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Gate-tunable valley currents, nonlocal resistances, and valley accumulation in bilayer
graphene nanostructures
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Using the Büttiker-Landauer formulation of transport theory in the linear response regime, the valley currents
and nonlocal resistances of bilayer graphene nanostructures with broken inversion symmetry are calculated. It
is shown that broken inversion symmetry in bilayer graphene nanostructures leads to striking enhancement of
the nonlocal four-terminal resistance and to valley currents several times stronger than the conventional electric
current when the Fermi energy is in the spectral gap close to the energy of Dirac point. The scaling relation
between local and nonlocal resistances is investigated as the gate voltage varies at zero Fermi energy and a power
law is found to be satisfied. The valley velocity field and valley accumulation in four-terminal bilayer graphene
nanostructures are evaluated in the presence of inversion symmetry breaking. The valley velocity and nonlocal
resistance are found to scale differently with the applied gate voltage. The unit cell-averaged valley accumulation
is found to exhibit a dipolar spatial distribution consistent with the accumulation arising from the valley currents.
We define and calculate a valley capacitance that characterizes the valley accumulation response to voltages
applied to the nanostructure’s contacts.
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I. INTRODUCTION

Graphene is a two-dimensional one-atom-thick layer of car-
bon atoms arranged on a honeycomb lattice. Bilayer graphene
consists of two electronically coupled single graphene layers.
Excellent electrical and thermal conductivity [1–5] at room
temperature, high strength, flexibility, and transparency [6] are
properties common to bilayer and monolayer of graphene that
make them appropriate candidates for potential applications
in future technology. In both monolayer and bilayer graphene
the conduction (valence) band has local minima (maxima)
called “valleys.” As a consequence, the charge carriers in
both materials have a degree of freedom, referred to as the
“valley degree of freedom” which is controllable electrically
when inversion symmetry is broken. Although the electronic
coupling between the two carbon layers that make up the
graphene bilayer is relatively weak, it nevertheless results
in important differences between the electronic structures of
bilayer and monolayer graphene. Specifically, in contrast to the
low-energy linear dispersion of monolayer graphene, the low
energy dispersion of bilayer graphene is quadratic. The band
structures of monolayer and bilayer graphene both possess
interesting topological properties related to the Berry phase
and Berry curvature [7]. The breaking of inversion symmetry
in both materials results in nonzero Berry curvature �k close
to Dirac points. Based on semiclassical theories of electron
transport [7–9], a nonzero Berry curvature affects the electron
velocity v in the presence of an electric field E according to

vk = 1

h̄

∂εk

∂k
+ k̇ × �k, (1)

where εk is the energy of a Bloch state with wave vector k and
h̄k̇ = qeE in the absence of magnetic fields. Consequently, the
Berry curvature �k can be exploited as a tool to manipulate the
valley degree of freedom in these materials when the inversion
symmetry is broken since �k points in opposite directions in
the two valleys. In particular, Eq. (1) implies a difference
in velocity of electrons that belong to different valleys if

the inversion symmetry is broken. This different response
of electrons in different valleys to electric fields may be
utilized in future valleytronic devices. However, it should be
noted that the inversion symmetry breaking (that is crucial
for valleytronics based on the Berry curvature mechanism) is
achieved in fundamentally different ways for monolayer and
bilayer graphene: For monolayer graphene it is imposed by
applying a staggered potential that is different at the two atoms
of the graphene unit cell. This is done in practice by placing
the graphene monolayer on a boron nitride substrate [10]. By
contrast, for bilayer graphene the inversion symmetry is broken
by applying potentials that are uniform throughout each of the
monolayers that make up the bilayer but differ between the two
monolayers. This is done by dual electrostatic gating [11,12].

Recently, experiments have been carried out, measuring
nonlocal four-terminal resistances of monolayer graphene on
born nitride [10] and of dual gate-biased bilayer graphene
(BLG) in a Hall bar configuration [11,12]. In these experiments
the inversion symmetries of the materials were broken as
described above so as to induce Berry curvature as well as a
band gap. Strong enhancement of the nonlocal (four-terminal)
resistance RNL was observed [10–12] when the Fermi level
passed the energy of Dirac points in the insulating regime.
Gorbachev et al. [10] and Shimazaki et al. [11] interpreted the
enhancement of RNL that they observed in symmetry broken
monolayer and bilayer graphene, respectively, as an effect due
to valley currents, basing their reasoning on the semiclassical
theories of electron transport embodied in Eq. (1). They argued
that the anomalous velocity [second term on the right-hand
side in Eq. (1)] generates pure valley currents transverse to the
electric current which is flowing within the sample between
current contacts. These valley currents then flow between the
voltage probes within the sample and result in a potential
difference and enhancement of the nonlocal resistance [10,11].

However, the enhanced nonlocal resistance was observed
in the insulating regime [10–12], where the Fermi level was
in the energy gap opened in the electronic band structures by
the respective symmetry breaking mechanisms. Therefore the
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electron transport mechanism involved was quantum tunnel-
ing. Hence, as has been discussed for monolayer graphene
nanostructures [13], the applicability of semiclassical theories
of electron transport [Eq. (1)] to the observed enhancement of
nonlocal resistance in the insulating regime is questionable be-
cause quantum tunneling has no classical analog. In addition, it
has been pointed out [13] that, according to Büttiker-Landauer
theory [14], the Berry curvature mechanism embodied in the
anomalous velocity term in Eq. (1) cannot affect nonlocal re-
sistances such as RNL in the linear response regime. Therefore,
any enhancement of RNL in the linear response regime should
not be regarded as evidence of valley currents arising from the
topological Berry curvature (anomalous velocity) mechanism.
On the other hand, fully quantum mechanical computer
simulations based on Büttiker-Landauer theory, carried out
for monolayer graphene nanostructures, have shown [13] that
in the linear response regime, inversion symmetry breaking
gives rise to both strongly enhanced nonlocal resistances and
strong valley currents when the Fermi level is within the energy
gap around the Dirac point. The valley currents found in those
simulations did not arise from the anomalous velocity term in
Eq. (1) but were the direct result of electron injection into the
monolayer graphene nanostructure [13].

The previous computer simulations [13] were confined to
monolayer graphene nanostructures. However, as has been
discussed above, the physics of bilayer graphene differs in
important ways from that of monolayer graphene with regard
to both the electronic structure and the symmetry breaking
mechanism. Therefore, whether analogous behavior of the
nonlocal resistance and valley currents should occur in bilayer
graphene has remained an open question. From a practical
perspective, the gate tunability of the symmetry breaking in
bilayer graphene by application of a perpendicular electric field
(being not available for monolayer graphene) is an advantage
for bilayer graphene as a potential candidate for applications
in future valleytronics. Also while experimental measurements
of nonlocal resistances of symmetry broken bilayer graphene
have been reported [11,12] no fully quantum mechanical
calculations of nonlocal resistances for this material are
available in the literature. It is therefore of interest to explore
the behavior of valley currents and nonlocal resistances in
bilayer graphene nanostructures theoretically by means of
fully quantum mechanical Büttiker-Landauer calculations.
Such calculations are reported in the present article.

Despite the fundamental differences (described above)
between the electronic structures and symmetry breaking
mechanisms of bilayer and monolayer graphene, we find
some qualitative similarities between the valley currents and
nonlocal resistances of the two systems. Specifically, we find
that in bilayer graphene nanostructures (in common with
monolayer nanostructures [13]) inversion symmetry breaking
induces strong enhancement of the nonlocal resistance and
strong valley currents transverse to the electric current in the
linear response regime when the Fermi level is in the energy
gap that is opened by the symmetry breaking. Also, in common
with the monolayer case [13], we find the valley currents
in the bilayer nanostructures to be chiral and to be located
predominantly near the edges of the bilayer graphene where
electrons are injected from electrodes when the Fermi level is
in the energy gap.

However, in the present article we also study quantitatively
the scaling of the valley velocity and nonlocal and local
resistances with the dual gate voltage Vg that is responsible
for the symmetry breaking in bilayer graphene; such studies
are not possible for monolayer graphene where symmetry
breaking is imposed instead by the presence of a boron nitride
substrate. We investigate the scaling relations of the local
resistance RL and nonlocal resistance and valley currents in
ballistic nanostructures in the linear response regime at zero
temperature as the gate voltage varies for EF = 0. We find
the power law RNL ∝ Rα

L to be satisfied with α = 2.19 in our
ballistic bilayer nanostructures, whereas α ∼ 2.77 has been
observed experimentally in bilayer graphene in the diffusive
regime [12]. While theoretical predictions for α have not been
available previously for bilayer graphene, α = 3 has been
predicted for diffusive spin Hall systems [15]. Interestingly,
we find the normalized valley current to scale linearly with
gate voltage for low gate voltages while the nonlocal resistance
scales quadratically starting from a nonzero value at zero gate
voltage.

We also introduce and calculate the valley accumulation
and valley capacitance associated with valley currents. While
there have been previous theoretical studies of valley currents
induced in graphene in various ways [13,16–23], whether and
to what extent the valley currents result in valley accumulation
of electrons, i.e., in differing electron populations of the
different valleys, has remained unclear. To our knowledge,
there has been no estimate of the valley accumulation or
of its spatial distribution resulting from valley currents in
any graphene device. This is despite the central role that
valley accumulation is expected to play in future valleytronic
devices whose operation, by definition, depends on imbalances
between the electron populations of the different valleys.
We therefore investigate the valley accumulation of electrons
associated with valley currents in bilayer graphene nanos-
tructures and report our results here. We find the valley
accumulation to typically have opposite signs on the two
carbon atoms of the unit cell of each graphene monolayer
of the bilayer. After averaging over the unit cell, we find the
cell-averaged valley accumulation to exhibit a dipolar spatial
distribution. The dipole is oriented along the overall direction
of the valley current flow, consistent with the valley current
giving rise to the dipolar accumulation. In order to develop
an intuitively appealing figure of merit for the magnitude of
the response of the valley accumulation to voltages applied
to the contacts of graphene nanostructures in the linear
response regime we define a valley capacitance and evaluate
it for a bilayer graphene nanostructure with broken inversion
symmetry.

The present model of bilayer graphene with broken inver-
sion symmetry, the formalism of Büttiker-Landauer theory,
the Lippmann-Schwinger equation, and their application in
calculations of the nonlocal resistance, valley currents, and
valley accumulation are described in Sec. II. Our results are
presented in Sec. III. We summarize and discuss our main
conclusions in Sec. IV. Technical details of the method of
solution of the Lippmann-Schwinger equation that yields our
calculated scattering amplitudes that enter the Büttiker equa-
tions that yield our calculated nonlocal resistances, and also
the wave functions of our transport states, are summarized in
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FIG. 1. Four-terminal BLG nanostructure with armchair edges.
The bottom (top) layer is shown in black (blue). Each contact is
composed of 40, semi-infinite 1D ideal leads (shown by red wavy
lines) that are attached to both layers and connect the nanostructure
to the reservoirs. The electric current flows through current contacts
1 and 2 while there is no net electric current entering or leaving the
voltage contacts 3 and 4. In nonlocal resistance studies the potential
difference is measured between contacts 3 and 4. Upper right inset:
Two types of first Brillouin zone of bilayer graphene, hexagonal
(solid) and rhombic (dotted). Lower right inset: Side view of four
carbon atoms of a unit cell in bilayer graphene in AB stacking.
The inversion symmetry point in the unit cell is the intersection of
dotted lines.

Appendix A. The calculation of the valley-projected electronic
states is described in Appendix B.

II. MODEL AND FORMALISM

To describe the bilayer graphene nanostructure with AB
stacking of the two honeycomb lattice layers, the nearest
neighbor tight-binding Hamiltonian HBLG is employed such
that

HBLG =
∑

n

εna
†
nan −

∑
〈n,m〉

tnm(a†
nam + H.c.)

+
∑

〈n1,m2〉
tn1m2

(
a†

n1
am2 + H.c.

)
, (2)

where εn is the on-site energy, and tnm = t = 2.7 eV is the
nearest neighbor hopping amplitude between the pz orbitals
of carbon atoms belonging to the same graphene monolayer.
tn1m2 = 0.1t is the hopping amplitude between the pz orbitals
of nearest neighbor carbon atoms belonging to different
graphene monolayers, such as carbon atoms A1 and B2 in the
lower right inset of Fig. 1. It should be noted that the interlayer
coupling [the last term on the right-hand side of Eq. (2)]
is absent in the tight-binding Hamiltonian of monolayer
graphene and is responsible for the difference between the
electronic band structures of monolayer and bilayer graphene.
To break the inversion symmetry of the structure, we have
chosen ε = +Vg/2 on the atoms of the top graphene layer and
ε = −Vg/2 on the atoms of the bottom layer to model the ef-

fects of the perpendicular electric field in the Sui et al. [12] and
Shimazaki et al. [11] experiments. In contrast to monolayer
graphene samples that require a hBN substrate to break the
inversion symmetry and introduce a band gap around the Dirac
point [10], the application of a perpendicular electric field in
bilayer graphene nanostructures enables the investigation of
gate tunability of nonlocal topological transport. Since precise
alignment of the crystal axes of the monolayer graphene
sample and hBN substrate is required during the fabrication
of monolayer graphene valleytronic devices, bilayer graphene
nanostructures (that do not require this alignment) may be
more attractive as candidates for applications in the future
technology.

A variety of different methods for calculating quantum
transport coefficients within tight-binding formalisms have
been developed and applied in the literature. They include
Landauer mode counting applied to calculated quasi-one-
dimensional band structures [24,25], recursive Green’s func-
tion techniques [26–29], nonequilibrium Green’s function
methods [30,31], stabilized transfer matrix methods [32–34],
and solution of the Lippmann-Schwinger equation [35–37],
among others. In the present work we chose the Lippmann-
Schwinger approach for the following reasons: It is very flexi-
ble, lending itself well to calculations of transport in the linear
response regime for tight-binding models of nanostructures of
many different materials, with arbitrary geometries. This ver-
satility has made possible its application to theoretical studies
of electron transport in two-dimensional (2D) semiconductor
nanostructures [35], in disordered metal nanostructures [36],
in ferromagnetic atomic contacts [37], in monolayer graphene
nanostructures [13], in molecules bridging transition metal
electrodes [38] and gold electrodes [39], in molecular spin
current rectifiers [40], in arrays of molecules on silicon [41],
in electrochemically gated protein nanowires [42], in single
molecule nanomagnets bridging metal electrodes [43], in
Fe/GaAs spin valves [44], in scanning tunneling microscopy
of molecules [45], in molecular electroluminescence [46], in
ballistic electron spectroscopy of buried molecules [47], in
vibrational spectroscopy of molecular junctions [48], and oth-
ers. The Lippmann-Schwinger equation is readily applicable
to calculations of transport in nanostructures with arbitrary
numbers of electrical contacts [13] when combined with the
Büttiker-Landauer formalism [14]. It yields exact numerical
solutions of the transport coefficients for the tight-binding
model described by Eq. (2) in the linear response regime.
Thus it is well suited to the present study of nonlocal resis-
tances and valley currents in four-terminal bilayer graphene
nanostructures.

According to Büttiker-Landauer theory [14] at zero tem-
perature in the linear response regime, the current Ii in each
contact i in a multiterminal nanostructure is related to the
electrochemical potential of that contact μi and other contacts
μj by

Ii = qe

h

⎛
⎝Niμi − Riiμi −

∑
j �=i

Tijμj

⎞
⎠, (3)

where Ni is the total number of modes supported by contact
i, Tij is the electron transmission probability from contact j
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to contact i, and Rii is the electron reflection probability from
the nanostructure for contact i. In this study, each contact
is represented by a group of semi-infinite one-dimensional
(1D) tight-binding leads with one orbital per site, as in many
previous theoretical studies of quantum transport [37–48].
These ideal leads (represented by wavy lines in Fig. 1) are
attached to edge sites of both graphene layers.

In order to calculate the Tij coefficients of Büttiker-
Landauer theory, we have solved the Lippmann-Schwinger
equation

|ψl〉 = ∣∣φl
◦
〉 + G◦(E)W |ψl〉, (4)

as is described in Appendix A. Here |φl
◦〉 is an eigenstate of the

lth lead that is decoupled from the BLG nanostructure, G◦(E)
is the sum of the Green’s functions of the BLG nanostructure
and leads when they are decoupled, and |ψl〉 is the scattering
eigenstate of the coupled system. W is the coupling between
the BLG nanostructure and the ideal leads, i.e.,

W = −
∑

n

t(b†nan + H.c.), (5)

where b
†
n is the electron creation operator at a lead site attached

to the nanostructure, an is the electron annihilation operator
at the BLG site attached to the corresponding lead, and the
hopping amplitude t is assumed to be the same as the hopping
between the pz orbitals of in-plane nearest-neighbor atoms
of the BLG nanostructure. Having evaluated scattering states
|ψl〉, the coefficients Tij that enter Büttiker-Landauer theory
[Eq. (3)] are given by

Tij (E) =
∑
l,p

∣∣t ijlp
∣∣2 vi

l

v
j
p

, (6)

where t
ij

lk is the quantum transmission amplitude of an electron
transmitted from the kth lead of contact j to the lth lead of
contact i at energy E obtained from the scattering states |ψl〉.
v

i(j )
l(p) = 1

h̄
∂ε
∂k

is the electron velocity in the 1D semi-infinite lead
l(p) of contact i(j ) at energy E, and ε are the energy eigenval-
ues of the tight-binding Hamiltonian of the semi-infinite ideal
lead. To calculate the four-terminal nonlocal resistance RNL of
a BLG nanostructure, following the calculation of electron
transmission probabilities Tij at the Fermi energy EF, the
Büttiker equations [Eq. (3)] are solved. Then

RNL = �V3,4

I1,2
, (7)

where I1,2 is the electric current flowing between the current
contacts 1 and 2 and �V3,4 is the potential difference between
the voltage contacts 3 and 4. Here the potential difference �V

and electrochemical potentials μ appearing in the Büttiker
equations [Eq. (3)] are related by �V = �μ/qe.

In order to estimate the valley currents induced in a BLG
nanostructure in response to the electrochemical potential
differences between the contacts, the scattering states |ψl〉 of
electrons incident from each lead l at energy E are evaluated
by solving the Lippmann-Schwinger equation (4). Then the
electron scattering states |ψl〉 are projected onto the Bloch
states of BLG. As in Ref. [13], the Bloch state is assumed to
belong to valley K (K ′) if its wave vector lies within the the

upper (lower) half of the rhombic Brillouin zone represented
by dotted lines in the upper right inset of Fig. 1. Further details
of the projection method are described in Appendix B.

The η component of the velocity operator for electrons in
BLG nanostructure is

vη = 1

ih̄
[η,HBLG], (8)

where η = ∑
n ηna

†
nan and ηn is the η coordinate of atomic

site n. Then, the valley velocity is expressed in terms of
the expectation values of the velocity operator Eq. (8) with
respect to projected states |ψl

K〉 and |ψl
K ′ 〉 of valley K and

K ′, respectively. For bilayer graphene nanostructures with
multiple contacts i, each at its own electrochemical potential
μi , we define the valley velocity as an average over the
contributions arising from the different contacts weighted
according to the electrochemical potential differences between
the contacts [13]. In particular, the weighted average velocities
of electrons in valley K and K ′ are defined by

vK(K ′)η =
∑

l,i
1

Nli

〈
ψli

K(K ′)

∣∣vη

∣∣ψli
K(K ′)

〉
�μi∑

l,i �μi

, (9)

where Nli is an appropriate wave function normalization factor
and �μi is the electrochemical potential difference between
contact i and the lowest electrochemical potential of all of the
contacts. Having evaluated vKη and vK ′η, the weighted valley
velocity is defined here as

vval
η = vKη − vK ′η. (10)

As in Ref. [13] for monolayer graphene, the valley velocity
field for the BLG nanostructure is defined by expressing the
expectation value of the valley velocity given by Eqs. (9)
and (10) as a sum of contributions of nearest neighbor pairs of
C atoms in each layer and assigning each such contribution to
the midpoint of the respective atomic pair.

From the perspective of potential valleytronic applications
it is also important to know the valley accumulation and
its spatial distribution in the device. For an electron in an
appropriately normalized state |ψl〉, the valley accumulation
in that state at atomic site n with carbon atom pz orbital |n〉 is
defined by al

n = |〈n|ψl
K〉|2 − |〈n|ψl

K ′ 〉)|2. For a nanostructure
with multiple contacts in the linear response regime, the total
valley accumulation An induced at atomic site n by changes
�μi in the electrochemical potentials μi of contacts i is then
given by

An = 1

2π

∑
l,i

(|〈n|ψl
K〉|2 − |〈n|ψl

K ′ 〉|2)
∂ζ l

∂E
�μi, (11)

where it is assumed that the scattering state ψl originates
in a semi-infinite 1D ideal tight-binding chain where it is
normalized so that on site m of the chain 〈m|ψl〉 = eiζ lm +
rle−iζ lm where rl is the reflection amplitude of the incoming
state |ψl〉 from the nanostructure back into ideal lead l, and E

is the energy eigenvalue corresponding to state ψl .
It is then natural to define valley accumulation susceptibil-

ities per carbon atom as

Cni = e2 ∂An

∂�μi

, (12)
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where the factor e2 is introduced so that Cni has the units of
capacitance. Henceforth we shall refer to the Cni as “partial
valley capacitances.” For a multiterminal device in the linear
response regime we characterize the total valley accumulation
due to the contributions of all of the contacts by a total valley
capacitance defined by

Cn = e2 An

�μmax
, (13)

where �μmax is the largest of the �μi over all of the contacts
i.

We find the valley capacitances to often have differing signs
at the different atoms in the unit cell, and therefore to better
characterize the overall magnitude of the valley accumulation
we define an averaged valley capacitance by

Cav(x,y) = Cl + Ck

2
, (14)

where (x,y) = [(xl + xk)/2,(yl + yk)/2], and Cl and Ck are
the total valley capacitances calculated for two carbon atoms
belonging to the same graphene layer and in the same unit cell.
Inspection of spatial maps of these cell-averaged capacitances
facilitates developing an understanding of the relationship
between valley currents and valley accumulation, as will be
seen below.

III. RESULTS

The results of our calculation of the four-terminal nonlocal
resistance obtained by the application of Büttiker-Landauer
theory [Eq. (3)] at zero temperature in the linear response
regime are shown in Fig. 2(a) as a function of the Fermi
energy for different values of the gate voltage. As is seen
in Fig. 2(a), enhancement of the nonlocal resistance RNL

occurs near the energy of Dirac point EF = 0. The breaking of
inversion symmetry of the BLG nanostructure by application
of a potential +Vg/2 to the top layer and −Vg/2 to the
bottom layer leads to the striking enhancement of the nonlocal
resistance. As the gate voltage increases the maximum value
of RNL which occurs at EF = 0 also increases implying that
nonlocal electron transport in the BLG nanostructure is gate
tunable. Furthermore, as can be seen in Fig. 2(a), when the
Fermi energy is well away from the energy of Dirac point,
the symmetry breaking does not result in large nonlocal
resistances RNL.

The results for the normalized valley velocity vval
η /vy as a

function of the Fermi energy for different values of gate voltage
Vg are presented in Figs. 2(b)–2(d). The computed weighted
valley velocities in the x and y directions are normalized by
the weighted electron velocity in the y direction vy . [Since
the net electric current flows between the current contacts
1 and 2 (shown in Fig. 1) the weighted average velocity of
electrons in the x direction vx is near zero within numerical
error, as expected since the net electric current points in the y

direction.] In Fig. 2(b) the computed normalized x component
of valley velocity or valley current (vval

x /vy = I val
x /I ) is shown

for different values of the gate voltage where I is the total
electric current flowing through the nanostructure. It is seen
that the x component of valley current I val

x peaks when the
Fermi energy passes the energy of Dirac point. It should be

FIG. 2. (a) Calculated nonlocal resistance RNL [Eq. (7)] of
the nanostructure of Fig. 1 in the linear response regime at zero
temperature for different values of the gate voltage Vg = 0 eV
(green), Vg = 0.3 eV (red), and Vg = 0.5 eV (blue) as a function of
Fermi energy EF . (b) Normalized valley velocity vval

x /vy of the BLG
nanostructure for different values of the gate voltage as a function of
Fermi energy when the net current flows between current contacts 1
and 2. (c) Comparison of the x and y components of the normalized
valley velocity as a function of Fermi energy at Vg = 0.5 eV. (d)
Comparison of the x and y components of normalized valley velocity
as a function of Fermi energy at Vg = 0.3 eV.

pointed out that when the inversion symmetry breaking is
absent (Vg = 0) the evaluated valley current in the x direction
is zero at EF = 0, while its value exceeds the value of electric
current flowing through the nanostructure in the presence of
inversion symmetry breaking for all of the values of Vg �= 0
that are shown. A comparison of the x and y components of
normalized valley velocities is presented in Figs. 2(c) and 2(d).
Based on these results the y component of valley current
approaches zero as the Fermi energy passes the energy of
Dirac point. To summarize, the valley currents flow through
the BLG nanostructure mainly in the x direction. Also, the
x and y components of valley current are relatively small in
the presence or absence of inversion symmetry breaking if the
Fermi energy is well away from the Dirac point.

For comparison, we have also calculated the nonlocal
resistance and valley current in the linear response regime for a
model nanostructure whose dimensions (including the widths
of the contacts) are one half of those of the nanostructure
considered in Figs. 1 and 2. The simulation results, show that
when the gate voltage Vg = 0.3 eV, the nonlocal resistance
of the smaller nanostructure is smaller by a factor of ∼ 16 at
EF = 0. However, the calculated normalized valley current in
the x direction is smaller by a factor of ∼ 2.5 for the smaller
sample. The valley current in the y direction is still equal to
zero when the Fermi level passes the energy of the Dirac point.

Returning to the bilayer graphene nanostructure in Fig. 1,
in Fig. 3(a) we show the gate tunability of the valley velocity
in the x direction (vval

x /vy) and of the nonlocal resistance
at zero Fermi energy (the energy at which the maximum
values of the valley current and nonlocal resistance occur)
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FIG. 3. (a) The normalized valley velocity (vval
x /vy) (purple line)

and nonlocal resistance RNL (green line) of the bilayer graphene
nanostructure as a function of gate voltage at zero Fermi energy EF =
0. (b) The scaling relation between the local and nonlocal resistance
as the gate voltage varies from 0 to 0.2 eV. Red line is the power
law RNL ∼ Rα

L fitted to the simulation data. Upper left inset: The
configuration of nonlocal resistance measurements. Lower right inset:
The configuration of local resistance measurements.

as the gate voltage Vg varies. As can be seen, the valley
current (purple line) increases from zero (when the inversion
symmetry is absent, i.e., Vg = 0) to a value of five times
larger than the electric current. The normalized valley current
increases linearly as the gate voltage increases for low values
of the gate voltage (i.e., 0 < Vg < 0.1 eV). By contrast,
the computed nonlocal resistance RNL (green line) of the

BLG nanostructure increases quadratically (from a nonzero
value at Vg = 0) as a function of gate voltage. Deviations
from these scaling relations of valley current and nonlocal
resistance occur for higher values of the gate voltage (i.e.,
Vg > 0.1 eV). The relationship between the local and nonlocal
resistances is investigated in Fig. 3(b) as the gate voltage
varies from 0 to 0.2 eV at zero Fermi energy. The local
resistance RL is computed when the electric current flows
through the nanostructure between current contacts 1 and 2 and
the potential difference is measured between the same contacts
(RL = �V1,2/I1,2). According to Fig. 3(b), the power-law
relation RNL ∼ Rα

L is satisfied with α = 2.19. Deviation of
α from the experimental results α = 3 [11] and α = 2.77 [12]
may result from the difference between ballistic transport
system investigated in this paper and diffusive transport in the
experiments. As reported [12], the power α differs in different
samples as a consequence of disorder in the samples.

The total valley capacitance [Eq. (13)] map of the bottom
layer of the BLG nanostructure is presented in Fig. 4(a) for
the net current flowing between current contacts 1 and 2. The
blue disks indicate a positive total valley capacitance Cn and
red disks represent negative Cn. As can be seen in Fig. 4(a),
the valley capacitance is stronger on sites close to the contacts
from which electrons enter the nanostructure even if no net
current flows through that contact. It should also be noted that
the total valley capacitance in the top layer (not shown) exhibits

FIG. 4. The calculated total valley capacitance, valley velocity field, and unit cell-averaged valley capacitance of the bottom layer of a
bilayer graphene nanostructure when the net electric current flows between current contact 1 and 2 at Vg = 0.15 eV and EF = 0. (a) The total
valley capacitance [Eq. (13)] is represented by blue (red) disks when the on-site valley accumulation is positive (negative). (b) The valley
velocity field (black arrows) and average valley capacitance (red and blue disks), Eq. (14).
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similar behavior to that for the bottom layer of the BLG
nanostructure.

In Fig. 4(b) the spatial distribution of the valley velocity and
average valley capacitance [Eq. (14)] in each unit cell of the
bottom layer for broken inversion symmetry (Vg = 0.3 eV)
is represented by arrows (black) and disks (red and blue),
respectively. As can be seen the valley current is chiral and
directed from left to right along the lower boundary of the
nanostructure, while along the opposite boundary (not shown)
the valley current is also chiral but weaker and travels in
opposite direction, from right to left. The overall directions
of the valley velocities along the lower and upper boundaries
of the BLG nanostructure reverse if the sign of Vg is changed.
Apart from at a few exceptional sites near the ends of contacts 1
and 3, the cell-averaged valley capacitance in Fig. 4(b) exhibits
a dipolar distribution, being negative (red) on the left and
positive (blue) on the right. The maximum absolute value of the
cell-averaged valley capacitance |Cav(x,y)| is ∼ 0.12 × 10−22

F/atom. For comparison, a classical parallel plate capacitor
with a 3.1 Å plate spacing would have a conventional
capacitance of ∼ 7 × 10−22 F per atomic area of graphene.

The dipolar character of the average valley capacitance in
Fig. 4(b) [the negative (red) region on the left and positive
(blue) region on the right] has physical (and potentially
practical) significance. It indicates that the valley current
that flows from left to right in fact transports the valley
degree of freedom across the nanostructure and results in a
significant valley imbalance between these two regions of
the nanostructure, despite the fact that the electron crystal
momentum is not conserved when an electron scatters from a
boundary of the nanostructure.

The computed average valley capacitance is negligible in
the absence of inversion symmetry breaking and grows as
the applied gate voltage increases. It should be noted that the
average valley capacitance in the unit cell and valley velocity
field in the top layer are similar to those in the bottom layer
that are shown in Fig. 4(b).

IV. CONCLUSIONS

The present study has investigated the nonlocal resistance,
valley currents, and average valley capacitance of four-
terminal bilayer graphene nanostructures from the perspective
of scattering theory in the insulating regime. The calculations
have been carried out in the limit where the effect of the
electric field that drives electrons has been sent to zero. As a
consequence, in the linear response regime, the interpretation
of the valley currents by application of the anomalous velocity
term is not appropriate. The valley currents calculated here
within the formalism of scattering theory are not due to
the acceleration of electrons in an electric field when the
inversion symmetry is broken (nonzero Berry curvature), but
result from nonadiabatic injection of electrons into the BLG
nanostructure through the contacts. The valley currents are
maximal in the insulating regime where the Fermi energy is in
a spectral gap close to the energy of Dirac point, so that electron
transport is only possible by quantum tunneling. Consequently,
the calculated valley currents are strongest in the BLG
nanostructure with broken inversion symmetry close to the
contacts from which electrons enter the nanostructure even if

there is no net electric current passing through those contacts
(the case of voltage contacts of the BLG nanostructure).
For the Fermi energies near the energy of the Dirac point,
the valley currents are several times larger than the electric
current passing through the current contacts when the inversion
symmetry is broken. On the other hand, if the Fermi energy
is well away from the Dirac point, the impact of inversion
symmetry breaking on the overall magnitude of the valley
currents is not significant. Furthermore, mapping the average
valley capacitance calculated in the BLG nanostructure with
broken inversion symmetry reveals a dipolar distribution that
results from the presence valley currents so that the average
valley capacitance increases in the direction of valley currents.
The evaluated scaling relation between local and nonlocal
resistances as the gate voltage varies, shows that the diffusive
power law is satisfied in the ballistic linear response regime
although with a modified exponent. The valley currents and
average valley accumulation in bilayer graphene are electri-
cally controllable by means of a perpendicular electric field
which is an advantage for the application of bilayer graphene
over monolayer graphene nanostructures. It should be noted
that the valley currents and average valley capacitances in both
layers of the bilayer graphene have similar characteristics.
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APPENDIX A: SOLUTION OF THE
LIPPMANN-SCHWINGER EQUATION

In this Appendix we discuss the evaluation of the decoupled
Green’s function G◦(E) that enters the Lippmann-Schwinger
equation (4), the method of solution of the Lippmann-
Schwinger equation in the tight-binding formalism, and how
this solution relates to the Büttiker equations and the electronic
transport states.

The Green’s function of each decoupled contact represented
by a group of semi-infinite one-dimensional leads depicted in
Fig. 1 is the sum of the Green’s functions of the individual
decoupled leads associated with that contact. The energy of an
electron in a one-dimensional lead with one atomic orbital per
site in the tight-binding model is Ek = ε + 2τcos(ka), where
ε is the on-site energy (equal to the on-site energy of the carbon
atom attached to that lead), τ is the hopping amplitude between
the nearest neighbors [|τ | = t in the bilayer graphene tight-
binding Hamiltonian Eq. (2)], and a is the nearest neighbor
spacing between the atomic sites in one-dimensional lead.
Therefore, the electron wave function in the lth lead when it
is decoupled from the graphene nanostructure has the form

|φ◦〉 = 1√
2N

N∑
nl=1

(eiknla − e−iknla)|nl〉, (A1)

where N is the total number of atoms (assumed to be very
large) in the one-dimensional lead, and |nl〉 is the nth atomic
orbital state in that lead. Then the decoupled Green’s function
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of the lth lead is

Gl
◦(E) = 1

E − Hl◦ + iδ

=
∑
nlnl

′
(G◦)lnlnl

′ |nl〉〈nl
′|, (A2)

where Hl
◦ is the Hamiltonian of the lth decoupled 1D lead and

(G◦)lnlnl
′ = 〈nl |Gl

◦(E)|nl
′〉. For our purposes this decoupled

Green’s function needs to be evaluated only at an end site
(nl = ±1) where the lth lead will ultimately be attached to the
BLG nanostructure. Its corresponding matrix element can be
written as

(G◦)l±1,±1 = 1

2π

∫ 2π

0
dk

1 − e2ik

{E − [ε + 2τcos(k)] + iδ} .
(A3)

By application of residue theorem, the Green’s function of the
decoupled semi-infinite one-dimensional lth lead is

(G◦)l±1,±1 = i

2τ

(1 − e2ika)

sin(ka)
. (A4)

It should be noted that in derivation of Eq. (A3) we have
used the conversion of summation to the integral as

∑
k −→

L
2π

∫ π
a

− π
a

dk. Then the Green’s function of decoupled bilayer
graphene nanostructure can be written as

GBLG
◦ (E) =

∑
α

|α〉〈α|
E − εα + iδ

, (A5)

where εα are the energy eigenvalues and |α〉 are the correspond-
ing eigenstates of the BLG Hamiltonian (2) decoupled from the
leads. εα and |α〉 are calculated numerically by diagonalizing
the BLG Hamiltonian.

To evaluate the quantum transmission amplitude of an
electron t

ij

lk , transmitted from the kth lead of contact j to the
lth lead of contact i at energy E, we expand the scattering state
|ψl〉 of electrons that enters Eq. (4) in terms of atomic orbitals

|ψl〉 =
−1∑

nl=−∞

(
eiklnla + rle

−iklnla
)|nl〉

+
∑

i

Ci |ci〉 +
∑

β

∞∑
nβ=1

tβ,le
ikβnβa|nβ〉, (A6)

where l specifies the 1D lead from which the electron is
injected into the BLG nanostructure (belongs to one of the
contacts in Fig. 1), rl is the amplitude for reflection of the elec-
tron back into the same 1D lead l, i specifies the sites of the
carbon atoms in the nanostructure, and β specifies the 1D leads
into which the electron is transmitted with amplitude tβ,l . By
inserting Eqs. (A3), (A5), and (A6) into Eq. (4), and applying
〈ci |,〈−1l| and 〈+1β | to the result, the Lippmann-Schwinger
equation becomes a system of linear equations. This is solved
numerically to find the quantum transmission amplitudes tβ,l

and reflection amplitudes rl that are required to obtain the

transmission and reflection coefficients Tji and Rii that enter
the Büttiker Eq. (3) that is used to calculate the nonlocal
resistance RNL. The solution of the above system of linear
equations also yields the coefficients Ci in Eq. (A6) that
define the electronic transport states |ψl〉 within the BLG
nanostructure.

APPENDIX B: VALLEY-PROJECTED STATES

In order to evaluate the valley currents in the bilayer
graphene nanostructure, the scattering states of electrons |ψl〉
are projected onto crystal Bloch states, which can be written as

∣∣ψα
k

〉 = 1√
N

N∑
i=1

eik.Ri
[
cα
A1

(k)
∣∣pA1

z,i

〉 + cα
B1

(k)
∣∣pB1

z,i

〉

+ cα
A2

(k)
∣∣pA2

z,i

〉 + cα
B2

(k)
∣∣pB2

z,i

〉]
, (B1)

where α = 1, . . . ,4 denotes the different Bloch states having
wave vector k, N is the total number of unit cells in the BLG
nanostructure, Ri are the Bravais lattice vectors of bilayer
graphene, and |pA1

z,i 〉,|pA2
z,i 〉,|pB1

z,i〉,|pB2
z,i〉 are the carbon atomic

orbitals in the ith unit cell. Then the rhombic Brillouin zone
of bilayer graphene represented in Fig. 1 is divided into two
parts and the Bloch state is assumed to belong to the valley K

(K ′) if its wave vector lies within the the upper (lower) half
of the rhombic Brillouin zone. Hence, the projected states are
calculated as

∣∣ψl
K

〉 = A
∑

α,k∈K

∣∣ψα
k

〉〈
ψα

k

∣∣ψl
〉
,

(B2)
|ψl

K ′ 〉 = A
∑

α,k∈K ′

∣∣ψα
k

〉〈
ψα

k

∣∣ψl
〉
.

The Bloch states |ψα
k 〉 are defined on a continuum in k space.

However, in practice the sums in Eq. (B2) are evaluated on
a mesh of k points, the number of k points in the mesh
being chosen large enough for convergence of the valley
currents being calculated with the help of the valley-projected
states. Thus appropriate normalization of the projected states
is necessary. In Eq. (B2) A = number of unit cells

number of mesh points is the required
normalization factor, and the sums run over the mesh points
belonging to the corresponding valley K or K ′. Note that the
Bloch states of a bilayer graphene crystal with wave vector k
can be written as linear combinations of Bloch states (with
the same wave vector k) of the two monolayer graphene
crystals that comprise the bilayer. Therefore, for the purpose
of projecting the scattering states of electrons |ψl〉 onto the
subspace of crystal Bloch states with wave vector k, Bloch
states of a pair of decoupled graphene monolayer crystals can
be used instead of Bloch states of the bilayer in Eqs. (B1) and
(B2), with equivalent results.

This projection method was used in the present work.
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