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Ladder physics in the spin fermion model
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A link is established between the spin fermion (SF) model of the cuprates and the approach based on the
analogy between the physics of doped Mott insulators in two dimensions and the physics of fermionic ladders.
This enables one to use nonperturbative results derived for fermionic ladders to move beyond the large-N
approximation in the SF model. It is shown that the paramagnon exchange postulated in the SF model has exactly
the right form to facilitate the emergence of the fully gapped d-Mott state in the region of the Brillouin zone at
the hot spots of the Fermi surface. Hence, the SF model provides an adequate description of the pseudogap.
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Introduction. The purpose of this Rapid Communication is
(i) to establish a link between two successful phenomenolog-
ical descriptions of the underdoped cuprates and (ii) to use
it to obtain some different results. One description is based
on the spin fermion (SF) model [1]; the other one is based
on the analogy between the cuprate physics and the physics
of fermionic ladders. Both approaches have been successful
in describing different aspects of the cuprate physics. The SF
model provides a natural platform for the description of the
complicated phase diagram of the cuprates (see, for example,
Ref. [2], and references therein). The merit of the ladder
description, on the other hand, lies in its treatment of the
pseudogap. In this approach, the formation of a pseudogap
does not require any translational symmetry breaking, which
is consistent with the experiments [3–5]. The ladder analogy
was first put forward by Dagotto and Rice [6]; insights
from the models of coupled ladders [7] eventually led to the
popular expression for the single-electron Green’s function
[the so-called Yang-Rice-Zhang (YRZ) expression] [8].

The SF model describes electrons interacting with soft
paramagnons in the vicinity of an antiferromagnetic quantum
critical point (AF QCP). The strongest correlations are
concentrated in the regions of the Fermi surface connected
by the antiferromagnetic wave vectors Q = (±π,±π ) (hot
spots). The low-energy degrees of freedom are collective
magnetic excitations and quasiparticles with a large Fermi
surface. The model was conceived as phenomenological, but
similar descriptions can be obtained from microscopic models,
such as the model of weakly coupled Hubbard ladders [9] or
the two-dimensional Hubbard model using dynamical mean
field theory (DMFT) [10]. Below, I will demonstrate that the
ladder physics is contained in the SF model. The effective
dimensionality reduction related to the ladder physics is
facilitated by the long-range exchange interaction mediated
by the paramagnons.

The Hamiltonian of the SF model is

H =
∑

k

ε(k)ψ+
σ (k)ψσ (k) + g

∑
k,q

ψ+(k + q)σψ(k)S(q)

+
∑

q

1

2
S(−q)χ−1(q)S(q),

χ−1(q) = χ−1
0 [ξ 2(Q − q)2 + 1]. (1)

It has been shown that the frequency dependence of the spin
susceptibility χ is generated by the quasiparticles and does not
need to be included in the bare action [1].

In the standard approach, the spin fermion coupling is
considered as a perturbation which generates significant effects
only near the spots on the Fermi surface (FS) connected by the
Q vector. The pieces of FS connected by the Q vectors are not
nested. For the most recent applications of this approach, one
can consult Ref. [2].

Ladder model approach. In this Rapid Communication,
I will follow a different approach. I will assume that the spin
fermion coupling is sufficiently strong and take as a starting
point the FS which is nested at the hot spots. If the spectral gaps
generated by the interaction are sufficiently large, then one can
treat the deviation from the nesting as a perturbation. One can
also speculate that the strong interactions will modify the shape
of the Fermi surface to stabilize nesting to take advantage of
the gap opening, as it happens in the commensurate antiferro-
magnetic state in Cr alloys [11] (see Fig. 1 and also Ref. [12]).

As I have stated above, due to the singular character of
the spin-spin interaction, strong correlations occur only in the
vicinity of the hot spots. The eight spots are divided into two
quartets; in one quartet the spots from the opposite sides of the
FS are connected by the wave vector (π,π ) and in the other by
the wave vector (π,−π ). To the first approximation, these two
groups of hot spots can be considered independently.

It is convenient to use a tomographic projection and to
introduce the operators

Ra(x) = 1√
2π

∫
ψ

(
ka

R + k‖e
)
eik‖x,

La(x) = 1√
2π

∫
ψ

(
ka

L + k‖e
)
eik‖x, (2)

where ka
R,L a = ±1 are coordinates of the hot sports in

momentum space and e = (1,1)/
√

2. Then, after integration
over the spin variables, we obtain the following Hamiltonian
density, describing the vicinity of the hot spots:

H = ivF

∑
a=±1,σ=±1/2

(−R+
aσ ∂xRaσ + L+

aσ ∂xLaσ ) + V,

V = −γ
∑
a=±1

(R+
a σLa+L+

a σRa)
∑
b=±1

(R+
b σLb+L+

b σRb),

γ = rg2χ0, r ∼ ξ−1. (3)
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FIG. 1. A sketch of a part of the Fermi surface with four hot spots.
The dashed curves correspond to the Fermi surface of noninteracting
electrons. It is energetically advantageous for the interactions to
deform the Fermi surface by making it flat at the hot spots to facilitate
nesting of the opposite parts of the FS (drawn by the solid lines). The
right (left) moving fermions are located near the flat portions of
the Fermi surface and are marked by R1,R−1 (L1,L−1). Hot spots
with the same number are connected by the wave vector (π,π ). The
ones connected by (π,−π ) are not shown. The line with an arrow
corresponds to the coordinate axis of x.

There is a similar Hamiltonian for the quartet of hot spots con-
nected by the wave vector (π,−π ). To the first approximation,
these two groups of hot spots can be considered independently.

The form of the interaction (3) has the form used in
the models of half-filled ladders. These models have been
thoroughly studied using nonperturbative methods. Hence,
we can go beyond the standard large-N (N is the number
of hot spots) approach. The symmetry of the model is
U (1)×U (1)×SU(2)×Z2. The U (1) symmetries refer to the
charge conservation inside of every patch, the SU(2) symmetry
refers to spin, and the Z2 symmetry refers to the fact
that the patches can be interchanged. The renormalization
group (RG) calculations demonstrate [13,14] that this original
symmetry increases dynamically when the model scales to
strong coupling such that at low energies the maximally
allowed symmetry, namely, the O(8) symmetry, emerges.
The O(8)-symmetric Gross-Neveu (GN) model is exactly
solvable [15], which allows one to extract a great deal of
information. When the bare coupling γ is not small, the
symmetry becomes approximate, but many statements remain
valid on a qualitative level [16]. It is particularly important
for us that, as was established in Refs. [14,17,18], that
the symmetry itself does not uniquely fix the ground state
properties of the model. This is related to the fact that there
are transformations of the Hamiltonian which do not change
the excitation spectrum, but do change the observables. In
Ref. [18] it was established that these transformations are
automorphisms of the O(8) group. As a consequence, the phase

diagram of the ladder includes different phases, some of which
are favorable for superconductivity, and some are not (see the
discussion in Ref. [19] and in the Supplemental Material [20]).
To find out to what part of the phase diagram the interaction
scales requires a certain analysis.

The interaction (3) is divided into two parts: inside of a hot
spot (labeled by indices ±1) and between the spots. For the
former ones we have

V11 + V−1,−1

= γ
∑
a=±1

[L+
σ LσR+

σ ′Rσ ′ + 3(R+
σ R+

σ ′Lσ ′Lσ + H.c.)

− (L+σL)(R+σR)]a. (4)

This part of the interaction contains the umklapp processes
which are responsible for the Mott physics. The interaction
between the spots resembles the interchain exchange in the
ladder model with no interchain tunneling, studied in Ref. [21]:

V1,−1 = −γ

∫
dxS1(x)S−1(x). (5)

We bosonize the model using the standard notations,

Rpσ = ηpσ√
2πa0

exp[−i(ϕc + pϕf + σϕs + pσϕsf )],

(6)
Lpσ = ηpσ√

2πa0
exp[i(ϕ̄c + pϕ̄f + σ ϕ̄s + pσ ϕ̄sf )],

where a0 is the lattice constant, p = ±1, σ = ±1, and

{ηa,ηb} = 2δab (7)

are Klein factors, and ϕa,ϕ̄a are chiral bosonic fields
with commutation relations [ϕ(x),ϕ(y)] = −(i/4)sgn(x − y),
[ϕ̄(x),ϕ̄(y)] = (i/4)sgn(x − y), [ϕ(x),ϕ̄(y)] = −i/4. Then
we have

V1,−1 = iγ

πa0
(cos

√
4πc + cos

√
4πf )

(
ξRξL − 3ξ 0

Rξ 0
L

)
.

(8)

The easiest way to see the difference between the phases is
to rewrite the model in terms of Majorana fermions (see the
Supplemental Material [20] for details). The ones in the spin
sector are defined as

ξ 1
R = ξ

cos(
√

4πϕs)√
2πa0

, ξ 2
R = ξ

sin(
√

4πϕs)√
2πa0

,

(9)

ξ 3
R = η

cos(
√

4πϕsf )√
2πa0

, ξ 0
R = η

sin(
√

4πϕsf )√
2πa0

,

where {ξ,η} = 0, ξ 2 = η2 = 1 are Klein factors. Together
with the Majoranas from the charge sector which are made
from the chiral components of c,f , they comprise an octet
of Majorana fermions transforming according to the vector
representation of the O(8) group. The original fermions and
their antiparticles transform according to irreducible spinor
representations of the group. As is clear from a comparison
of (6) and (9), the two groups of the fermions are nonlocal
with respect to each other. However, the introduction of
the Majoranas simplifies the Hamiltonian, reducing it to the
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Gross-Neveu model form (we set vF = 1),

L =
∑

a=c,f

(1 + γ /π )(∂μa)2 + V

+ 1

2

3∑
a=0

[
ξa
R(∂τ − i∂x)ξa

R + ξa
L(∂τ + i∂x)ξa

L

]
,

V = γ

[
− 3

2(πa0)2
cos(

√
4πc) cos(

√
4πf )

+ i

(πa0)
(cos

√
4πc + cos

√
4πf )

(
ξRξL − 3ξ 0

Rξ 0
L

)

− (
ξRξL + ξ 0

Rξ 0
L

)2
]
. (10)

Here, I decided to leave the charge sector in the bosonic form,
which makes it easier to operate with the order parameters.
This form is manifestly U (1)×U (1)×SU(2)×Z2 symmetric.
Two bosonic fields c,f describe the charge sector. The spin
sector is described by the four Majorana fermions, three of
which transform according to the triplet and one according
to the singlet representations of the SU(2) group. The Z2

symmetry is realized as the invariance of the Lagrangian under
a sign change of all Majorana fermions. The renormalization
group calculations indicate that the interaction scales to strong
coupling where it becomes O(8) symmetric. During the flow
the coupling at the last term changes sign. The most important
fact is that the signs of the cross terms in the interaction,
the ones which include Ms = i(ξRξL) and Msf = iξ 0

Rξ 0
L, do

not change under RG. This is because these signs determine
the character of the ground state, as explained below (see
Refs. [19,20]).

The order parameter. Below, I will argue that the para-
magnon exchange postulated by the SF model drives the
system exactly into the ground state of the d-Mott phase [14].
This is important since this phase is “pregnant” with d-wave
superconductivity and it turns out that the SF model has the
right form of the interaction for this. Indeed, the corresponding
order parameter (OP),

�d = R1↑L2↓ − R2↑L1↓ − R1↓L2↑ + R2↓L1↑ = Aei
√

π�c ,

A = [− cos(
√

πf )σ1σ2σ3μ0 + i sin(
√

πf )μ1μ2μ3σ0],

(11)

has a finite amplitude. Indeed, this OP can be conveniently
factorized into the exponent of the dual charge field �c, whose
average is always zero in the Mott phase, and the amplitude A.
The amplitude has a vacuum average—that is what I mean by
the d-Mott phase being pregnant with the superconductivity.
The latter one will emerge when the chemical potential will
exceed a half of the cooperon gap so that the field �c becomes
gapless. To make sure that the above description is correct,
let us consider the amplitude more closely. From (10) we see
that the vacuum of the theory corresponds to c = f = 0 or
c = f = √

π/2. The mass of Majorana fermions changes
its sign when the fields interpolate from one vacuum to another.
In the first vacuum we have 〈σa〉 (a = 1,2,3), 〈μ0〉 
= 0,
and in the second one 〈μa〉 (a = 1,2,3), 〈σ0〉 
= 0 (see the
Supplemental Material [20]). Hence, the vacuum average of
the amplitude is never zero.

Now recall that the Gross-Neveu model (10) scales to
strong coupling and its spectrum is entirely gapped. The exact
solution of the O(8)-symmetric model yields the spectrum
which contains quasiparticles with quantum numbers of the
electron (charge ±e, spin ± 1

2 , and chain index ±1) and eight
Majorana fermions transforming in the vector representation
of the group. Among the latter ones are particle-particle bound
states with momentum zero and charge ±2e (cooperons).
According to Konik and Ludwig [17], the correlation function
of the OPs (11) in the d-Mott phase contains a pole, so the
cooperons are coherent excitations. There are also particle-
hole bound states spin density waves (SDWs) which carry
momentum (π,π ).

The spectral gaps in the ladder are formed as a consequence
of discrete symmetry breaking which occurs at T = 0. In the
d-Mott phase this symmetry is not a translational one. The
quasiparticle excitations are kinks, which interpolate between
different degenerate ground states. At finite temperature the
density of the kinks is finite and the spectral gaps are gradually
filled by the thermal fluctuations. This picture corresponds to
a gradual filling of the pseudogap, observed in angle-resolved
photoemission spectroscopy (ARPES) experiments such as
Ref. [3].

Excitations. The correlation functions of the d-Mott phase
were studied by Konik and Ludwig [17]. For instance, the
single-particle Green’s function is

Gq = iω + εq(k)

ω2 + ε2
q (k) + �2(q)

, (12)

where k is perpendicular and q is along the FS. The perturba-
tion (the deviation of the actual FS from the flat one) is just a
q-dependent chemical potential, so it must be added to
iω: iω → iω + δε(q,k). This makes the resulting Green’s
function to more closely resemble the YRZ form, although
not quite. The applicability of our ladder approximation
is restricted by the region of the FS where the chemical
potential lies inside the gap, although this statement requires
a correction.

As I pointed out above, alongside the single-particle
excitations whose spectra are determined by the poles of (12),
the GN model also has collective excitations transforming
according to the vector representation of the O(8) group.
One of these excitations is the cooperon, a bound state of
two electrons (holes) with momentum 0. Its spectrum lies
below the two-particle continuum, and therefore the cooperon
energy will vanish before the single-particle gap is closed. This
means that within the current scenario the superconductivity
originates from the areas of momentum space close to the tips
of the FS pockets. The mechanism is cooperon condensation,
as was suggested in Ref. [7]. Another excitation (also gapped)
is a coherent spin-1 magnetic excitation centered at (π,π )
which can be identified with the upper part of the “hour-
glass” spectrum of magnetic excitations (see, for instance,
Ref. [22]).

In summary, by adopting a hypothesis that the interactions
modify the Fermi surface around the hot spots to generate
nesting, I demonstrated that the spin fermion model describes
the d-Mott phase physics near the hot spots. This result
brings together two successful phenomenological approaches.

201112-3



RAPID COMMUNICATIONS

A. M. TSVELIK PHYSICAL REVIEW B 95, 201112(R) (2017)

It also explains the mechanism of the pseudogap formation:
The Fermi surface near the hot spots is truncated without
translational invariance breaking.
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