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Electronic structures of Ge1−xSnx alloys (0 � x � 1) are theoretically studied by the nonlocal empirical
pseudopotential method. For relaxed Ge1−xSnx , a topological semimetal is found for x > 41% with gapless
and band inversion at the � point, while there is an indirect-direct band-gap transition at x = 8.5%.
For strained Ge1−xSnx on a Ge substrate, semimetals with a negative indirect band gap appear for x > 43%,
and the strained Ge1−xSnx on Ge is always an indirect band-gap semiconductor for x < 43%. With appropriate
biaxial compressive strains, a topological Dirac semimetal is found with band inversion at � and one pair of
Dirac cones along the [001] direction.
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Gray tin (α-Sn) is a topological semimetal [1–3] (also
referred to as a topological zero-gap semiconductor) due to its
inverted �−

7 and �+
8 band states at the zone center in reciprocal

space, satisfying the nonzero Z2 topological invariant in the
kz = 0 plane [3]. Moreover, a strong topological insulator in
strained α-Sn was proposed with an opening gap between
the split �+

8 band states (�+
8 and �+∗

8 ) at the zone center
due to unchanged parity eigenvalues under biaxial strain
[3]. A Dirac semimetal [4] with one pair of Dirac cones in
the �-Z direction in compressively strained α-Sn was also
reported [5,6]. Relaxed Ge has the same parity eigenvalues as
relaxed α-Sn for the four occupied bands at eight time-reversal
invariant momenta (1�, 3X, and 4L) except for the degenerate
�+

8 band states at the zone center [7]. However, if band
inversion occurred (�−

7 energy level lower than �+
8 ), the odd

parity of �−
7 would lead to a nonzero Z2 invariant. Note that

these parity eigenvalues are used to identify the Z2 invariant,
where 0 and 1 for relaxed Ge and α-Sn in the kz = 0 plane,
respectively [3]. Recently, diamond structure GeSn alloys have
been shown to be attractive for light-emitting [8–10] and
electronic [11,12] applications owing to the potential direct
band gap of the GeSn alloys and small transport effective
masses, respectively. The indirect-direct band-gap transition
of relaxed GeSn (r-GeSn) alloys reportedly occurred at a Sn
content of around 7%–10% [8,13–16]. A zero-gap behavior
was also reported for r-GeSn at a Sn content larger than
∼40% based on band-structure calculations [17,18]. However,
the occurrence of band inversion in metallic GeSn alloys,
implying a nonzero Z2 invariant in GeSn alloys, has yet to
be discussed. The nonlocal empirical pseudopotential method
(EPM) has been widely used for calculating the electronic
band structures of SiGe [19–21] and GeSn [11,15,22] alloy
systems using the virtual crystal approximation (VCA). The
pseudocharge density ρpseu calculated by the electronic wave
function was used for determining the bonding characteristics
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of Ge [23] and α-Sn [24]. Note that the �−
7 and �+

8 band
states at the zone center are s like (antibonding s orbitals)
and p like (bonding p orbitals), respectively, for both Ge
and α-Sn [25]. The calculated band gaps and band offsets in
strained GeSn/relaxed GeSn using our EPM, where the
Sn content �0.3, have been reported [26]. In this Rapid
Communication, the phase transition from a semiconductor
to a topological semimetal in r-Ge1−xSnx alloys (0 � x � 1)
is investigated using EPM. This transition is determined from
the corresponding wave functions of �−

7 and �+
8 band states

at the zone center. For strained Ge1−xSnx (s-Ge1−xSnx) alloys
(0 � x � 1), three phases (semiconductor, indirect semimetal,
and topological Dirac semimetal) are found, depending on the
Sn content and compressive strain level.

In EPM, the one-electron pseudo-Hamiltonian derived
from Ref. [27] has four terms of the kinetic energy, local
pseudopotential form factors [Vloc(q)], nonlocal correction
terms [Vnloc( �G, �G′)], and spin-orbit interactions [Vso( �G, �G′)].
The Vloc(q) versus reciprocal lattice vectors (q = |G − G′|)
are presented by the expression [19,28]

V i
loc(q) = 1

�i

bi
1

(
q2−bi

2

)
exp

[
bi

3

(
q2−bi

4

)] + 1

[
1

2
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bi
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)
+1

2

]
,
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where �i is the atomic volume and i denotes the Ge or Sn
element. The parameters of bi

1, bi
2, bi

3, and bi
4 are obtained

by solving the roots of a system of nonlinear equations with
the values of V i

loc(q) at q2 = {3,4,8,11}(2π/ai
0)

2
. The lattice

constants (a0) at 0 K of Ge (5.652 Å) and Sn (6.482 Å) are
calculated using the value at room temperature (RT) [29] and
the corresponding thermal expansion coefficients [30]. EPM
parameters of Vloc(q), spin-orbit interactions (ζ and μ), and a
fast cutoff tanh part [28] (bi

5 and bi
6) of Ge and α-Sn (Table I)

are adopted from Refs. [20,22,31,32] with a less than 6%
adjustment to reach good agreement with the experimental
band gaps of Ge [29,33] and α-Sn [34–36] at low temperature.
The parameters of the nonlocal correction terms are obtained
from Ref. [27] and the number of the element plane wave
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TABLE I. Pseudopotential parameters used for Ge and Sn [31].

Parameter Ge Sn

Vloc(
√

3)(Ry) −0.2351a −0.191
Vloc(

√
4)(Ry) −0.1572 −0.152

Vloc(
√

8)(Ry) 0.0186a −0.008
Vloc(

√
11)(Ry) 0.055a 0.04

ζ (Å−1) 5.34 4.75
μ (10−4 Ry) 9.4b 22.5
b5 (atomic units) 4.5a 3.9c

b6 (atomic units) 0.3a 0.3c

aReference [32].
bReference [20].
cReference [22].

basis set { �G} is 339. Details of the three terms (Vloc, Vnloc,
and Vso) were reported comprehensively by theoretical works
[15,19,20,27,31,32,37]. Here, we describe the approaches to
take into account both the strain and alloy effects in these
three terms. The terms of Vloc and Vnloc, and the parameter λ

in the Vso of Ge-Sn alloy systems, are obtained by VCA using
the following formulas,

V Ge1−xSnx (q) = (1 − x)
�Ge

�
Ge1−xSnx
s

V Ge(q) + x
�Sn

�
Ge1−xSnx
s

V Sn(q),

(2)

both for Vloc and Vnloc,

λGe1−xSnx (K,K ′) = (1 − x)λGe(K,K ′) + xλSn(K,K ′). (3)

The { �G} and the normalizing strained atomic volume �i
s

generated from the lattice vectors are considered in the
Hamiltonian matrix [20] with the strain and alloy effects. The
linear interpolation of the elastic constants (C11, C12, and C44)
[38] and a bowing of 0.047 Å [39] for the lattice constant
of GeSn alloys are used. Note that the coherent potential
approximation (CPA) that is in agreement with the VCA
results in homogeneous GeSn alloys (substitutional α-Sn in
Ge) was reported in Refs. [40,41]. CPA was used to consider
the inhomogeneous GeSn alloys with β-Sn defects that may
not exist at 0 K discussed in this work according to the formula
in Ref. [41].

The band structure of r-Ge0.65Sn0.35 [Fig. 1(a)], a typical
direct-gap semiconductor, owns the conduction band edge
at the zone center (�−

7 state) and the degenerate valence
band edges (�+

8 states for heavy hole and light hole bands)
with a band gap of ∼70 meV. However, the band structure
of r-Ge0.55Sn0.45 [Fig. 1(b)] shows a gapless topological
semimetal behavior with degenerate �+

8 states above the �−
7

state. The corresponding constant ρpseu contours around the
two atoms in the unit cell of the band states of s-like �−

7
and p-like �+

8 show the band inversion of r-Ge0.55Sn0.45

as compared to r-Ge0.65Sn0.35 [Figs. 1(c) and 1(d)]. The
band inversion leads to a nonzero Z2 invariant, referred to
as the topological behavior. The same parity eigenvalues of
r-Ge0.55Sn0.45 as r-Sn for the four occupied bands at eight
time-reversal invariant momenta are confirmed using our EPM.
Without spin-orbit coupling (SOC), the parity inversion in
r-Ge0.55Sn0.45 disappears.

FIG. 1. The calculated band structures with and without spin-
orbit coupling (SOC) around the zone center of (a) a direct-
gap semiconductor (r-Ge0.65Sn0.35) and (b) a gapless topological
semimetal (r-Ge0.55Sn0.45). The constant pseudocharge density (ρpseu)
contours of the two atoms (indicated by +) in the unit cell of
(c) r-Ge0.65Sn0.35 and (d) r-Ge0.55Sn0.45 to identify s-like �−

7 and
p-like �+

8 .

The calculated indirect band gap (EgL = L+
6 − �+

8 ), direct
band gap (Eg� = �−

7 − �+
8 ), and Eg� + spin-orbit splitting

(
0) (Eg� + 
0 = �−
7 − �+

7 ) as a function of Sn content
for r-Ge1−xSnx are shown in Fig. 2. Our calculations agree
well with the reported experimental data at low Sn content
(Eg� and Eg� + 
0) near 0 K [14,42]. The calculated
band gaps of α-Sn (EgL = 0.13 eV, Eg� = −0.43 eV, and

FIG. 2. The calculated energy differences of �−
7 − �+

8 , L+
6 − �+

8 ,
and �−

7 − �+
7 as a function of Sn content as compared with the

reported experimental data [14,42]. The solid lines indicate the
semiconductor band gaps including EgL, Eg� , and Eg� + 
0, and
the dashed lines (x > 41%) indicate the energy differences of the
topological semimetal.
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FIG. 3. Electronic band structures of s-Ge1−xSnx on Ge with
different Sn content with and without a nonlocal potential (Vnloc).
(a) An indirect-gap semiconductor (s-Ge0.65Sn0.35 on Ge). (b) An
indirect semimetal (s-Ge0.55Sn0.45 on Ge). (c) An indirect semimetal
with the inverted band at the zone center and a Dirac point along
the [001] direction (s-Ge0.4Sn0.6). (d) An indirect semimetal with the
inverted band at the zone center and a Dirac point along the [001]
direction (s-Sn on Ge). Note that the opening gap at zone center is
�+

8 − �−
7 and �+

8 − �+∗
8 for (c) and (d), respectively.


0 = 0.8 eV) are also consistent with reported values (EgL =
0.12 eV [34,36], Eg� = −0.42 eV [35], and 
0 = 0.8 eV
[35]). There are no experimental EgL data of r-Ge1−xSnx near
0 K reported in the literature. Eg� decreases faster than EgL

with increasing Sn content and this results in an indirect-direct
band-gap transition around x = 8.5% for r-Ge1−xSnx [26].
For x > 41%, the degenerate �+

8 forms a gapless topological
semimetal (Eg = 0 eV) with the band inversion. The s-like �−

7
falls below the two p-like �+

8 states in energy, i.e., �−
7 − �+

8 ∼
−25 meV of r-Ge0.55Sn0.45 [Fig. 1(b)]. The energy differences
of �−

7 − �+
8 , L+

6 − �+
8 , and �−

7 − �+
7 in gapless r-Ge1−xSnx

alloys are also shown in Fig. 2 for comparison.
For an s-Ge1−xSnx layer on a Ge (001) substrate, the

phase transition in the band structure from a semiconductor
to indirect semimetal with an increase of Sn content is shown
in Fig. 3. Note that we assume that a metastable fully strained
thin layer s-Ge1−xSnx could be grown on Ge even though a
high Sn content of s-Ge1−xSnx on Ge (x > 46%) is still under
investigation [43,44]. The s-Ge0.65Sn0.35 on Ge [Fig. 3(a)] has
a typical indirect band gap with conduction band edges at the
L+

6 states and the valence band edge at the �+
8 state (the heavy

hole band). For s-Ge0.55Sn0.45 on Ge [Fig. 3(b)], the L+
6 states

fall below the �+
8 state, resulting in an indirect semimetal

with a negative indirect band gap (L+
6 − �+

8 ∼ −30 meV). As
the Sn content reaches to 60% [Fig. 3(c)], the band inversion
of the �−

7 and �+
8 states occurs at the zone center with an

opening gap (�+
8 − �−

7 ) at the � point and a Dirac point
along the [001] direction, but the L+

6 states are still at the
conduction band minimum. In this case, s-Ge0.4Sn0.6 on Ge is
referred to as an indirect semimetal with a negative indirect
band gap (not a topological Dirac semimetal) owing to the
uncertainly occupied �−

7 state with respect to the unknown
Fermi energy [6]. For s-Sn on Ge in Fig. 3(d), the large

FIG. 4. The calculated energy differences of �−
7 − �+

8 , L+
6 − �+

8 ,
�+∗

8 − �+
8 , and �+

7 − �+
8 of s-Ge1−xSnx on Ge as a function of Sn

content as compared with the reported experimental data [46,47]. A
semiconductor to indirect semimetal transition is found at x > 43%
and the band inversion at the zone center occurs at x > 47%. The
opening gap at the zone center changes from �+

8 − �−
7 to �+

8 − �+∗
8

at x ∼ 68%.

compressive strain (∼−12.8%) moves the �+∗
8 state upwards

beyond the �−
7 state. However, the conduction band edges

remain at the L+
6 states. Moreover, the Dirac points are along

the [001] direction, not along the [100] or [010] direction
on the compressively strained plane, which is consistent with
a previous report [45]. Without the energy dependence the
Vnloc term for the core states, the symmetries allow for the
occurrences of band inversion and the Dirac point even though
there is a loss of accuracy in energy. The coexistence of band
inversion and a Dirac point in s-Ge0.4Sn0.6 on Ge without Vnloc

is shown in Fig. 3(c).
Figure 4 shows detailed phase transitions in s-Ge1−xSnx on

Ge as a function of Sn content. The calculated energies, EgL,
�+∗

8 − �+
8 , and �+

7 − �+
8 , of s-Ge1−xSnx on Ge are consistent

with reported experimental data [46,47] at low Sn content.
For 0 � x � 30%, Eg� decreases faster than EgL. As a result,
the energy difference Eg� − EgL decreases with increasing
Sn content. However, no crossover point is found because
the increasing biaxial compressive strain with increasing Sn
content moves the �−

7 state upwards as compared to the L+
6

states, and thus the difference (Eg� − EgL) increases again
for x >∼ 30%. An indirect semimetal with a negative indirect
band gap, L+

6 − �+
8 , occurs for x > 43%. The band inversion

at the zone center is found for x > 47%, and the opening gap
at the zone center changes from �+

8 − �−
7 to �+

8 − �+∗
8 at

x ∼ 68% due to the upward movement of �+∗
8 energy beyond

the �−
7 state with increasing biaxial compressive strain.

In order to form a topological Dirac semimetal in
s-Ge1−xSnx , the biaxial compressive strain should be smaller
than that of s-Ge1−xSnx on Ge to make the energy of
the L+

6 states in Figs. 3(b) and 3(c) beyond the �+
8 state.

In this case, the Fermi energy lies in the middle of the
Dirac points to ensure the occupied �−

7 state [3,6]. In the
phase diagram defined by the Sn content (0 � x � 1) and
biaxial compressive strain (0.1% � |ε||| � 3.5%) [Fig. 5(a)],
the semiconductor/topological Dirac semimetal transition for
s-Ge1−xSnx is found in the Sn content range of 41%–60%
[the red line in Fig. 5(a)]. For the semiconductor phase, the
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FIG. 5. (a) The phase diagram as a function of Sn content (0 � x � 1) and biaxial compressive strain (0.1% � |ε||| � 3.5%). The red line
indicates the phase transition between the direct-gap semiconductor and topological Dirac semimetal. The black dashed lines distinguish the
three regions for the fundamental band gap (Eg
x , EgL, and Eg�) of the semiconductor. The white dashed line distinguishes the two regions
for the opening gap (�+

8 − �+∗
8 and �+

8 − �−
7 ) at the zone center of the topological Dirac semimetal. The band structure on the k||-kz plane has

one pair of three-dimensional Dirac cones located along the kz direction for s-Ge0.4Sn0.6 with (b) the biaxial compressive strain (ε||) of −0.5%
and (c) the biaxial compressive strain (ε||) of −3%. The opening gap in (b) is �+

8 − �+∗
8 , while the opening gap in (c) is �+

8 − �−
7 .

fundamental band gap has three distinct regions for Eg
x , EgL,
and Eg� . Note that the conduction band minima at 
 points are
split into the fourfold (2
x and 2
y) and twofold (2
z) valley
degeneracies under biaxial compressive strain and the fourfold
has lower energy than the twofold. The band structures on the
k||-kz plane of s-Ge0.4Sn0.6 with a biaxial compressive strain
(ε||) of −0.5% and −3% show one pair of three-dimensional
Dirac cones along the kz direction [Figs. 5(b) and 5(c)] and the
band inversion at the zone center. Note that the k|| direction
refers to the kx [100] or ky [010] axis perpendicular to the kz

[001] direction. The nonzero Z2 topological invariants in the
kz = 0 plane of s-Ge0.4Sn0.6 with ε|| = −0.5% and −3% are
also confirmed by the parity eigenvalues of the four occupied
bands using our EPM. This is classified as a topological Dirac
semimetal. [4] In addition, the effective Hamiltonian for the
Dirac fermion [4] is used to obtain the velocity along the k||
direction of 8.35 × 106 and 1.45 × 107 cm2/s for s-Ge0.4Sn0.6

with ε|| = −0.5% and −3%, respectively. The opening gap at
the zone center of the topological Dirac semimetal changes

from �+
8 − �+∗

8 to �+
8 − �−

7 [the white dashed line in Fig. 5(a)]
with increasing biaxial compressive strain due to the �−

7 energy
beyond the �+∗

8 state under high strain level.
Semiconductors with a direct or indirect band gap, indirect

semimetals with a negative indirect band gap, topological
semimetals, and topological Dirac semimetals are found in
Ge1−xSnx alloy systems by band-structure calculations using
nonlocal EPM. The Sn content and strain level determine
the phase of Ge1−xSnx . The existence of diverse phases in
Ge1−xSnx alloys has encouraged the exploration of possible
phenomena such as chirality, and applications of GeSn
alloys.
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