is
limited by finite-size effects to about ~25r /L, implying that for
the treatable system sizes the two linearly dispersing features
cannot be separated. However, in order to resolve the peak
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FIG. 4. Contour plot of the LDOS N(w, Q) for the parameters of
Fig. 1. The dominant, white peak at Q =~ 0 is due to the spin-density
wave pinned at the boundary. The solid and dashed lines indicate the
holon dispersion (29) around Q = 0 and Q = 2k, respectively, and
the dashed-dotted line represents the spinon dispersion (30) around
Q = 2kg. The parameters A, v., and v, used in the plot were obtained
from the Bethe ansatz for the bulk system (25)—(27), i.e., there is no
free fitting parameter.

splitting, running a correction-vector-based approach for large
systems would be the method of choice.

To summarize our results, in Fig. 4 we show a contour plot
of the LDOS. For comparison we plot the holon dispersion (29)
around Q = 0 and Q = 2kg as well as the spinon dispersion
(30) around Q = 2k, for which we used the parameters A,
v, and vg obtained from the Bethe ansatz for the bulk system.
In particular, we stress that there is no fitting parameter.
In conclusion, our results are in very good agreement with
the features of the LDOS predicted by the field-theoretical
investigations.

B. Extended Hubbard model at half-filling

We have performed the analysis presented in the previous
section for the extended Hubbard model (2) at half filling and
L = 88 lattice sites. Since the extended Hubbard model is not
integrable, there exist no analytical results for the parameters
A, v, and vg. Still, the field theory is expected to qualitatively
describe the behavior of the system in the low-energy limit.
We note in passing that the next-nearest-neighbor interaction
V can be used to tune the prefactor [29] g, = U — 2V of
the marginal operator perturbing the spin sector of the field
theory, hence in principle allowing a systematic study of its
effects. However, qualitative features, like the dispersions on
which we focus here, will not be affected by the presence of
the marginal operator; thus we will not analyze the dependence
onV.

The LDOS for momenta in the vicinity of Q =0 and
Q = 2kr is shown in Figs. 5 and 6, respectively. In both
plots we have renormalized the energy scale by the gap
A = 2.1 obtained from the data at Q ~ 0. At low energies
the dispersing features are qualitatively identical to the ones
seen for the standard Hubbard model, namely, a propagating
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LDOS: Q = 0,n=0.2

N(w, Q)

Energy w/A

FIG.5. N(w,Q) for an extended Hubbard model with in-
teraction U =8, V=3, L =88, n=0.2 and momenta Q =
7/89,27/89,...,177/89 (from bottom to top). The results are
qualitatively similar to those for the standard Hubbard model shown
in Fig. 1,1.e., we observe a Mott gap A, a dispersing feature following
(29) (indicated by the arrow), and another one at higher energies.

charge mode for Q ~ 0 and both a propagating charge and
spin mode around Q = 2kg. The only difference is that the
charge and spin velocities take the values v, >~ 1.8A ~ 3.8
and vy >~ 0.35A ~ 0.7, respectively, which were determined
by comparison with the quasiparticle dispersions (29) and
(30). The energy gap A and charge velocity v, for the two
different momentum regimes agree well. We thus conclude
that the low-energy sector is well described by the field theory.
Furthermore, for small momenta we again observe a second
charge mode which now seems to have the gap A, >~ 1.5 A.

V. EFFECT OF A BOUNDARY POTENTIAL

Having analyzed the LDOS in the presence of open
boundary conditions, we now turn to the investigation of
the effect of a boundary chemical potential. Specifically, we

LDOS: Q = 2kp, n=0.2

__ 887
Q=55

((i

N—
N

Energy w/A

FIG. 6. N(w,2kg — q) for an extended Hubbard model in the
vicinity of Q = 2kg with ¢ = 2kg — Q = 7/89,27/89, ...,217/89
(from top to bottom). All other parameters are as in Fig. 5. Similar
to the standard Hubbard model, at low energies we observe two
dispersing features at (29) and (30), respectively.
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. ? Energy w/A

FIG.7. N(w,Q) for interaction u = 1.125, boundary potential
w = —2, L =90 lattice sites, and broadening n = 0.4. Besides the
peak at QO =0 and the dispersing modes at w > A, we observe
a nondispersing feature inside the energy gap at w = Eyps & A/2
which originates from the boundary bound state.

consider the Hubbard model (1) with a boundary potential at
site j =0,

Hyp=H+pn an:o,a. (31

o

Using bosonization such a boundary potential is translated
into nontrivial boundary conditions for the bosonic degrees of
freedom. In particular, certain boundary conditions give rise
to the existence of boundary bound states in the gapped charge
sector [30] which manifest themselves [15] in the LDOS as
nonpropagating features inside the Mott gap. The spectrum
of the Hubbard chain with boundary potential (31) has been
investigated by Bediirftig and Frahm [31] using the Bethe-
ansatz solution. In particular, it was found that a boundary
bound state corresponding to a charge bound at the first site
exists for © < —1. For even smaller boundary potentials, i <
—2u — +/1 + 4u?, two electrons in a spin singlet get bound to
the surface.

The Fourier transform of the LDOS in the presence of a
boundary chemical potential is shown in Fig. 7. Besides the
peak at O = 0 due to the pinned charge-density wave and sev-
eral dispersing modes above the Mott gap, we observe a clear,
nondispersing maximum inside the gap at = Epps & A /2,
which is a manifestation of the boundary bound state in the
LDOS. In the following we analyze this contribution in more
detail by considering the LDOS N (w,x) = —1/7 Im GR(w,x)
close to the boundary.

First we analyze the LDOS at the boundary site, N(w,x =
0), which is shown in Fig. 8 for several values of the boundary
potential ¢ using an artificial broadening n = 0.1. One can
clearly see that the maximum of the LDOS is shifted towards
lower energies for decreasing w. For © < —1 we find a
considerable spectral density inside the Mott gap A; for
u < —1.27 the maximum of the LDOS is located inside the
energy gap as well. From this we deduce that for u < —1.27
there exists a clear boundary bound-state contribution to the
LDOS. We attribute the deviation to the critical value u = —1
obtained from the Bethe ansatz [31] to the finite system size, as
well as the artificial broadening 1 introduced in our numerical
calculations. This is supported by the dependence of the energy
of the maximum in the LDOS on the broadening presented in
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FIG. 8. LDOS at the boundary, N(w,x = 0), for various values
of 1 and broadening 1 = 0.1. All other parameters are as in Fig. 7.
In the absence of a boundary potential (thick line) there is barely any
spectral weight inside the energy gap. For u < —1 the spectral density
inside the gap grows continuously but its maximum is still located
above the gap. For u < —1.4 the maximum is located inside the Mott
gap, providing a clear manifestation of the boundary bound state.
Inset: Position E|,, of the maximum of N(w,x = 0) as a function of
the boundary potential . We observe that a potential u < —1.27 is
needed for E.x < A.

Fig. 9, which shows that the energy of the maximum indeed
decreases with decreasing 7. Extrapolating the results to n = 0
and keeping in mind the finite system size as well as the fact
that for w — —17 the contributions from the boundary bound
state and the standard continuum at w > A start to significantly
overlap, we conclude that our results are consistent with the
Bethe-ansatz solution. This is further supported by the electron
density at the boundary shown in the inset of Fig. 9.

Location of max(N(w,z = 0)) as function of n

1.2 T T
o pu=-1.10 4
A p=-115 o
v pu=-—1.20 0" L =]
11 ’,O”A/A/’/

e~ "~ &

/
g 1.5 / .
s

— u=1.125

0.9 I 1 -——//‘ — :2‘.003— 7
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0 1 2 3
Artificial broadening 1 x %

FIG. 9. Maximum of N(w,x = 0) as a function of the artificial
broadening 1 for u = 1.125 and L = 90. Extrapolating to n =0
(indicated by lines), we find that that the energy of the maximum
lies within the Mott gap for u < —1.15. Inset: Electron density n at
the boundary showing very good agreement with the Bethe-ansatz
result [31]. The dotted vertical lines indicate the positions pu =
—2u — +/1 + 4u? at which two electrons get bound to the boundary.
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LDOS: z = agj, u = 1.125, n = 0.1

8 T T T T

4 p>00

Emax, )

w =

Lattice site j

FIG. 10. Maximal value of the LDOS, N(w = Eqx,jap), as a
function of the distance to the boundary for u = 1.125, n = 0.1, and
L = 90. For decreasing ;« we observe that the spectral weight gets
more and more localized at the boundary.

Finally, we consider the space dependence of the LDOS
when going away from the boundary. As is shown in Fig. 10,
lowering the boundary potential leads to an increase of
the LDOS at the boundary, consistent with the formation
of a boundary bound state localized at j = 0. However,
the system size and energy resolution is not sufficient to
unveil an exponential space dependence of the LDOS as
predicted by the field-theory analysis [15], i.e., N(w,x)

exp[—2x,/ A2 — E} /vl

VI. CONCLUSION

In this work we have performed a numerical study of
the LDOS of one-dimensional Mott insulators with an open
boundary. As microscopic realizations of the Mott insulator
we have studied the (extended) Hubbard model at half filling.
The results for the Fourier transform of the LDOS revealed the
existence of the Mott gap as well as several gapped and gapless
dispersing modes. These qualitative features were in perfect
agreement with the results of field-theoretical calculations [15]
of the LDOS in the Mott insulator. Furthermore, we extracted
quantitative values for the gap and velocities, which, in the case
of the integrable Hubbard chain, were found to be in excellent
agreement with the exact results [20]. Besides open boundary
conditions, we have also considered the effect of a boundary
potential. For sufficiently strong potentials this results in the
formation of a boundary bound state, which manifests itself in
the LDOS as a nondispersing feature inside the Mott gap. In
summary, our results show that spin-charge separation and the
formation of boundary bound states can be clearly observed
in the Fourier transform of the LDOS amenable to numerical
simulations or scanning tunneling spectroscopy experiments,
even for rather short systems.
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