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Thermoelectric transport in junctions of Majorana and Dirac channels
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We investigate the thermoelectric current and heat conductance in a chiral Josephson contact on a surface of a
three-dimensional topological insulator, covered with superconducting and magnetic insulator films. The contact
consists of two junctions of Majorana and Dirac channels next to two superconductors. Geometric asymmetry
results in a supercurrent without a phase bias. The interference of Dirac fermions causes oscillations of the electric
and heat currents with an unconventional period 2�0 = h/e as functions of the Aharonov-Bohm flux. Due to
the gapless character of Majorana modes, there is no threshold for the thermoelectric effect, and the current-flux
relationship is nonsinusoidal. Depending on the magnetic flux, the direction of the electric current can be both
from the hot to the cold lead and vice versa.
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I. INTRODUCTION

A Majorana fermion is simply the real or imaginary part
of a complex fermion. At first sight this implies that no
meaningful distinction exists between systems of complex and
Majorana fermions. However, it is more practical and much
more conventional to use the language of complex fermions
for normal metals and many other systems. On the other
hand, Majorana fermions provide a natural description for
various topological materials. The simplest example is the
Kitaev chain [1]. Its low-energy degrees of freedom are two
Majorana excitations at the chain’s ends. Two-dimensional
(2D) topological materials bring richer examples of Majorana
physics. For example, Majorana edge modes [2] are expected
in several candidates states [3,4] for the quantum-Hall effect
at the filling factor of 5/2.

If a Majorana system is in contact with a system of complex
fermions, then a natural question concerns transformations
between the two types of fermions when the systems exchange
electrons. The simplest version of that question involves
electron tunneling [5–7]. A more interesting setting is a Y

junction of Majorana modes that merge into a Dirac quantum
channel. Such junctions can be built on a surface of a
three-dimensional (3D) topological insulator (TI) [8,9].

It has long been known that one-dimensional (1D) charge-
neutral Majorana fermions can exist as subgap edge modes
of 2D chiral p-wave topological superconductors [10,11]. An
s-wave superconductor (SC) also can give rise to such modes
in a partially gapped hybrid structure with a superconducting
film on a surface of a TI. A splitted film that hosts an
SC-insulator-SC interface on top of a 3D TI supports a gapped
nonchiral 1D Majorana mode whereas an SC/ferromagnet
junction supports a gapless chiral one (χMM) [8,9]. Recently
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topological superconductivity and Majorana 1D edge modes
were reported in an anomalous quantum-Hall insulator/SC
heterostructure [12] and in a single atomic Pb layer on a
magnetic Co/Si(111) island [13].

A magnetic domain wall on top of a TI hosts a chiral
Dirac mode (χDM). Combinations of such domain walls
with SC/magnet junctions allow the implementation of novel
quantum devices. The simplest example is a Y junction
of Majorana and Dirac modes. Other proposals include
the Mach-Zehnder [9,14], Fabry-Pérot [15,16], and Hanbury
Brown-Twiss [17] quantum interferometers. In our work [18]
we introduced a 3D TI-based chiral Josephson contact.

The previous work has focused on electric transport in the
above devices. In the present paper we extend this line of
research to thermoelectric and thermal transport. Our motiva-
tion comes from the question about the nonequilibrium state
that forms if two Majorana modes with different temperatures
fuse into a Dirac mode. We focus on the setup from Ref. [18]
and derive analytical expressions for the thermoelectric and
heat currents in the presence of the magnetic field through the
normal region. Note that thermal transport between a lead and
a 1D Majorana mode has been studied in Ref. [19]. The case of
localized Majorana bound states has been studied in Ref. [20].

Our device is shown in Fig. 1. It can be understood
as a Fabry-Pérot interferometer made of four chiral Y

junctions. Each junction converts neutral Majorana fermions
into charged Dirac particles. The charge is supplied by a
superconductor. The device is a relative of a quantum-Hall-
based Josephson junction with a gapped superconductor
and a quantum-Hall bar in the normal region [21,22]. In
such a structure, the supercurrent is carried by chiral edge
states. A recent experimental realization of a quantum-Hall
junction involved molybdenum rhenium contacts mediated by
a micrometer-sized graphene bar encapsulated in boron nitride
[23]. An important feature, common to our setting and the
quantum-Hall device, is the spatial separation of electrons
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FIG. 1. A chiral Josephson junction on a surface of a 3D topo-
logical insulator (3D TI). The lines with a single arrow surrounding
black SC films stand for gapless Majorana fermion channels χr,l ,
and the arrows show chiralities. Superconducting electrodes have
different temperatures Tl and Tr . The light and dark gray areas
are magnetic insulators (MIs) which induce exchange fields of the
opposite polarizations and energy gaps ±M . Magnetic domain walls
support chiral charged modes ψa,b marked by double arrows. A
magnetic flux f in the −M region induces the Aharonov-Bohm phase
φAB = πf/�0.

and holes in Andreev pairs due to the spatial separation of
the chiral transport channels. One consequence of such a
splitting is a “single-electron” Aharonov-Bohm periodicity in
the transport behavior: All transport quantities are periodic in
the magnetic flux through the gray region of Fig. 1 with the
period 2�0 = h/e. For comparison, S/N/S junctions, based
on quantum-spin-Hall (or 2D TI) films [24–26] or two-channel
nanowires [27], exhibit even-odd transitions between the �0

and the 2�0 periodicities. The heat transport and interference
effects in thermally biased 2D TI-based Josephson junctions
have been studied in Refs. [28,29].

Below we compute the thermal and thermoelectric currents.
The time-reversal symmetry is broken by the magnetic film.
As a consequence, the inevitable geometric asymmetry of
the junction results in a nonzero electric current even in
the absence of a temperature gradient, a phase difference
between superconductors, and an Aharonov-Bohm flux. The
thermoelectric effect requires particle-hole asymmetry. This
asymmetry is due to the Aharonov-Bohm effect. Our results
reveal a significant difference in thermal transport in the setup
of Fig. 1 from the thresholdlike transport in a conventional
S/N/S junction with gapped leads. The thermoelectric current
oscillates as a function of the Aharonov-Bohm flux and,
consequently, as a function of the interferometer area. The
oscillation amplitude is geometry dependent. We find the
maximal current on the order of eET h/h̄ ∼ e/τ , where ET h

is the Thouless energy and τ is the electron travel time
through the device if the temperatures of the leads satisfy
Tl � ET h � Tr or Tr � ET h � Tl . The 2�0-periodic heat
conductance oscillates from zero to one-half of the heat
conductance quantum. The maximum heat conductance agrees
with what is expected for a fully transparent junction of
chiral Majorana channels [30]. Note that the experimental
measurement of quantized thermal conductance has recently
been accomplished in the integer [31] and fractional [32]
quantum-Hall effects.

The width d and length L of the normal region, bounded
by two counterpropagating charged χDMs, are much longer
than the coherence lengths ξ of the induced superconductivity.
Hence, the Thouless energy, proportional to the inverse travel
time through the interferometer, is much lower than the
superconducting proximity gap and the magnetic exchange
gap ET h � 	,M . We assume that the temperatures of the
incoming Majorana modes are below those gaps. We will
mostly focus on the case of a much higher exchange than
superconducting gap M � 	. In this case all contributions
to the Josephson current arise from the 1D Dirac channels
and do not involve the 2D band between the superconducting
leads. Indeed, we expect no contributions to the Josephson
effect from the energies E > M � 	. The gray 2D area
exhibits insulating behavior for the energies below M , and the
tunneling through the insulator is suppressed due to its large
size L � ξ . Another assumption is that the superconducting
leads are large and have a constant chemical potential which
crosses the Dirac point. This means that the dc Josephson effect
in this contact is 2π periodic because the fermion parity is not
conserved. The unconventional nonequilibrium 4π -periodic
component, predicted in Refs. [1,33–37] for localized zero-
energy Majorana bound states [38], is suppressed in our device.

Since we only consider 1D physics, we ignore phonons in
the bulk. Phonons are not expected to have much effect on
the electric current. They do contribute to the thermal conduc-
tance. We are only interested in the oscillating contribution
from topological modes. One can isolate it experimentally in
a setting where two hot Majorana modes are brought to a cold
device.

II. DIRAC AND MAJORANA 1D LIQUIDS

The mean-field Hamiltonian of the 2D structure introduced
in Fig. 1 reads

H = 1

2

∫
dx dy 
+h
,

h = ivτzz · (σ × ∇) + τ0σzM(x,y)

+ [τ+	(x,y) + τ−	∗(x,y)]σ0, (1)

where σ and τ are the Pauli matrices in the spin and Nambu
spaces. The spinor 
 = [ψ↑,ψ↓,ψ+

↓ ,−ψ+
↑ ]T contains field

operators of free electrons and holes on the surface of the
topological insulator. The helical states of the 2D surface
are described by the Rashba Hamiltonian with the Fermi
velocity v and the chemical potential μ = 0 crossing the Dirac
point. The superconducting s-wave pairing potential is given
by τ+σ0	(x,y), whereas the exchange field of the magnetic
insulator films is described by the τ0σzM(x,y) term. The black
areas of right (left) SC contacts have 	(x,y) = 	e−i�r,l . In the
normal region filled with magnetic films the magnetization is
perpendicular to the 2D surface and changes its sign: In the
light gray regions the induced exchange gap M(x,y) = M and
in the dark gray rectangle M(x,y) = −M . Both M and 	 are
real.

An effective 1D Hamiltonian of a Majorana mode, such as
the one marked by the single arrow in Fig. 2, was derived by
Fu and Kane [9]. This derivation is based on a solution of the
2D Bogolyubov–de Gennes equation. Below we review the
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FIG. 2. The structure of the chiral Dirac-Majorana 1D contact
formed by two Y junctions. The film of a superconductor with
the phase of the order parameter �l and magnetic insulators of
the opposite magnetizations induce proximity 	 and exchange
gaps ±M on the 2D helical surface. The boundaries between the
superconductors and the magnets support the chiral charged modes
ψin,out and the neutral modes χin,out and ηl .

solution for the mode η which connects Y junctions 1 and 2 in
Fig. 2 and propagates along the SC/magnet interface at x = 0.
In the SC region (the x < 0 half plane), there is an s-wave SC
pairing potential given by 	(x,y) = 	ei�l θ (−x), whereas at
x > 0 the magnetic film induces the exchange gap M(x,y) =
−M θ (x). There exists a 1D solution of the Bogolyubov–de
Gennes equation hξky

= εky
ξky

such that the wave function de-
cays exponentially in the directions, normal to the SC/magnet
interface as ∼ exp[−|(θ (x)M − θ (−x)	)x|/(h̄v)] and is a
plane wave with the momentum ky along the boundary. This
1D chiral mode with the dispersion relation,

εky
= −sgn(M)vky (2)

is nondegenerate within the gap, i.e., for εky
< min(	,M), but

continues to exist also for higher energies. The eigenvectors
are self-conjugate ξky

= σyτyξ
∗
−ky

, which is consistent with
the fact that the field 
 is self-charge-conjugate 
 = σyτy


∗.
Hence, the Bogolyubov quasiparticle operator,

ηky
=

∫
dx dy[ξky

(x,y)]†
(x,y) (3)

is real, ηky
= η+

−ky
, and describes a chiral Majorana mode.

The normal region with Dirac modes is confined by domain
walls where the magnetization sign changes (the horizontal
lines marked by the double arrows in Fig. 2). To derive
the effective 1D Hamiltonian for those modes from the 2D
Hamiltonian in the Nambu space (1), we set 	(x,y) = 0 and
focus on the mass term M(x,y) = M sgn(y) at y ≈ 0.

The eigenvalues εkx
of the Bogolyubov–de Gennes Hamil-

tonian are now doubly degenerate in contrast to the case of
χMM. We denote two orthogonal degenerate eigenstates as
ζe,kx

and ζh,kx
and associate them with electrons and holes.

Their wave functions are related via the charge-conjugation
constraint as ζh,kx

= σyτyζ
∗
e,−kx

. The dispersion relation is the
same as for the Majorana channels: εkx

= −sgn(M)vkx . The
difference from the neutral mode consists of the existence of
two independent excitations of the same energy εkx

in the
Nambu space: an electron of momentum kx and a hole of
momentum −kx . In terms of Bogolyubov operators this is
the Dirac gapless mode described by a complex field. In the
second quantization language, the electron and hole operators

are given by

ψe,kx
=

∫
dx dy[ζe,kx

(x,y)]†
(x,y), (4)

and

ψh,kx
=

∫
dx dy[ζh,kx

(x,y)]†
(x,y). (5)

They are not independent since ψh,kx
= ψ+

e,−kx
due to the

charge-conjugation constraints for 
(x,y) and ζe,kx
,ζh,kx

. In
what follows we do not use ψh,e and instead introduce the
field ψkx

such that ψe,kx
= ψkx

and ψh,kx
= ψ+

−kx
.

At this point we are in the position to write down effective
1D Hamiltonians for free Majorana and Dirac particles. The
secondary quantized 
 operators of these 1D modes are as
follows:


M (x,y) =
∫

dky

2π
ξky

(x,y)ηky
(6)

for χMM and


D(x,y) =
∫

dkx

2π
[ζe,kx

(x,y)ψkx
+ ζh,kx

(x,y)ψ+
−kx

] (7)

for χDM. Integrating out the y coordinate in the
Bogolyubov–de Gennes Hamiltonian yields the effective
Hamiltonians of the Majorana modes,

HM = sgn(M)
iv

2

∫
η(y)∂yη(y)dy, (8)

and the Dirac modes,

HD = sgn(M)iv
∫

ψ+(x)∂xψ(x)dx, (9)

where we introduced the 1D operators,

η(y) = η+(y) =
∫

dky

2π
ηky

eikyy, (10)

and

ψ(x) =
∫

dkx

2π
ψkx

eikxx, (11)

which describe coherent propagation of neutral and charged
fermions through 1D guiding channels with the Fermi velocity
v. For M > 0 the chiralities of the 1D modes are shown by
the arrows in Figs. 1 and 2. The factor of 1/2 in the Majorana
Hamiltonian HM reflects the fact that the negative and positive
energy excitations in the χMM are not independent. In other
words, the lower branch of the dispersion εky

= −sgn(M)vky

at ky < 0 is redundant (it is shown as a dashed line in the
left inset of Fig. 2). The coefficient 1/2 implies that a neutral
Majorana fermion carries only a half of the heat current of
a Dirac mode at the same temperature so that the ballistic
heat conductance G0 of a single χMM is one-half of the heat
conductance quantum,

G0 = 1

2

π2k2
BT

3h
, (12)

where T is the temperature.
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III. SCATTERING IN A MAJORANA-DIRAC CONTACT

The normal region includes a rectangular magnetic film
(dark gray area in Fig. 1) of the length L and the width
d. L and d exceed significantly both the SC and the magnetic
coherence lengths d,L � h̄v/	,h̄v/M . Four Y junctions are
in the corners of the film. A single Y junction is formed by
two Majorana and one Dirac channels (Fig. 2). The angles
between the channels as well as other microscopic details are
not necessarily the same in different Y junctions.

We start with the calculation of the scattering matrix
describing two nonidentical Y junctions shown in Fig. 2
(see Ref. [18]). This scattering matrix describes the coupling
between χMMs on the SC/magnet interfaces and two 1D
Dirac modes. Specifically, it provides a relation between
the operators of incoming and outgoing electrons and holes
ψin,out,ψ

+
in,out of χDM (horizontal lines marked by double

arrows) and χin,out of semi-infinite neutral χMMs (lines
marked by single arrows). The 1D modes, described by
the wave-functions ξ and ζe,h, are spin nondegenerate and
have in-plane spin textures. Hence, the conversion between
Majorana and Dirac modes in Y junctions is accompanied
by spin rotation. Thus, scattering in a Y junction involves a
geometric Berry phase, which is encoded in the phase α below.
The calculation of α for a given geometry is straightforward.

Scattering in the upper and lower Y junctions in Fig. 2 is
described by the Sout and Sin matrices, which were found in
Refs. [9,14],⎡
⎣ηl,out

χl,out

⎤
⎦ = Sin,α1

⎡
⎣ψl,in

ψ+
l,in

⎤
⎦,

⎡
⎣ψl,out

ψ+
l,out

⎤
⎦ = Sout,α2

⎡
⎣ηl,in

χl,in

⎤
⎦.

(13)

Note that the operators in (13) correspond to the incoming and
outgoing scattering states rather than to free plane waves of
(3)–(5) [39].

Let us assume first that �l = 0 in the electrode. A nonzero
�l will be included in a final expression for the S matrix
by means of a gauge transformation of Dirac ψ operators.
The matrix Sin,α1 involves the phase difference α1 between an
electron and a hole converting into two Majorana fermions.
The matrix Sout,α2 involves a phase α2 accumulated under
merging two Majoranas into a Dirac fermion. The structure of
Sout is related to that of Sin by a time-reversal transformation
[14]: Sout = ST

in. The expression for the Sin matrix of the lower
Y junction is

Sin,α1 =
⎡
⎣1/

√
2 1/

√
2

i/
√

2 −i/
√

2

⎤
⎦

⎡
⎣eiα1 0

0 e−iα1

⎤
⎦. (14)

Note that, although the phase α1 can be gauged easily out if
the Y junction is considered on its own, it becomes important
once several Y junctions are combined into a circuit.

In Ref. [18] the symmetry of four Y junctions (αi = α)
was assumed. In this paper we consider an arbitrary set of
the phases αi . We will see that this modifies the current-phase
relation in such a way that a nonzero current may flow at a
zero external phase bias �, such as in Josephson ϕ-junction
devices [40–44].

We proceed by matching the Majorana operators ηl,in and
ηl,out at a given energy ε as ηl,in,ε = eikεηl,out,ε. The dynamic
phase kε = εd/v is accumulated by a Majorana excitation
during the propagation from the lower to upper Y junctions,
separated by the distance d. The full Sα1,α2 matrix of the
contact, acting on (ψin,ε, χin,ε, ψ+

in,−ε)T , can be found after the
exclusion of η from Eqs. (13) and is defined by the equation,

⎡
⎢⎢⎣

ψl,out,ε

χl,out,ε

ψ+
l,out,−ε

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

1
2eikε+i(α1+α2) ieiα2√

2
1
2eikε−i(α1−α2)

ieiα1√
2

0 − ie−iα1√
2

1
2eikε+i(α1−α2) − ie−iα2√

2
1
2eikε−i(α1+(α2)

⎤
⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

ψl,in,ε

χl,in,ε

ψ+
l,in,−ε

⎤
⎥⎥⎥⎦. (15)

To account for a nonzero SC phase �SC of an electrode
(colored black in Fig. 2), we employ the transformation
ψ → ei�SC/2ψ . For the left contact in Fig. 1 this yields

Sl = C(−�l)S(α1,α2)C(�l), (16)

whereas for the scattering matrix for the right contact it gives

Sr = C−1(�r )S(α3,α4)C(�r ). (17)

Here we have introduced an auxiliary matrix,

C(�SC) =

⎡
⎢⎢⎢⎣

ei�SC 0 0

0 1 0

0 0 e−i�SC

⎤
⎥⎥⎥⎦. (18)

The above Sl,r matrices describe partial Andreev reflection in
spinless 1D Dirac channels and the creation of excitations in
neutral Majorana modes. The Andreev part of this process is
accompanied by a Cooper pair absorption in a SC electrode.

We transform the Sl,r matrices acting on
ψl,in,ψl,out (ψr,in,ψr,out) on the left (right) ends of the
Dirac channels into new matrices S̃l,r , acting on the operators
ψa,ψb in the geometric centers of the 1D channels. The S

and S̃ operators are related by a phase shift by the sum of the
dynamical phase εL

2h̄v
, accumulated by an electron of energy

ε over the distance L/2, and an Aharonov-Bohm phase. For
the upper a arm the relation of the scattering matrices can be
deduced from the equation,

ψa,ε = exp

(
i

εL

2h̄v
+ iφAB/4

)
ψl,out,ε. (19)

We assume here that the same Aharonov-Bohm phases are
accumulated on each portion of the Dirac channels of the same
length. The scattering matrices, acting on the ψ operators in
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the centers of the channels, take the form

S̃l,r = C

(
φAB

4

)
D

(
εL

2v

)
Sl,rD

(
εL

2v

)
C

(
φAB

4

)
, (20)

where φAB is the total Aharonov-Bohm phase. The dynamical
phases are encoded in (20) via the matrix,

D

(
εL

2h̄v

)
=

⎡
⎢⎢⎢⎢⎣

exp
(
i εL

2h̄v

)
0 0

0 1 0

0 0 exp
(
i εL

2h̄v

)

⎤
⎥⎥⎥⎥⎦. (21)

The difference in the above expression from the C matrix
is that the first and third diagonal components coincide: The
dynamical phases are equal for an electron of the energy ε and
a hole of the energy −ε. We can exclude αi from the diagonal
terms of the S matrices by redefining the superconducting
phase bias � and the Aharonov-Bohm phase φAB . To do that
we introduce the phases,

φl = α1 + α2

2
, φr = α3 + α4

2
, (22)

and

ϕ0 = �l + �r

2
. (23)

We can always shift both superconducting phases by the same
constant. It will be convenient to shift them so that

ϕ0 = α2 − α1 + α4 − α3

4
. (24)

With this choice we find

Sl = C[φl − (� + ϕ)/2]S0C[φl + (� + ϕ)/2], (25)

and

Sr = C[φr + (� + ϕ)/2]S0C[φr − (� + ϕ)/2], (26)

where S0 ≡ Sα1=α2=0 (15),

� = �l − �r

is the SC phase bias, and the phase shift,

ϕ = 1
2 (α1 − α2 − α3 + α4). (27)

It follows from this representation of Sl,r and S̃l,r that the
superconducting phase cannot be gauged out by the Aharonov-
Bohm phase. We also observe that φl,r and φAB enter the C

matrices in the same way, and hence, φl,r can be gauged out
by redefining the total Aharonov-Bohm phase as

φAB → φAB + 2(φl + φr ) =
4∑

i=1

αi + φAB. (28)

IV. JOSEPHSON CURRENT

In our formalism the operators of Dirac fermions are ex-
pressed as linear combinations of uncorrelated field operators
χl ≡ χl,in and χr ≡ χr,in of incident Majorana modes. The
latter are characterized by the Fermi distribution functions,

nl,r (ε) = 1

2

(
1 − tanh

ε

2Tl,r

)
, (29)

i.e.,

〈χ †
ε,iχε,j 〉 = v−1δi,j ni(ε), (30)

where the Fourier-transformed operators,

χε,i = χ
†
−ε,i =

∫
χi(t)e

iεtdt, (31)

and the index i = l,r stands for the left and right incident
modes and v−1 is the density of states in the χMM channels.
We assume kB = 1 everywhere and recover it in the final
expressions. The linear spectrum of 1D Dirac modes means
that the chiral current is proportional to the charge-density
ja,b = −evρa,b and, hence, the current j is given by the integral
over energies,

j =
∫

dε

2πh̄
(−ev)(〈ψ+

a,εψa,ε〉 − 〈ψ+
b,εψb,ε〉). (32)

Here ψa,ε and ψb,ε are the electron operators in the centers of
the Dirac channels, and the positive direction of the current is
defined from the left to the right.

The S matrices are used to express the Dirac fermion
operators in Eq. (32) in terms of the incoming Majorana modes,

ψa,ε = i
√

2 exp
[

1
4 i

(
2Lε
v

+ φ − � − ϕ
)]

1 + 2eiφ cos(� + ϕ) + e2iφ − 4ei(φ−ϕε)

×
[

(1 + ei(�+ϕ+φ) − 2ei(φ−ϕε))χl

− 2ieiφ−i(1/2)ϕε sin

(
� + ϕ + φ

2

)
χr

]
, (33)

with

φ = φAB +
4∑

i=1

αi. (34)

Due to the symmetry between the a and the b arms we get
a similar expression for ψb with � → −�, ϕ → −ϕ and the
interchanged χl and χr . This expression for Dirac operators is
a straightforward generalization of that from Ref. [18] to our
asymmetric setup: (i) The sum of the phases αi shifts the total
Aharonov-Bohm phase (34), and (ii) the phase ϕ, introduced
in (27), shifts the external superconducting phase bias �.

With the use of the expressions for Dirac operators in the
N region (33) we obtain that the current can be represented as

j = jt + j�, (35)

where jt is induced by the temperature gradient and j�

generalizes the Josephson current from Ref. [18] to a two-
temperature situation. The two contributions read as

jt =
∫

dε

2πh̄
(−e)

nl(ε) − nr (ε)

2
Jt,ε, (36)

and

j� =
∫

dε

2πh̄
(−e)

nl(ε) + nr (ε)

2
Jε. (37)

The thermoelectric part (36) is given by a rapidly convergent
integral due to the factor of (nl − nr ). If Tl = Tr , then jt = 0,
and the total current (35) is given by the Josephson term j�.
We calculate j� in this section and analyze jt in the next one.
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The spectral current Jε, entering into j�, reads

Jε = sin ϕε sin(� + ϕ)

1 + ( cos φ+cos(�+ϕ)
2

)2 − [cos(� + ϕ) + cos φ] cos ϕε

,

(38)

with ϕε = ε/ET h being the dynamical phase, accumulated by
an excitation of the energy ε on the closed path that connects
all four Y junctions. Note that the Josephson term (37) does
not converge at high ε and a regularization is needed. Indeed,
the spectral current (38) depends periodically on the energy
due to the 1D nature of the chiral modes carrying the current.
On physical grounds we expect this dependency to be replaced
by a slowly decaying (and oscillating) one once the energy ε

reaches the lowest border of the 2D continuum min(	,M) �
ET h. We, thus, smoothly cut off the integration in (37) at ε �
ET h which leads to the following current-phase relationship
for equal Tl = Tr = T :

j� = 4π
ekBT

h
sin(� + ϕ)

×
∞∑

n=0

1

2 exp
(
π kBT (1+2n)

ET h

) − cos φ − cos(� + ϕ)
.

(39)

The phase φ shifts the (h/e)-periodic pattern of critical
current-flux oscillations, whereas ϕ results into a nonzero
Josephson current without phase bias. The result for different
temperatures Tl �= Tr equals half the sum of the two expres-
sions (39) taken at T = Tl and at T = Tr , respectively.

To further support the validity of this regularization
procedure based on smooth cutoff, we can perform the
derivation in a slightly different way that leads to the
same result. Specifically, this alternative—but equivalent—
regularization procedure amounts to subtracting and adding a
high-temperature Josephson current at Tl = Tr � ET h. The
difference in the Josephson current and the counterterm
converges. At the same time, the counterterm is expected to be
negligible on physical grounds. Indeed, the Josephson effect
is possible due to the particle-hole coherence between the
two Dirac channels. Such coherence extends to the length
scales on the order of the thermal length hv/(kBT ). For
T � ET h the thermal length is much shorter than the distance
L between the superconductors. Thus, the high-temperature
Josephson effect is suppressed. This agrees with the results for
S/N/S structures where the normal region is a long quantum
wire [45–49]. We emphasize once again that the convergence
subtlety discussed here relates to the Josephson current only.
The thermoelectric and the heat currents discussed below are
given by convergent integrals.

V. THERMOELECTRIC CURRENT

Below we focus on the thermoelectric effect. Thus, we
take Tl �= Tr and set the SC phase bias � = −ϕ so that
the Josephson current is j� = 0 in (35). Recall that we
have redefined the Aharonov-Bohm phase φ in Eq. (34). We
investigate the current jt as a function of two temperatures Tl,r

and of φ. We use the scattering matrices to express the ψa,ε

operator at � = −ϕ in the center of the upper Dirac channel

FIG. 3. The thermoelectric current jt (φ) and the heat current
jh(φ) as functions of the flux φ at Tl � ET h � Tr .

as we use the expression (33) for the ψa,ε operator at � = −ϕ

in the center of the upper Dirac channel,

ψa,ε = i
√

2e(1/4)i[(2Lε/v)+φ]

× (eiϕε+ei(ϕε+φ)−2eiφ)χl−(eiφ−1)e(1/2)i(ϕε+φ)χr

eiϕε (1+eiφ)2−4eiφ
.

(40)

The ψb is given by the interchanged χl and χr for the
rectangular geometry of the N region.

The above operator relations (40) allow the calculation of
the dimensionless spectral current Jt,ε entering jt Eq. (36),

Jt,ε = (1 + cos φ)(1 − cos ϕε) − sin φ sin ϕε

1 + ( 1+cos φ

2

)2 − (1 + cos φ) cos ϕε

. (41)

The term (1 + cos φ)(1 − cos ϕε) in (41) is an even function
of ε and does not contribute to the integral (36) which is
evaluated by means of the summation over the residues of
tanh[ε/(2Tl,r )]. Finally, for arbitrary temperatures and φ we
obtain an expression for the thermoelectric current,

jt = kBe

h̄
sin φ

∑
n=0

(
Tr

2 exp
(

πkBTr (1+2n)
ET h

) − 1 − cos φ

− Tl

2 exp
(

πkBTl (1+2n)
ET h

) − 1 − cos φ

)
. (42)

We focus on the regime of Tl � ET h � Tr or Tr � ET h � Tl .
We expect the maximal current to be achieved in that region
(see the solid curve in Fig. 3). In those cases the terms in
the sum (42) with the higher of the two temperatures are
exponentially small. The sum of the remaining terms reduces
to the integral T

∑ → ET h

∫
dx, where x = T/ET h and T

is the smaller of Tr and Tl . The integral is proportional to
eET h/h̄,

jt,max = sgn(Tl − Tr )
eET h

2πh̄
tan

φ

2
ln

2

1 − cos φ
. (43)

Note the divergent derivative ∂φjmax(φ) at φ = 2πn.
In the high-temperature regime, where Tl,Tr � ET h, the

thermoelectric current is exponentially suppressed and exhibits
a sinusoidal dependence on φ,

j = kBe

2h̄
sin φ(Tre

−πTr/ET h − Tle
−πTl/ET h ). (44)
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Similar to the electric current, the thermoelectric current
decays exponentially at kBTl,r � ET h. This is the limit where
the thermal length becomes much less than the interferometer
size.

We next briefly address a general situation with nonzero
Josephson and thermoelectric currents. We derive from
(33) that Jt,ε, entering the thermoelectric contribution (36),
reads for arbitrary temperatures, superconducting phases, and
Aharonov-Bohm phases as

Jt,ε(�)

= 1 + (cos φ − cos ϕε) cos(� + ϕ) − cos(φ − ϕε)

1 + ( cos φ+cos(�+ϕ)
2

)2 − [cos(� + ϕ) + cos φ] cos ϕε

.

(45)

Comparing the above equation (45) with Jε from (37) we
relate the thermoelectric current jt and the Josephson currents
j�(Tr,l) (39),

jt = sin φ

2 sin(� + ϕ)
[j�(Tr ) − j�(Tl)]. (46)

At Tr �= Tl , the Josephson current reads

j� = 1
2 [j�(Tr ) + j�(Tl)]. (47)

Figure 4 shows the bias dependencies of the thermoelectric
and Josephson currents at the Aharonov-Bohm phase φ = π/3
in three temperature domains: (a) Tr,l < ET h, (b) Tl > ET h >

Tr , and (c) Tr,l > ET h. In regime (a) the Josephson part is
maximal, but the thermoelectric effect is suppressed. In (b)
and (c) the thermal and Josephson parts are of the same orders
of magnitude jt ∼ j�. From (c) we see that the dependence of
jt on � vanishes at high temperatures.

Below we compute the bias phase �∗ which results in zero
total current,

j (�∗,Tr ,Tl) = 0. (48)

This value of the phase can be seen as an analog of
thermovoltage in the Josephson effect. In this regime (48)
where the Josephson and thermal currents compensate each
other, one finds

j�∗ = −jt . (49)

From (46), (47), and (49) we obtain an equation on �∗,

sin(�∗ + ϕ) = j�∗ (Tl) − j�∗ (Tr )

j�∗ (Tl) + j�∗ (Tr )
sin φ, (50)

where j� was introduced in (39).
The relation between �∗ and the temperature gradient

	T = Tr − Tl is nonlinear. Let us consider several limiting
cases of (50) and their solutions. The first one is the high-
temperature limit with Tr,Tl � ET h. In this case the currents
are

j�(Tl,r ) = 2π
ekBTl,r

h
exp

(
− πTl,r

ET h

)
sin(� + ϕ), (51)

and the solution for �∗ reads

�∗ = arcsin

(
sin φ tanh

π (Tr − Tl)

2ET h

)
− ϕ. (52)

-1.0

- 0.5

0.5

1.0

(a)

-0.6

-0.4

-0.2

0.2

0.4

0.6

(b)

-0.010

-0.005

0.005

0.010

(c)

FIG. 4. The thermoelectric jt (�) and Josephson j�(�) parts of
the current as functions of the superconducting phase � with the
phase ϕ set to zero. The Aharonov-Bohm phase is φ = π/3.

In the limits of Tl � ET h � Tr or Tr � ET h � Tl , one of the
currents in (50) is temperature independent and is given by
j� ∝ ET h, whereas the other is exponentially suppressed as in
(51). The result is

�∗ = φ sgn(Tr − Tl) − ϕ. (53)

In the low-temperature limit Tr,Tl � ET h, for small gradients
	T � T � ET h, we obtain that

�∗ = 	T

3

π2k2
BT

E2
T h

(1 + cos φ) sin φ

(1 − cos φ)2 ln 2
1−cos φ

− ϕ, (54)

with 	T = Tr − Tl .
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VI. HEAT CURRENT

The energy current at � = −ϕ is defined analogous to the
thermoelectric one (36) with the replacement of the electron
charge by the energy (−e) → ε,

jh =
∫

dε

2πh̄
ε
nl(ε) − nr (ε)

2
Jt,ε. (55)

The part in Jt,ε (41), which is proportional to sin φ sin ϕε

and contributes to jt , does not contribute to jh, whereas the
term ∼ (1 + cos φ)(1 − cos ϕε) from Jt,ε does contribute to
the energy current. The result of the integration at an arbitrary
temperatures reads

jh = π2k2
B

6h

1 + cos φ

3 + cos φ

(
T 2

l − T 2
r

) + π2 1 − cos2 φ

3 + cos φ

×
∞∑

n=0

(
k2

BT 2
r (2n + 1)/h

exp
[

πkBTr (1+2n)
ET h

] − cos2(φ/2)
− (Tr→Tl)

)
.

(56)

The first term in (56) gives a ballistic contribution to the heat
conductance modulated by φ. The heat current is h/e periodic
like the electric current, but the energy current has always the
same sign in contrast to the electric current jt . In the limit of
Tl � ET h � Tr the amplitude of the heat current oscillations
is maximal,

jh,max = π2k2
BT 2

l

6h

1 + cos φ

3 + cos φ

+ E2
T h

h

1 − cos φ

3 + cos φ
Li2[cos2(φ/2)], (57)

where Li2(z) is the polylogarithmic function Lin(z) =∑∞
k=1 zk/kn. The dependence of jh(φ) on the flux is shown in

Fig. 3 as a dashed curve. Depending on the Aharonov-Bohm
phase the thermoelectric and heat currents can flow in the
opposite (0 < φ < π ) or in the same (π < φ < 2π ) direction.
One sees that the heat current jh is maximal at φ = 0 with the
value,

jh(0) = π2k2
BT 2

l

12h

(
T 2

l − T 2
r

)
, (58)

which is half of the ballistic heat current of complex 1D
fermions. The heat current is zero at φ = (2n + 1)π . The
origin of the zeros of jh becomes transparent after one
represents the Dirac ψ operators in the normal region using a
Majorana basis γ1, γ2,

γ1 = (ψ + ψ+)/
√

2, γ2 = −i(ψ+ − ψ)/
√

2. (59)

The total phase φ = φAB + ∑4
i αi = π can be interpreted as

the sum of a zero Aharonov-Bohm phase and a set of redefined
αi’s, for instance, with αl = α1 = α2 = π/2 and αr = α3 =
α4 = 0. The scattering among χ, γ1, and γ2 for such contacts
with equal phases α of Y junctions was found in Ref. [18]

FIG. 5. Scattering in the basis of the neutral modes χ, γ1, and γ2

at a zero heat current (upper panel with φ = π ) and at the maximum

heat current jh = π2k2
B

12h
(T 2

l − T 2
r ) (lower panel with φ = 0).

Eq. (37),

⎡
⎢⎢⎢⎣

γ1,out

χ
β,out

γ2,out

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

cos2 αβ − sin αβ − sin 2αβ

2

− sin αβ 0 − cos αβ

sin 2αβ

2 cos α − sin2 αβ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

γ1,in

χ
β,in

γ2,in

⎤
⎥⎥⎥⎦,

(60)

with the index β = l,r . From this representation of the
scattering matrices for the left and right contacts, i.e., for
αl = π/2 and αr = 0, we find the paths of the scattered neutral
modes as shown in Fig. 5. The incoming χl,in mode in the left
lead converts into γ1, propagates to the right lead, scatters in
the normal region, and flows back to the left edge. There is no
mixing between γ1 (solid curve) and γ2 (dashed curve) and no
energy exchange between the two SCs. Hence, the heat current
is zero. In the opposite case of the maximal heat current, which
is equivalent to α = αl = αr = 0, the mode χl,in converts into
γ2 in the left lead and flows away as χr,out in the right one.

VII. CONCLUSIONS

We have analyzed the thermoelectric and heat transport
in a long 1D ballistic Josephson junction where the leads
are formed by gapless chiral Majorana channels. Such a
junction can be realized as a hybrid structure based on a
3D topological insulator surface in the proximity with s-wave
superconducting and magnetic films. The interfaces of the
gapped sectors support neutral and charged 1D chiral liquids.
The normal region is formed by two chiral Dirac liquids spaced
by a magnetic material. The chiral contact is formed by four
Y junctions which serve as Dirac-Majorana converters. Our
crucial assumption is that the Thouless energy, proportional
to the inverse dwell time in the interferometer, is much lower
than the superconducting and exchange gaps.

We have obtained the following results. (i) We have
generalized the current-phase relation from our previous work
[18] to nonidentical Dirac-Majorana contacts and discovered
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a nonzero Josephson current in the absence of the phase
bias, the Aharonov-Bohm phase, and the temperature gradient.
(ii) We have calculated the thermoelectric current and (iii)
the heat current as functions of the magnetic flux and the
temperatures of the leads. An important difference of the
chiral contact from junctions based on a 2D TI, quantum-Hall
bar, or a spin-orbit coupled nanowire is the absence of a
quasiparticle gap in the leads due to the gapless Majorana
modes. This results in the absence of the temperature threshold
in the current-flux relations. We observe a nonsinusoidal 2�0-
periodic dependence of the thermoelectric and heat currents on
the magnetic flux. The maximum oscillation amplitude of the
thermoelectric current is proportional to eET h/h̄ and scales as
one over the device size. The maximal amplitude is achieved

at a low temperature in one of the superconductors and a
high temperature in the other one, i.e., at Tl � ET h � Tr or
Tr � ET h � Tl . The heat current oscillates between zero and
a value that corresponds to one-half of the heat conductance
quantum.
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