
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 95, 201412(R) (2017)

Quantum treatment of phonon scattering for modeling of three-dimensional atomistic transport
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Based on the nonequilibrium Green’s function formalism, we show a numerically efficient method to treat
inelastic scattering in multidimensional atomistic codes. Using a simple rescaling approach, we detail the
calculations of the lowest-order approximation (LOA) [Y. Lee et al., Phys. Rev. B 93, 205411 (2016)] series
to the usual, computationally intensive, self-consistent Born approximation (SCBA). This, combined with the
analytic continuation technique of Padé approximants, is applied to an atomistic code based on a tight-binding
sp3d5s∗ model for electrons and holes, and a modified valence-force-field method for phonons. Currents in Si
and Ge gate-all-around nanowire transistors are then computed considering the main crystallographic transport
directions (〈100〉, 〈110〉, 〈111〉) for both n-type and p-type devices. Our results show that in most configurations,
third-order LOA currents are enough to achieve a high agreement with SCBA results, while reducing the
calculation time by about one order. In addition, we propose a criterion to determine the validity of such expansion
techniques.
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The recent introduction of three-dimensional (3D) fin
structured trigate transistors in the semiconductor industry has
opened the door for a steady continuation of Moore’s scaling
law in the sub-20 nm technology node [1]. However, despite
the success of the device architecture for the mass production,
there is a remaining question: Will this device structure still
be valid for transistors with sub-10 nm gate lengths? In
this perspective, the ongoing research mainly focuses on (i)
improving the electrostatic control of the device architecture
like gate-all-around (GAA) Si nanowire [2], or (ii) searching
novel materials exhibiting high mobilities and/or high band gap
[3–8], or (iii) the combination of both aspects, like wrap-gated
InGaAs III-V nanowire transistors [9–11].

In all the aforementioned devices both theoretical [12–15]
and experimental [16] works underline the impact of the
position of each individual atom on the obtained performance.
Indeed, the physics of nanoscaled devices is mainly governed
by quantum effects (confinement [17] and tunneling [18,19]),
surface roughness scattering [20], and electron-phonon in-
teractions [21]. Among those phenomena, it has been theo-
retically predicted [8,22] that inelastic interactions between
electrons and phonons play a major role even in ultrascaled
devices with dimensions of the order of the electron mean
free path. Thus, in order to analyze the physical properties of
the devices, the development of atomistic quantum simulation
tools including inelastic electron-phonon scattering is urgently
needed. During recent decades, several quantum methods have
been proposed to treat this issue precisely. Among them the
nonequilibrium Green’s function (NEGF) formalism [23–25]
is one of the most advanced quantum methods that has attracted
intensive interests due to its suitability for addressing inelastic
carrier transport in nanostructures.

Unfortunately, atomistic NEGF quantum transport sim-
ulations of realistic devices require important numerical
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resources. The situation becomes even more complicated when
inelastic interactions are included. Indeed, phonon scattering
is usually treated with the self-consistent Born approximation
(SCBA) that induces an additional self-consistent scheme to
the conventional “Poisson-Schrödinger” loop. The SCBA was
first applied to simple effective mass or k · p Hamiltonians
[26,27]. It was then implemented in 3D full-band atomistic
NEGF codes based on the tight-binding Hamiltonian [21,28].
Among those advanced codes, the simulator OMEN developed
by Luisier and co-workers is one of the most sophisticated that
couples inelastic transport of phonons and electrons with an
atomistic precision [29,30]. However, this simulator is only
manageable with more than 1000 CPUs due to unavoidable
numerical burden.

Recently, we proposed a technique that allows one to
greatly reduce the computational complexity for taking into
account the interaction between electrons and phonons within
the NEGF framework. The approach [31–33] is based on
a lowest-order approximation (LOA) of the interactions
combined with an analytic continuation technique of Padé
approximants [34,35]. Its main advantage is to avoid the
numerous iterations required by SCBA. However, it implies
the inversions and multiplications of potentially large matrices
which may be impractical for 3D systems. We here present a
simple rescaling technique able to calculate a series of LOAs
using the first iterations of the conventional SCBA algorithm.
We apply this efficient technique to the atomistic code OMEN

[29] to model 3D nanowire (NW) transistors for which
electron-phonon scattering is important. In particular, we show
that the physical quantities (i.e. the currents) based on the
third-order LOA combined with the Padé analytic continuation
technique are enough to obtain the results of the full SCBA
iterations. Our investigations focus on both n-type and p-type
Si GAA NWs considering the three main crystallographic
orientations (〈100〉,〈110〉,〈111〉). Application to a Ge NW in
〈110〉 transport direction is also discussed.

The device structure investigated in this Rapid Communi-
cation is schematized in Fig. 1. The chosen gate length is 5 nm
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FIG. 1. Schematic representation of the silicon GAA NW transis-
tors considered in this work (with a 〈100〉 crystallographic orientation
in the present case). The length of the gate is LG = 5 nm, the source
and drain extensions LS/D = 15 nm, and the diameter of NW dNW =
3 nm. Source and drain regions are doped with a doping concentration
of donors or acceptors ND/A = 1 × 1020 cm−3. Si〈110〉, Si〈111〉, and
Ge〈110〉 are also considered (not shown).

since it is considered as an ultimate limit for conventional logic
transistors. The channel is surrounded by a 3-nm-thick HfO2

dielectric layer (with εR = 20), while source and drain regions
are covered by a low κ dielectric layer (with εR = 5). A supply
voltage |VDS | = |VDD| = 0.6 V is applied between the source
and drain contacts, and a gate-to-source bias VGS then controls
the currents flowing inside the channel. Since electron-phonon
scattering is found to be stronger in the saturation regime [21],
we focus here on this operation mode.

We consider steady-state electron transport described
within the NEGF framework employing a full-band tight-
binding sp3d5s∗ model without spin-orbit coupling [36,37].
The lateral surface of the semiconductor NW in which we
solve the Schrödinger’s equation is passivated by increasing
the energy of dangling bonds [38], and no surface rough-
ness scattering is considered. Phonon relation dispersion
in the confined NW is obtained via a modified valence-
force-field method including four interaction terms [39,40].
Here, as described in Ref. [29], electrons are coupled to
phonons through the following diagonal lesser or greater
self-energy:
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where h̄ is the reduced Planck’s constant, E the electron
energy, ω the phonon frequency, Hnl the Hamiltonian (tight-
binding matrix element), G(E) the electron Green’s function,
and D(ω) the phonon Green’s function expressed in the real
space (the indices i and j run over x, y, and z directions).
The other indices n and l denote all atomic positions, and σ

represents the orbitals. ∇iHnl represents the first derivative of
the tight-binding Hamiltonian matrix Hnl along the i direction
(x, y, or z). It defines the electron-phonon coupling due to
atom oscillations around their equilibrium position (please see
Ref. [29] for more details). We assume a bath of phonons at
thermal equilibrium by considering no temperature gradients
inside the device and by neglecting the phonon self-energies

which can contribute to the phonon Green’s function D(ω)
(see Ref. [29]). We should note that the diagonal approxi-
mation of the self-energy, which results from computational
limitations in atomistic codes, may lead to an underestimation
of the strength of electron-phonon coupling [41,42]. However,
Ref. [43] showed that the diagonal approximation was still
valid in ultrascaled Si nanowires for electrons, except for
transport along the 〈110〉 crystal orientation. More generally,
the LOA combined with the Padé approximant can be applied
to nondiagonal self-energies. The self-energy of Eq. (1)
combined with Dyson’s equation [44] allows one to calculate
the electron interacting Green’s function G(E) starting from
the noninteracting one g(E).

G = g + g�[G]G, (2)

where the simplified matrix notation [1 = (r1,t1), g�[G]G =∫
d2

∫
d2′ g(1; 2)�(2; 2′)G(2′; 1′)] is used. Dyson’s equation

(2) is typically solved using the so-called iterative SCBA
scheme with a specified convergence tolerance such as

GN = {g−1 − �[GN−1]}−1, (3)

where GN is the Green’s function at the N th SCBA iteration
and G0 = g.

Green’s functions resulting from the first few iterations [i.e.,
N small in Eq. (3)] of the SCBA scheme are generally not
conserving for strong electron-phonon interactions [31,33].
The SCBA might then require more than several dozens of
iterations to provide accurate conserving physical properties.
On the other hand, LOA Green’s functions are conserving
at any order. It has been shown that the first few orders of
LOA Green’s functions coupled with Padé approximants can
highly accelerate the calculations of physical quantities (both
current and charge density) [31]. However, the LOA Green’s
function algorithm presented in Ref. [31] implies numerous
inversions and multiplications of Green’s function matrices.
Its implementation is then numerically very demanding when
applied to 3D nanostructures. Here, we show that the derivation
of LOA Green’s functions from the usual SCBA algorithm
can be easily reached by introducing a scaling parameter
to Eq. (1).

As an example, let us rewrite Eq. (3) in the Taylor series
expansion as

GN = g + g�[GN−1]g + g�[GN−1]g�[GN−1]g + · · · .

(4)

The first SCBA Green’s function G1 is then defined from
Eq. (4) as

G1 = g + g�[g]g + g�[g]g�[g]g + · · · . (5)

G1 is not conserving due to second- and higher-order terms
in interaction [33]. Its first-order LOA counterpart GLOA1 is
conserving and expressed as

GLOA1 = g + g�[g]g. (6)

GLOA1 can then be deduced from G1 by introducing a scaling
parameter 1/λ1 in the self-energy of Eq. (1). G1 rescaled by
λ1 is now defined by

G
λ1
1 = g + 1

λ1
g�[g]g +

(
1

λ1

)2

g�[g]g�[g]g + · · · . (7)
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FIG. 2. Rescaled Green’s functions, (a) G
λ1
1 of first SCBA iteration and (b) G

λ2
2 of second SCBA iteration, described by Feynman diagrams.

Conserving and nonconserving terms are arranged in ascending order in interactions. Thin lines with an arrow indicate electron noninteracting
Green’s function. Dashed lines are for free phonon propagators.

Taking a relevant value of λ1, the factors (1/λ1)n (n > 1)
can eliminate the infinite sum of nonconserving terms while
preserving the first-order conserving one. In NEGF, since any
relevant expectation value (O) is linear in the one-electron
Green’s function, the expectation value of the first-order
term to GLOA1 can be constructed as 	O1 = O(g�[g]g) =
λ1[O(Gλ1

1 ) − O(g)].
The same technique can be applied to the second SCBA

iteration of Eq. (4) considering a different scaling factor λ2 to
obtain the rescaled G2 as
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where G
λ2
1 is G1 rescaled by λ2. Since the SCBA self-energy

is linear with respect to the Green’s function [33], the rescaled
G2 can be expressed as

G
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2 = g + 1
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)2

(g�[g]g�[g]g + g�[g�[g]g]g)

+
(
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where λ2 should be chosen to remove higher-order
terms associated to (1/λ2)n (n > 2), but to maintain the
first- and second-order conserving terms. With this scal-
ing parameter, the expectation value of the second-order
terms to second-order LOA Green’s function GLOA2 can
be obtained as 	O2 = O(g�[g]g�[g]g + g�[g�[g]g]g) =
λ2

2[O(Gλ2
2 ) − O(g)] − λ2	O1. Figures 2(a) and 2(b) illustrate

this scaling technique in terms of Feynman diagrams for the
first and second SCBA iterations, respectively.

Once the rescaled conserving Green’s functions at each
order are obtained, the expectation values of the desired
observable can be reconstructed using the linearity property
of the corresponding operator. In particular, N th-order LOA
current can be expressed as

IN thLOA = I0 +
N∑

n=1

	In, (10)

with

	IN = (λN )NIN thSCBA
(
G

λN

N

) −
N−1∑
n=0

(λN )N−n	In,

	I0 = I0. (11)

This procedure demonstrates that conserving Green’s func-
tion at any order N can be, in principle, obtained from
conventional SCBA scheme. At each order N , λN has to be
large enough to remove all nonconserving terms (whose order
in interaction is larger than N ) but small enough to maintain
conserving terms (whose order in interaction is �N ). This
approach relies on the relevant choice of λN which can be
rapidly verified through the current conservation. Explicitly we
determine the λN ’s based on a semiempirical method noting
that they are associated to a Taylor development of the Green’s
function. We first find the scaling parameter λ1, which ensures
that the current is conserved after the first SCBA iteration.
We then deduce an approximated value of λ2 as 2 × (λ1)1/2.
Based on the same argument, we take λ3 equal to 5 × (λ1)1/3.
The multiplication factors 2 and 5 for λ2 and λ3, respectively,
represent the weighting according to the number of diagrams
at each order. We are aware of the empirical character of this
approach, but the assessment of scaling parameters at any order
in interactions and to any systems is a very complex issue out
of the scope of the present work. Here, we calculate up to
third-order currents and apply Padé approximants 0/1, 1/1,
and 1/2. Calculation of higher-order LOA currents is also
possible, but it usually requires additional SCBA iterations
that could reduce the relevance of the presented technique.
Moreover, the approach could have been also applied to the
calculation of the charge-carrier density by using the same
scaling parameters as those for the current. For the sake of
clarity, we decided to only focus on the current considerations.
The comparisons between SCBA and LOA/Padé approximant
are performed with the same electrostatic potential profile
as the one resulting from the self-consistent loop between
the Poisson equation and the NEGF formalism including the
interactions within the SCBA scheme.

Table I shows comparisons of the first three LOA orders
and corresponding Padé currents with SCBA values for n-Si
(n-type silicon) and n-Ge (n-type germanium) devices along
several principal crystallographic orientations. We first see that
all LOA current series (LOA1, LOA2, and LOA3) are diverg-
ing from SCBA currents, meaning that the considered devices
operate in a relatively strong electron-phonon interaction
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TABLE I. Comparisons of three first LOA currents and corresponding Padé approximants (0/1, 1/1, and 1/2) with the ballistic and SCBA
currents in n-Si〈100〉, n-Si〈110〉, n-Si〈111〉, and n-Ge〈110〉 devices. Relative differences (ε) of the LOA and Padé currents with respect to the
SCBA values are also reported (ε = 100 × |ISCBA − I|/ISCBA) where I is ballistic, LOA, or Padé current.

Ballistic LOA1 LOA2 LOA3 Padé 0/1 Padé 1/1 Padé 1/2 SCBA Device

Current [A] 8.12 × 10−6 6.40 × 10−6 −2.37 × 10−5 2.47 × 10−4 6.70 × 10−6 8.22 × 10−6 5.05 × 10−6 5.26 × 10−6 n-Si〈100〉
ε [%] 54.4 21.7 550.6 4595.8 27.4 56.3 4.0 0.0

Current [A] 6.55 × 10−6 4.58 × 10−6 −3.92 × 10−5 1.61 × 10−3 5.04 × 10−6 6.64 × 10−6 4.42 × 10−6 4.45 × 10−6 n-Si〈110〉
ε [%] 47.2 2.9 980.9 36079.8 13.3 49.2 0.7 0.0

Current [A] 4.34 × 10−6 1.72 × 10−5 −4.38 × 10−5 2.03 × 10−4 −2.20 × 10−6 6.59 × 10−6 5.48 × 10−6 6.01 × 10−6 n-Si〈111〉
ε [%] 27.8 186.2 828.8 3277.7 136.6 9.6 8.8 0.0

Current [A] 5.27 × 10−6 4.76 × 10−6 2.09 × 10−6 7.11 × 10−5 4.80 × 10−6 5.39 × 10−6 4.72 × 10−6 4.62 × 10−6 n-Ge〈110〉
ε [%] 14.1 3.0 54.8 1439.0 3.9 16.7 2.2 0.0

regime [31]. Padé 0/1 applied to the first-order LOA currents
shows an underestimation of the current degradation compared
with the SCBA currents, except for the n-Si 〈111〉-oriented
device. In addition, Padé 1/1 approximants based on up to
second-order LOA currents are in most cases not reliable as
pointed out in previous work [31]. However, the application
of Padé 1/2 on the LOA current series shows significant
improvements, with high accuracies compared with the SCBA
values. For n-Si and n-Ge 〈110〉-oriented devices, Padé 1/2
provides almost the same values as the SCBA currents with
a relative difference (ε) of less than 2% on average. It is
also worth noting that Padé 1/2 can provide a reasonably
good result (<9% relative difference) for the 〈111〉 transport
direction where SCBA needs more than 40 iterations to
converge. Therefore, currents resulting from Padé 1/2 can be
seen as a good estimation of the SCBA values with a relative
difference less than 10% for all the considered n-type devices.
These results confirm the previous work [31] where it has
been shown that Padé N/N + 1 can give better results even in
strong electron-phonon interacting systems.

Table II shows similar results as Table I for p-type devices.
We see that all LOA currents (LOA1, LOA2, and LOA3) are a
divergent series like in the case of n-type devices. Table II also
reports very favorable results for the 〈110〉 direction for which
even the simplest Padé 0/1 guarantees a high agreement of the
current (ε < 6%) with respect to the SCBA approach. Padé
1/1 also produces reliable results for the 〈110〉 direction while
remaining unstable for the other configurations. Padé 1/2 still
gives current value very close to those of SCBA with ε less than

6%. The result is also remarkable for the 〈100〉 direction where
Padé 1/2 provides similar accuracy while SCBA requires more
than 80 iterations. However, the comparison is less successful
for the p-Si〈111〉 configuration for which all LOA and Padé
currents fail to reproduce the SCBA result.

The transport along the 〈111〉 direction is quite singular
for both n-type and p-type devices. For that orientation
first-order LOA currents are larger than the ballistic values
(see Tables I and II). Concerning the n-type device, the
converged SCBA current is also larger than the ballistic one and
the Padé 1/2 finally succeeds in providing an accurate value.
In n-type 〈111〉-oriented NWs the counterintuitive increase
of the current in the presence of phonon scattering with
respect to the ballistic value results from the interplay between
two competing effects: first, backscattering caused by phonon
emission or absorption tends to decrease the current magni-
tude. Second, intersubband scattering induced by electron-
phonon interactions connects bands with a small energy
bandwidth that would otherwise not carry any current in the
ballistic limit of transport [45,46]. In ultrashort devices with
band structure exhibiting several subbands with a low energy
bandwidth, as 〈111〉-oriented Si nanowires, the second effect
dominates, thus leading to an increase of the current. However,
in longer devices, backscattering plays the major role and
the situation goes back to normal, i.e., the current magnitude
decreases when electron-phonon scattering is turned on. The
case of the p-type device is more pathological since the
converged SCBA becomes smaller than the ballistic value.
Such a configuration seems to involve more complex physical

TABLE II. Comparisons of three first LOA currents and corresponding Padé approximants (0/1, 1/1, and 1/2) with the ballistic and SCBA
currents in p-Si〈100〉, p-Si〈110〉, p-Si〈111〉, and p-Ge〈110〉 devices. Relative differences (ε) of the LOA and Padé currents with respect to the
SCBA values are also reported (ε = 100 × |ISCBA − I|/ISCBA) where I is ballistic, LOA, or Padé current.

Ballistic LOA1 LOA2 LOA3 Padé 0/1 Padé 1/1 Padé 1/2 SCBA Device

Current [A] 6.10 × 10−6 1.96 × 10−6 3.53 × 10−8 −3.36 × 10−5 3.63 × 10−6 −1.65 × 10−6 3.89 × 10−6 4.31 × 10−6 p-Si〈100〉
ε [%] 41.5 54.5 99.2 879.6 15.8 138.3 9.7 0.0

Current [A] 6.26 × 10−6 3.77 × 10−6 5.07 × 10−6 1.81 × 10−5 4.48 × 10−6 4.66 × 10−6 4.48 × 10−6 4.74 × 10−6 p-Si〈110〉
ε [%] 32.1 20.5 7.0 281.9 5.5 1.7 5.5 0.0

Current [A] 5.29 × 10−6 8.18 × 10−6 −4.12 × 10−5 3.70 × 10−3 1.16 × 10−5 5.45 × 10−6 9.08 × 10−6 4.85 × 10−6 p-Si〈111〉
ε [%] 9.1 68.7 949.5 76188.7 139.2 12.4 87.2 0.0

Current [A] 5.80 × 10−6 4.11 × 10−6 4.70 × 10−6 5.03 × 10−7 4.49 × 10−6 4.55 × 10−6 4.49 × 10−6 4.74 × 10−6 p-Ge〈110〉
ε [%] 22.4 13.3 0.8 89.4 5.3 4.0 5.3 0.0
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phenomena that require one to consider higher-order LOA
currents. It clearly illustrates the limit of our technique to
reproduce SCBA currents. We also mention that it has been
recently shown [47,48] that the SCBA with Luttinger-Ward
functional self-energy may produce unphysical convergence
for strong-coupling systems. The 〈111〉 p-type direction could
be one of these configurations. We can also note that a
similar approach using hypergeometric resummation has been
recently proposed and could be tested in such case [49].
However, we suggest one take as a warning signal of the
accuracy of the present approach the situation where first-order
LOA current is larger than the ballistic one.

In summary, we have proposed a numerically efficient
technique to reproduce the SCBA currents. It relies on the
LOA coupled to Padé approximants and only requires the
first few iterations of the SCBA procedure. The method has
been applied to NW transistors using an atomistic 3D quantum
transport code. We focused on the saturation regime current

of the devices at high gate bias and compared the LOA and
Padé currents with the SCBA values. In particular, we showed
that the Padé 1/2 with only first three-order LOA currents
can successfully reproduce the SCBA currents with a small
relative difference (<10%) in most of the considered devices
except for the p-Si〈111〉 device where the electron-phonon
interaction exhibits singular effects. We also suggested as a
warning signal to SCBA solution the case where first-order
LOA current is larger than the ballistic one.
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