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Numerical study of anisotropy in a composite Fermi liquid
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We perform density-matrix renormalization group studies of a two-dimensional electron gas in a high
perpendicular magnetic field and with an anisotropic band mass. At half filling in the lowest Landau level,
such a system is a Fermi liquid of composite fermions. By measuring the Fermi surface of these composite
fermions, we determine a relationship between the anisotropy of composite fermion dispersion αCF and the
original anisotropy αF of the fermion dispersion at zero magnetic field. For systems where the electrons interact
via a Coulomb interaction, we find αCF = √

αF within our numerical accuracy. The same result has been found
concurrently in recent experiments. We also find that the relationship between the anisotropies is dependent on
the form of the electron-electron interaction.

DOI: 10.1103/PhysRevB.95.201104

Two dimensional electron systems at the interface of
semiconductors in strong magnetic fields host a wide variety
of exotic Abelian and non-Abelian gapped fractional quantum
Hall phases [1–3], as well as broken symmetry phases such as
the nematic, Wigner crystal, and bubble phases [4–11]. These
systems have received a lot of interest in the condensed matter
physics community, both because of the elegant mathematical
structure emanating from Landau level physics, and also be-
cause of their ready accessibility under multiple experimental
platforms. Unique among the quantum Hall phases is the gap-
less phase at half filling in the lowest Landau level, identified
as the ‘composite Fermi liquid’ (CFL) [12]. Recently, there has
been a revival of interest [13,14] in the CFL, which has a Fermi
surface, analogous to the Fermi liquid phase at zero field [15].

Much of the theoretical work on this subject has assumed
rotational symmetry, though this symmetry is not central
to the physics of quantum Hall systems. Understanding the
quantum Hall effect in the absence of rotational symmetry
is an active area of research [16–21]. Experimentalists have
been able to break rotational symmetry in several ways,
e.g., by applying parallel magnetic fields [22–24], straining
their samples [25], or doing experiments on materials which
have anisotropic Fermi surfaces in the absence of magnetic
fields, such as many-valley semiconductors [26,27]. It is
therefore very interesting to ask what happens to the various
well-understood states of matter when rotational symmetry
is broken. In this work, we investigate the effect of breaking
rotational symmetry on the gapless composite Fermi liquid
state for a half-filled lowest Landau level.

We focus on a simple case of such rotational symmetry
breaking (used in previous theoretical investigations of gapped
phases [28]), introducing a Fermi surface anisotropy so that
the non-interacting part of the Hamiltonian reads:
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where Ai are components of the vector potential corresponding
to a uniform magnetic field B along the z direction. The
anisotropy of the Fermi contour at zero magnetic field, αF ,
is determined by the ratio of the Fermi wave vectors in

perpendicular directions x and y:
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The Fermi contour achieved in the current experiments [25]
is more complicated than the elliptical one represented by the
above Hamiltonian; nevertheless, we expect the above model
to describe the substantial x-y anisotropy seen in experiment.
To the single particle Hamiltonian of Eq. (1), we add isotropic,
two-body electron-electron interactions, consistent with the
appearance of fractional quantum Hall phases [29].

The physics of the fractional quantum Hall effect can be
described through composite fermions (CFs): bound states
of flux quanta and electrons [3]. An open question is how
the anisotropy of Eq. (2) is related to the corresponding
anisotropy of the composite fermions, denoted αCF . Much
previous work on systems described by Eq. (1) has focused on
the Laughlin ν = 1/3 state. One can write down model states
which have a variational parameter related to the anisotropy,
where Laughlin’s ‘model wavefunction’ corresponds to the
isotropic case [17,18]. Comparing these wavefunctions to
numerical exact diagonalization data allowed a determination
of the relationship between αF and αCF [28], finding an αCF

less anisotropic than αF . This result is in agreement with
subsequent analytical work by Murthy [30]. Other numerical
work has found a transition out of the ν = 1/3 state for
sufficiently large αF [31].

In this work, we study anisotropy at filling fraction ν = 1/2,
where the system realizes a composite Fermi liquid phase.
By computing the anisotropy of the Fermi surface of the
composite fermions, we determine the relationship between
αF and αCF . The CF Fermi surface can also be detected
experimentally [24,32], so unlike in the case for gapped
states we can directly compare our results to experimental
measurements, in particular experiments by the Shayegan
group [25] done concurrently with this work. Since we obtain
results for a realistic, microscopic model at ν = 1/2, our work
is the first study of quantum Hall systems with mass anisotropy
that can be directly compared to experiment.

The numerical techniques used to compute αCF for Laugh-
lin states such as ν = 1/3 do not apply at ν = 1/2, for a
number of reasons. The variational for a CFL has additional
variational parameters representing the shape of the Fermi
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surface [33]. On the finite-size systems accessible numerically,
these variational parameters take discrete values, and cannot
capture small changes in the anisotropy. Since the CFL is
gapless, its energy spectrum is strongly dependent on size,
which makes it more difficult to interpret. In this work we
employ a different numerical technique, infinite density matrix
renormalization group (iDMRG), to study a system on a
cylindrical geometry of finite radius but infinite length. This
technique has been successful in the study of the isotropic
CFL, where a circular Fermi surface was detected [14].

A number of analytical results at ν = 1/2 are available.
Reference [34] used Chern-Simons theory to argue that αCF ∝
αF , a conclusion supported by Ref. [35] where a model wave
function satisfying this relation was proposed. Reference [36]
replaced the realistic Coulomb interaction with a Gaussian
interaction, allowing an analytical calculation of αCF in terms
of αF ; the CFL Fermi surface was found to be less anisotropic
than that of the band at B = 0.

The DMRG techniques used in this work have been de-
scribed elsewhere [14,37], so we provide only a brief summary
here. We work on an infinite cylinder, on a spin-polarized
system projected to the lowest Landau level. The direction
along the cylinder is x, the one around the circumference
is y. DMRG is a variational technique within the ansatz of
‘matrix product states’ (MPS), states with a limited amount of
entanglement entropy. The entanglement entropy is limited by
the bond dimension χ of the MPS. We project to the lowest
Landau level by working in a basis containing only the lowest
energy eigenstates of the Hamiltonian in Eq. (1), which depend
on the anisotropy αF . We increase the bond dimension until
the convergence of our wave functions is no longer the limiting
factor on the accuracy of our results. This is achieved in most
cases for χ between 3000 and 6000.

After obtaining approximate ground states with the DMRG,
we compute the guiding center structure factor:

S(�q) ≡ 〈ρ(�q)ρ(−�q)〉, (3)

where ρ(�q) is electron density in momentum space, as a
function of the wave vector �q. The infinite cylinder geometry
quantizes qy in steps of 2π/Ly , (Ly is the circumference) but
allows qx to take continuous values. Since the density of states
of a Fermi liquid has a singularity at the Fermi wave vector,
S(�q) will also be singular whenever the �q corresponds to a
scattering process between different parts of the Fermi surface.
By computing S(�q) and locating these singularities, we can
determine the shape of the Fermi surface. Since the states
obtained by DMRG are approximations of the true ground
states, these singularities will not be reproduced perfectly;
however, for the numerically accessible bond dimensions χ ,
the singularities are sharp enough that the wave vectors can be
identified with minimal uncertainty [14].

Figure 1 shows an example of how S(�q) allows us to map
out the Fermi surface. In Fig. 1(a) the ellipse represents the
anisotropic Fermi surface we are trying to investigate. The
horizontal gray lines represent the allowed values of momenta
in our cylinder geometry. If we fix qy = 0, the horizontal
arrows represent the values of qx where we expect a singularity
in S(qx,0). We can see such singularities in the data of
Fig. 1(b). As a check, we can find singularities at other values
of qy , corresponding to arrows with a vertical component. This

FIG. 1. Mapping the Fermi surface via the structure factor
S(�q). (a) Fermi sea for the composite fermions at Ly = 17�B and
αF = 0.445. The shaded area represents the 2D Fermi sea in the
planar (Ly → ∞) limit. The gray lines contain allowed values
of �q on the cylinder with finite Ly . Colored arrows show all
possible CF scattering processes between points on the Fermi surface.
(b) Numerical data for S(�q) at the lowest four allowed values of qy ,
with bond dimension χ = 3000. The location of the singularities can
be used to determine the locations of points on the Fermi sea, and
thus the CF anisotropy (αCF = 0.667 in this case). We multiply our
data by eq2/2 (a smooth function of q) to make the singularities more
clearly visible.

analysis allows us to find the set of intersection points of the
gray lines in Fig. 1(a) and the edges of the Fermi surface for
any given Fermi contour anisotropy αF at B = 0.

We consider values of the Fermi contour anisotropy
αF ranging from 0.16 to 6.25. (This corresponds to mass
anisotropy range 0.025 to 40). The dynamic range in αF is
limited by convergence of the DMRG algorithm. Very small
values of αF (
 1) increase the correlation length along
the circumference of the cylinder, giving rise to increasing
finite-size effects. Conversely, very large values of αF (� 1)
increase correlations along the axis of the cylinder, requiring
larger values of the bond dimension χ for convergence. This
causes a rapid increase in computational time, which provides
the limiting factor in that situation. While the dynamical range
of αF is thus limited numerically, we emphasize that the range
covered is significantly larger than that covered in experiment.

We consider first the experimentally relevant case of
Coulomb (1/r) interactions between the electrons. In order to
avoid the effects of the electron-electron interaction wrapping
around the cylinder for such a long range interaction, we
impose a Gaussian cutoff by multiplying our interactions
by e−r2/λ2

. We take λ = 6�B (�B is the magnetic length), a
sufficiently large value that this cutoff does not affect our
results.
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FIG. 2. Location of the Fermi surface, extracted from data similar
to that in Fig. 1, for three values of αF . The dashed curves are the
result of fitting the data to an ellipse, with the value of αCF shown
in the legend. Different symbols of the same color (circle, square,
triangle, and diamond) correspond to different system sizes but the
same αF .

At each value of αF , we perform the procedure described
in the previous section at several values of Ly (three to five
distinct values in the range of 13 to 27 magnetic lengths,
depending on αF ). This provides a list of coordinates of points
which are expected to fall near the 2D Fermi contour. Examples
representative of the cases αF < 1, αF = 1, and αF > 1 are
shown in Fig. 2.

We then extract αCF by fitting the resulting data to an
ellipse. Though in the thermodynamic limit we expect an
elliptical Fermi contour, our finite-size data points will deviate
from this contour due to Luttinger’s theorem, which in our
system fixes the sum of all qx values of scattering processes
with qy = 0 to νLy . This will lead to an error in the anisotropy
of our fitted ellipse because of the finite size of our samples. We
can estimate this error by considering the αF = 1 case, where
αCF = 1. Our estimate based on the total data from three
system sizes is αCF = 1.002. However, randomly removing
one system size from the dataset causes the estimate to
fluctuate between 0.98 and 1.01. On the basis of this result, we
believe that at each value of αF , the uncertainty on αCF due to
Luttinger’s theorem and to the finite number of system sizes
considered is of order 1–2%.

We fit the discrete set of values of (qx,qy) obtained this
way to an ellipse of area π from which we obtain our estimate
of αCF . For an infinite size system in the planar limit, a π/2
rotation implies an exchange of the major and minor axes of
the elliptical Fermi surface, i.e., a change of anisotropy from
αF to 1/αF , with a corresponding change of αCF to 1/αCF .
This implies that αCF (αF )αCF (1/αF ) = 1, or equivalently that
log(αCF ) is an odd function of log(αF ), which can be Taylor ex-

FIG. 3. Composite fermion anisotropy αCF , computed with the
method described in the main text, as a function of bare electron
anisotropy αF for Coulomb interaction V (r) ∝ 1/r and dipolar
interaction V (r) ∝ 1/r3. The straight lines on our logarithmic axes
are power-law fits αCF = α

γ

F with parameter γ given in the legend.

panded [38] around the isotropic point αF = αCF = 1 to yield:

log(αCF ) = γ log(αF ) + μ log3(αF ) + .... (4)

We find that the simplest such function, a power-law
αCF = α

γ

F , which corresponds to terminating the series at
the first term in Eq. (4), already fits the data well in the
anisotropy range we explore (Fig. 3). The value of γ we
get is γ = 0.493 ± 0.008, close to a square-root dependence
αCF = √

αF [39]. Remarkably, experiments on holes in GaAs
under application of in-plane strain show data in agreement
with this result [25].

In order to check whether this relation is a universal feature
of power-law interactions, we replace the Coulomb interaction
with a dipolar interaction V (r) ∝ r−3 (also in Fig. 3), which
could be realized in a cold atomic system [40,41]. We find
again that a single power law [first term in Eq. (4)] fits the data
well, but we measure an exponent γ = 0.795 ± 0.005.

This is unambiguously different from a square-root depen-
dence and in particular implies that αCF is much closer to αF

than for the case of Coulomb interaction. We can think of αCF

as resulting from a competition between the noninteracting part
of the Hamiltonian, with anisotropy αF , and the interacting part
of the Hamiltonian, which is isotropic. It appears reasonable
that when the Coulomb interaction is replaced with the dipolar
interaction, which is weaker at long distances, the anisotropy
moves closer to αF .

Finally, we benchmark our method against the only known
exact result for αCF : Yang’s prediction [36] that for a Gaussian
electron-electron interaction V (r) = V0e

−r2/2s2
one has

αCF =
√

αF �2
B + s2

�2
B/αF + s2

. (5)

For this purpose, we pick two nearly reciprocal values of the
electron anisotropy, αF = 2.25 and αF = 0.445, and compute
αCF with our method at different values of s of the order of
a magnetic length �B . The results displayed in Fig. 4 show
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FIG. 4. Benchmarking our method against the exact result
Eq. (5) for a Gaussian interaction V (r) ∝ e−r2/2s2

[36]. We consider
αF = 2.25 and αF = 0.445, two nearly reciprocal values to test
the method in opposite regimes for varying s in the vicinity of a
magnetic length. This test reveals good agreement with the analytical
prediction, with a possible tendency to underestimate αCF by ∼1–2%.

a good agreement with the prediction Eq. (5). Our method
appears to slightly underestimate αCF by 1 to 2%. This small
bias however should not significantly affect our estimates for
the exponent γ for the power-law interactions.

In summary, we have numerically computed the composite
Fermi surface of a half-filled lowest Landau level for a
two-dimensional electron gas with varying mass anisotropy,
with three different forms of the electron-electron interaction.
We find that the anisotropy of the Fermi surface of the

composite Fermi liquid (αCF ) is less than that of the zero
field Fermi surface (αF ) for noninteracting electrons. When
the electrons in the system interact via a Coulomb interaction,
our data follows the relation αCF = √

αF . This result is
in agreement with recent experimental data [25] but not
with some earlier theoretical work [34,35]. The relationship
between αCF and αF does however depend on the form of
the electron-electron interaction. For example, we find a larger
composite fermion anisotropy for the 1/r3 interactions, and
for a Gaussian interaction we find results consistent with the
exact calculation in Ref. [36].

Though experiments [25] find a similar relation between
αF and αCF as we do, there are some differences between the
two systems studied—experiments are conducted on quantum
wells with finite width [42], and the experimental Fermi
surface has a more complicated form than the elliptical
one considered here. Performing simulations on a system
closer to experiment is therefore an interesting extension
of our research. Little is known about the response of the
quantum Hall fluid to generalizations of Eq. (1) (e.g., if quartic
terms are added), and studies of such systems could help
spur theoretical progress. More generally, the larger system
sizes accessible in our DMRG calculations could also allow
us to improve the results of previous exact diagonalization
studies [18,28].
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and M. Zaletel for creating and providing the DMRG libraries
used in this work; S.D.G. also acknowledges previous collab-
orations with them. This work was supported by Department
of Energy BES Grant No. DE-SC0002140.
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