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Time-reversal and rotation symmetry breaking superconductivity in Dirac materials
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We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where
pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive
interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic
dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a
condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments.
We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl
nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on
NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic
moments.
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Introduction. One of the most fascinating aspects of un-
conventional superconductivity is that the condensate can dis-
play spontaneous time-reversal symmetry breaking (TRSB),
hosting an intrinsic Cooper pair magnetization [1,2]. This
can occur only with a multicomponent order parameter when
the different components develop relative phases, as in the
well-known p + ip chiral state proposed for Sr2RuO4 or the
d + id state conjectured for some cuprate superconductors
[1]. Experimental evidence of TRSB superconductivity has
been obtained from muon spin rotation (μSR) in UPt3
[3] and Sr2RuO4 [4], from the polar Kerr effect [5], and
from Josephson tunneling experiments. The two-dimensional
p + ip state in particular has attracted great interest as a
topological superconductor with protected edge and vortex
modes, of potential use in the field of quantum computation
[6,7]. In three dimensions, chiral superconductivity (SC) is also
possible, allowing the realization of a Weyl superconductor
with Majorana arcs on the surface [8–10], but realistic
candidate materials for this superconducting state are lacking.

Recently, very compelling evidence for unconventional
superconductivity has been reported in Dirac materials of
the Bi2Se3 family upon doping [7,11,12]. These studies were
originally motivated by the prediction of a three-dimensional,
time-reversal invariant (TRI) topological superconductor fea-
turing protected Andreev surface states [13]. However, the rich
phenomenology gathered so far suggests a more complicated
pairing scenario. Superconductivity was first observed in
CuxBi2Se3 [14–16], but evidence for the characteristic surface
Andreev states has remained controversial [17–19]. Moreover,
nuclear magnetic resonance experiments [20] reveal that there
is spin rotation symmetry breaking in the superconducting
state, which rather supports a different pairing state of a
nematic type [21,22]. Superconductivity was also reported
in SrxBi2Se3 [23,24] and in TlxBi2Te3 [25], but evidence
for unconventional pairing is lacking. Most interestingly,
superconductivity has also been reported in NbxBi2Se3 [26],
where initially paramagnetic samples were shown to develop a
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spontaneous magnetization at the superconducting transition.
The magnetization survived only at the surface in the Meissner
state, and it was claimed to originate from Nb magnetic
moments. In the same compound, a later torque magnetometry
experiment [27] showed clear signatures of rotation symmetry
breaking, and penetration depth measurements revealed a
power law dependence with temperature [28] which points
to the existence of nodes in the gap.

This complicated phenomenology is perhaps best under-
stood within the minimal model of a superconducting Dirac
Hamiltonian with approximate rotation symmetry, where there
are only three possible pairing channels: a conventional
s-wave scalar, an odd-parity pseudoscalar, and a vector.
The pseudoscalar order parameter χ corresponds to the TRI
topological superconductor, while rotation symmetry breaking
can only be produced by the vector ψ . The condensation of ψ

is therefore a prerequisite to explain current experiments, but
it has previously been shown that with only local interactions
the χ channel always has a higher critical temperature than
the ψ channel [13]. In addition, even if χ could be ignored,
ψ remains time-reversal symmetric within current models
[21,29]. These two problems make the explanation of the
observed phenomenology a theoretical challenge.

Motivated by recent experiments, in this Rapid Communi-
cation we develop a theory of possible TRSB superconducting
phases of doped Dirac Hamiltonians in the presence of
magnetic impurities. We first show that when further neighbor
electron-electron interactions are included, the critical temper-
ature of ψ is raised and can become comparable to that of χ ,
providing a solution to the first problem. The closeness of the
critical temperatures enables different mixed symmetry phases
where both order parameters can condense simultaneously,
similar to s + id states predicted in high-Tc superconductors
[30–32]. We then develop a theory for these mixed phases,
showing that the coupling of magnetic impurities, which would
otherwise be paramagnetic, to the magnetization of the Cooper
pairs [33–36] favors the condensation of TRSB phases and the
consequent ordering of the magnetic impurities. We find three
mixed TRSB phases that differ in the way rotation and gauge
symmetries are broken and can be distinguished by their bulk
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spectrum, which may be gapped or feature Weyl nodes or
nodal lines, or by the existence of surface states. We find a
phase that is consistent with the surface magnetization [26],
rotation symmetry breaking [27], and the existence of linear
nodes [28].

Superconductivity in Dirac materials. We now consider the
possible superconducting instabilities of Dirac Hamiltonians.
To make contact with previous work, we start with the
Hamiltonian commonly employed to describe Bi2Se3 [13],

H0 = mσx + vσz(kxsy − kysx) + vzkzσy, (1)

where si are spin Pauli matrices and σi are Pauli matrices
for pz orbitals in the top and bottom layer of the quintuple
layer (QL) Bi2Se3 structure, v is the Fermi velocity, and m the
insulating mass. The time-reversal operator is T = isyK , with
K the complex conjugation. When vz = v, this Hamiltonian is
a particular realization of the isotropic Dirac Hamiltonian of
the form

H0 = γ0m + vγ0γiki, (2)

where the Euclidean gamma matrices γμ = (γ0,γi) satisfy
[γμ,γν]+ = Iμν and are given by γμ = (σx, − σysy,σysx,σz).
Here, we will preferentially use the general Dirac matrices to
emphasize the structure of the rotation group: γi transforms
as a vector, γ0 as a scalar, and the matrix γ5 ≡ γ0γ1γ2γ3 as a
pseudoscalar.

To classify the possible pairing channels, we introduce

the Nambu spinor �k = (c†k,isyc−k)
T

, with ck fermionic
annihilation operators of H0, and consider the Bogoliubov–de
Gennes Hamiltonian Ĥ = 1

2

∫
dk�

†
kHk�k, with

Hk = [H0(k) − μ]τz + �kτ+ + �
†
kτ−, (3)

where μ is the chemical potential, �k stands for generic
momentum-dependent 4 × 4 pairing matrices, and τi Pauli
matrices act in the particle-hole space. The Nambu construc-
tion imposes the charge conjugation symmetry C implemented
as UCH(−k)∗U †

C = −H(k), with UC = syτy , which amounts
to the restriction sy�

∗(−k)sy = �(k). If pairing is momentum
independent [13,37], only six possible matrices in the Dirac
algebra satisfy this constraint: the two even-parity scalars I

and γ 0, and the pseudoscalar γ 5 and the vector γ i , which are
both odd under parity. Disregarding the even-parity scalars,
the pairing matrix takes the form � = χγ 5 + ψ · γ . For the
specific model of Bi2Se3, it was concluded that the local
interorbital interaction V can give rise to pairing in both
of these channels, but the critical temperatures of the two
channels satisfy Tχ � Tψ [13], which makes it unlikely for the
system to condense in the vector channel as stated previously.

We suggest that this problem can be solved by considering
momentum-dependent corrections to the two-body interorbital
density-density interaction. At lowest order in q = k − k′, one
has

V (k,k′) = V (1 + a2k · k′), (4)

with a a length scale on order of the lattice constant. In order
to decouple the additional momentum-dependent interaction
term we need to consider the other ten matrices in the Dirac

algebra [38]. In particular, we note that that pairing matrix
γ 5γ ikj εijk is also a vector, and it modifies the gap matrix as

�k = χγ 5 + ψ · (γ − iaγ 5γ × k). (5)

It is instructive to project the 4 × 4 Dirac matrices into the
2 × 2 space of the Kramers degenerate conduction band states
relevant to pairing [29]. If we define Pauli matrices s̃i for this
space, the gap matrix takes the form �k = χ k̃ · s̃ + ψ × k̃ ·
s̃(1 + μa/v), with k̃ = vk/μ. Thus, while seemingly of higher
order in the Dirac Hamiltonian, the correction term is actually
of the same order when projected to the Fermi surface. The
momentum dependence of the pairing interaction affects only
the vector channel and it raises its critical temperature Tψ ,
which becomes comparable to Tχ [38].

Ginzburg-Landau free energy. We now consider supercon-
ductivity at the level of the Ginzburg-Landau (GL) free energy.
The pseudoscalar order parameter free energy is

Fχ = a1|χ |2 + b1|χ |4 (6)

and condensation of χ takes place when a1(Tχ ) = 0. For the
vector order parameter ψ , symmetry dictates that the form of
the free energy be [39,40]

Fψ = a2|ψ |2 + b2|ψ |4 + b′
2|ψ × ψ∗|2. (7)

The vector representation admits two possible superconduct-
ing states: a nematic state ψ ∝ (1,0,0) which is time-reversal
invariant, and a chiral TRSB state ψ ∝ (1, ± i,0) [21,29].
The sign of the coupling b′

2 determines whether the vector
representation chooses the nematic (for b′

2 > 0) or the chiral
state (for b′

2 < 0). Since at second order no coupling is allowed
by symmetry between χ and ψ , the condensation of ψ takes
place when a2(Tψ ) = 0. However, our previous argument
suggesting that a1 ∼ a2 [38] and Tχ ∼ Tψ requires that we
study a coupled theory beyond second order where both order
parameters may coexist. At fourth order the coupling term in
the GL free energy reads

Fψ,χ = d1|χ |2|ψ |2 + d2|χ∗ψ − χψ∗|2, (8)

and the total free energy is

F = Fχ + Fψ + Fχ,ψ . (9)

In the weak coupling regime with a1 ∼ a2 both order parame-
ters acquire a finite value.

The possible TRSB phases arising from this free energy
are characterized by a magnetization of the condensate, due
to the spin triplet state of the Cooper pairs. By symmetry, the
magnetization must be built with gauge invariant combinations
of order parameters and transform as a spin, i.e., as a T -
odd pseudovector (even under inversion). Since ψ is a vector
and χ a pseudoscalar, the following combinations satisfy the
symmetry requirements,

�1 = χψ∗ − χ∗ψ, �2 = ψ × ψ∗.

Note that �1 cannot be built with a standard s-wave order
parameter because the combination would not be a pseu-
dovector. These two pseudovectors are orthogonal and appear
quadratically in the GL Eqs. (7) and (8).

The different possible phases obtained from the GL free en-
ergy Eq. (9) are realized with different signs of the interaction
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FIG. 1. Phase diagram of superconductivity involving the pseu-
doscalar and the vector order parameters coupled to the dopants’
magnetization. The four possible phases can be obtained by properly
tuning the couplings J1 and J2.

parameters b′
2 and d2 and can be distinguished by the values

of �1 and �2 and the way rotation and gauge symmetries are
broken. For d2,b

′
2 > 0, one has �1 = �2 = 0 and the system

is in the TRI nematic phase, with rotation symmetry about the
nematic director. When d2 < 0 and b′

2 > 0, one has �1 �= 0
and �2 = 0, and the system is invariant under rotations about
�1. We name this phase TRSB 1. When d2,b

′
2 < 0, one has

�2 �= 0, and the system is in the chiral phase, with ψ ∝ (1,i,0).
In this case the system is invariant under rotations around �2

combined with a gauge transformation [38]. Finally, when
d2 > 0 and b′

2 < 0, one has �2 �= 0, but ψ is not in the purely
chiral state, but rather in a hybrid solution [38] which has no
symmetry. We name this phase TRSB 2.

A schematic phase diagram as a function of b′
2 and d2 is

depicted in Fig. 1. Microscopic calculations [21,29,38] show
that for an isotropic model b′

2,d2 > 0, precluding a TRSB
phase. We show next how a coupling to magnetic dopants
renormalizes the coefficients b′

2 and d2 and can change their
sign if the coupling is strong enough.

Coupling to dopant magnetization. The presence of random
magnetic moments in the sample can be described by an
average magnetization M. At the Landau theory level, both
�1 and �2 can couple linearly to M [33–36], which is also a
T -odd pseudovector,

Fχ,ψ,M = iM · [c1(χψ∗ − χ∗ψ) + c2ψ × ψ∗]. (10)

By appropriately aligning M, we see that the system may
lower its energy by condensing in a TRSB phase with finite
condensate magnetizations.

Neglecting interactions between the magnetic moments,
the full free energy at second order in M including the
superconducting order parameters reads

F = a3|M|2 + Fχ + Fψ + Fχ,ψ + Fχ,ψ,M. (11)

Since the dopants are paramagnetic above Tc, we assume
a3 > 0. The mean-field solution for M can be found by
minimizing the free energy with respect to M, finding M =
−i c1

2a3
�1 − i c2

2a3
�2. It is clear that a nonzero magnetization M

arises in all TRSB phases, despite the fact that the dopants are
initially paramagnetic. Substituting the mean-field value of the
magnetization, the free energy takes the form of Eq. (9) with

modified parameters

d2 → d2 − c2
1

4a3
, b′

2 → b′
2 − c2

2

4a3
. (12)

Since the coupling to magnetic dopants renormalizes both b′
2

and d2, with different values of c1 and c2 one can now span the
entire phase diagram in Fig. 1.

Meissner screening. The presence of the magnetic dopants
induces the condensation of a TRSB phase where the dopants’
moments are aligned with the spin magnetization of the
condensate. The resulting total spin magnetization Ms = M +
iμ(�1 + �2) acts back onto the orbital degrees of freedom and
the GL free energy is [41,42]

F =
∫

dr
[
F + B2

8π
− B · Ms + F

grad
χ,ψ,M

]
, (13)

where B is the full induction field and F grad accounts for
gradient terms for the order parameters [38]. For finite Ms

the system may develop screening supercurrents, so that B =
H + 4π (Ms + Mo), with Mo the orbital magnetization due to
screening currents, and H an external field. For H = 0, the
order parameters in the bulk can be taken to be constant, so
that B = 0 by Meissner screening, provided that Ms < Hcr,
with Hcr the thermodynamic critical field [38,41]. Since Ms is
linked to the mean-field value of χ and ψ , for a1 ∼ a2 the ratio
Ms/Hcr is temperature independent and it is suppressed by
strong b1 and b2. At the surface of the system the cancellation
between spin and orbital magnetization is not satisfied locally,
due to difference in the coherence length, penetration depth,
and the length scale of variation of M, and a finite surface
magnetization may arise, in agreement with the observations
of Ref. [26].

Microscopic coupling. The coupling Eq. (10) and the
resulting phase diagram is generic of a SO(3) invariant theory.
The only symmetry allowed microscopic coupling must be
written in terms of the spin pseudovectors S‖ ≡ (sx,sy,σxsz)
and S⊥ ≡ (σxsx,σxsy,sz) [38],

HZ = J1M · S‖ + J2M · S⊥. (14)

The coefficients c1 and c2 can be derived microscopically
from this coupling, and doing so reveals the constraint
c1(J1m/μ + J2) = 2c2(J1 + J2m/μ) [38]. All phases in Fig. 1
can therefore be realized by properly tuning J1, J2, and m/μ.
In Bi2Se3, the SO(3) symmetry breaks down to the lattice
point group D3d when anisotropy corrections are included [13].
The vector ψ = (ψx,ψy,ψz) splits into two-component Eu ∼
(−ψy,ψx) and one-component A2u ∼ ψz representations. The
pseudoscalar χ corresponds to the A1u representation. A
microscopic coupling between the magnetic moments and the
physical spin s of the electrons in Bi2Se3 can be written in terms
of a Zeeman coupling HZ = −J (sxMx + syMy) − JzszMz,
with J �= Jz the anisotropic Zeeman coupling constants. The
resulting phase diagram remains qualitatively very similar to
the SO(3) invariant one [38].

Gap structure. The value of the superconducting gap on the
Fermi surface for the different phases depends on the relative
strength of the two order parameters. When χ dominates
all phases are fully gapped, but different cases arise if ψ

dominates. In the nematic case the gap has Dirac nodes along
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FIG. 2. Schematics of the gap structure on the Fermi surface:
TRSB 1 has Dirac nodes that evolve in a nodal line for χ > 0. TRSB
2 and the chiral phase have Weyl points with C = 2 that split in two
C = 1 upon switching χ . The phases are fully gapped for χ > ψ .

the nematic direction for χ = 0. These nodes can be gapped
by a small χ or by hexagonal warping terms [21], so that
in general the phase is fully gapped. In the TRSB 1 phase
the order parameters may be taken as ψ = ψ0(1,0,0) and
χ = χ0e

iγ and that the Dirac nodes for χ = 0 can be shown
to become circular nodal lines defined by sin θ = ±χ0/ψ0,
with θ the polar angle with respect to �1. Nodal lines of
the north and south hemisphere join for χ = ψ and become
gapped for χ > ψ (see Fig. 2). These nodal lines have a linear
density of states (DOS) ρ(ε) ∝ ε [43]. In the chiral and the
TRSB 2 phase a Weyl superconductor is realized [8–10,29].
For χ = 0 there are Weyl nodes of topological charge C = ±2
on the north and south pole along the direction of �2 [44]. For
finite χ these nodes are split into two Weyl nodes of C = 1
at a finite polar angle, and in the azimuthal direction given
by �1 and by increasing χ they move towards the equator
where they meet with the nodes from the south hemisphere
and gap out for χ > ψ (see Fig. 2). Note that while the
DOS is linear in energy when χ = 0, ρC=2(ε) ∝ ε, it becomes
quadratic for finite χ , ρC=1(ε) ∝ ε2 [45]. These predictions

could be confirmed by scanning tunneling microscopy (STM)
or specific heat measurements. On the surface of a Weyl
superconductor there are Majorana arcs of different kinds [44],
while in the gapped phases the topologically protected surface
Andreev states associated with χ are gapped on the surfaces
orthogonal to �1.

Discussion and conclusions. The features of the TRSB2
phase predicted in this Rapid Communication are consistent
with all the observations made in recent experiments with
NbxBi2Se3: the breaking of rotation [27] and time-reversal
symmetry [26] and the presence of point nodes [28]. These
conclusions remain valid also if the scalar and vector repre-
sentations are split due to lattice symmetries. In this case, the
lattice will naturally pin the direction of �2 to the c axis, while
�1 will lay in plane, pointing in a high-symmetry direction.
This is enough to reproduce the twofold pattern observed
in torque magnetometry. Our work makes the additional
prediction that the magnetization, which can only be observed
in the surface due to Meissner screening, must have both
in-plane and out-of-plane components. The TRSB2 phase also
features linear nodes in the bulk with Chern number C = 1,
consistent with the scaling of the penetration depth. This is
in contrast with the TRI nematic candidate state, which was
argued to be fully gapped in the presence of trigonal warping
[21]. Our work further predicts the positions of the nodes to
lie in the direction of �1, a prediction that could be tested,
for example, with the nodal spectroscopy techniques proposed
in Refs. [46–48]. Finally, our work also provides a general
framework to address current and future experiments with
doped Dirac materials, emphasizing the importance of mixed
symmetry states and coexistence of order parameters.

Note added. Recently, we became aware of Ref. [49], where
magnetic Nb dopants are also considered as the mechanism
that stabilizes chiral superconductivity. This work does not
provide a mechanism for the vector channel to compete
with the pseudoscalar, and no mixed symmetry phases are
considered. The chiral state proposed in Ref. [49] respects C3

rotation symmetry, in contrast with Ref. [27]. The issue of
Meissner screening is also not addressed.
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