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Ab initio calculation of the G peak intensity of graphene: Laser-energy and Fermi-energy
dependence and importance of quantum interference effects
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We present the results of a diagrammatic, fully ab initio calculation of the G peak intensity of graphene.
The flexibility and generality of our approach enables us to go beyond the previous analytical calculations
in the low-energy regime. We study the laser and Fermi energy dependence of the G peak intensity and
analyze the contributions from resonant and nonresonant electronic transitions. In particular, we explicitly
demonstrate the importance of quantum interference and nonresonant states for the G peak process. Our method
of analysis and computational concept is completely general and can easily be applied to study other materials
as well.
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I. INTRODUCTION

Raman spectroscopy of graphene has been a subject of
considerable interest as it is a fast and nondestructive way
for sample characterization. The typical Raman spectrum of
pristine graphene displays only two prominent peaks, the
so-called G and 2D peaks, which are the result of a scattering
process involving one and two phonons, respectively. Despite
this apparent simplicity, the Raman spectrum yields a large
amount of information on, amongst others, doping, strain,
interlayer interaction, and the underlying substrate [1–4]. To
understand the influence of these quantities on the Raman
spectrum of graphene, considerable effort has been made to
understand the shape [5–9], width [10–13], height [14–16],
and position [11,17–21] of the G and 2D peaks.

While a clear picture for the 2D peak has been established
[6,12,22,23], a corresponding simple picture for the G peak is
still missing. The latest theoretical effort by Basko [15] focused
on an analytical tight-binding approach in the low-energy
regime. In particular, the question of which electronic tran-
sitions contribute to the G peak has still not been satisfactorily
addressed. This question is also intimately tied to the role of
quantum interference effects in the G peak process, which
has been probed experimentally by the tuning of destructive
interference effects via variation of the Fermi level [24].

To address these open questions, we present results of a fully
ab initio calculation of the one-phonon Raman intensity of
graphene. Our general and flexible approach allows us to study
the laser and Fermi energy dependence of the G peak intensity
and enables us to analyze and understand the contributions
from resonant and nonresonant electronic transitions. In par-
ticular, we explicitly demonstrate the importance of quantum
interference and nonresonant states for the G peak process in
the low-energy regime.

This paper is organized as follows:
In Sec. II, we describe our approach to the calculation

of one-phonon Raman intensities from first principles. Sec-
tion II A contains the computational details of our ab initio
calculations, while we give details on the diagrammatic
approach to the calculation of the Raman matrix element
in Sec. II B. This subsection also introduces the two main
concepts needed for the subsequent discussion: quantum

interference effects and resonant contributions to the Raman
matrix element.

The results of our calculations are presented in Sec. III.
In particular we discuss: (A) the laser energy dependence of
the G peak intensity, (B) its Fermi energy dependence for
different laser energies, and (C) which electronic transitions
play a non-negligible role for the G peak process.

II. THEORY

In order to compute one-phonon Raman intensities from
first principles, we use a perturbative approach organized
via Feynman diagrams to calculate the quantum mechanical
amplitude, i.e., the scattering matrix element, for a one-phonon
Raman process. The quantities entering the expression for
the matrix element, such as the electronic band structure,
the electron-light, and the electron-phonon coupling were
obtained from ab initio calculations on the level of density
functional theory (DFT), as detailed below.

A. Computational details

The electronic density in the ground state was calculated
with the PWSCF code as included in the QUANTUM ESPRESSO

suite [25] using an ultrasoft pseudopotential. The exchange-
correlation functional was approximated on the level of the
generalized gradient approximation (GGA) in the parametriza-
tion of Perdew, Burke, and Ernzerhof (PBE) [26]. Integrals
over the first Brillouin zone (BZ) were carried out on a regular
mesh of 60 × 60 × 1 k points, while the plane-wave cutoff
was set to 80 Ry. These values lead to converged results for
a vacuum spacing of 14 Å, which separates periodic copies
of the graphene sheet in the z direction. As graphene has
semimetallic character, occupations were smeared out using a
0.002 Ry Fermi-Dirac smearing. For the lattice constant, we
use a value of 2.46 Å, obtained from structure relaxation.

The frequency of the doubly-degenerate optical phonon
at � was fixed at the experimentally [27] obtained value of
1581.6 cm−1 for pristine, freestanding graphene. Since we are
interested in the intensity of the one-phonon Raman peak,
we neglect the dependence of the phonon frequency on the
Fermi level as this shift is only on the order of a few cm−1
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(see Ref. [11]), corresponding to a change of 1–2 meV. This
change is negligible compared to the dominating energy scale
appearing in the expression for the Raman intensity set by the
laser energy, which is on the order of 1–4 eV for visible light.

The electronic band structure, the electron-light coupling
matrix element in the dipole approximation, and the electron-
phonon coupling matrix elements were obtained on a coarse
12 × 12 × 1 k-point mesh and then interpolated to a finer
480 × 480 × 1 k-point grid with the help of maximally
localized Wannier functions using modified forms of the
WANNIER90 [28] and EPW [29,30] codes. We only consider the
π and π∗ bands of graphene in the interpolation as relevant
optical transitions to the σ bands are forbidden by selection
rules.

Obtaining the above mentioned quantities on a very fine
k-point grid is necessary to obtain converged results for the
Raman matrix element. We checked the convergence of our
calculations with respect to the fine k-point mesh by testing
mesh sizes ranging from 12 × 12 × 1 to 960 × 960 × 1 k
points.

B. Diagrammatic calculation of Raman intensities

The intensity of the one-phonon Raman peak (the G peak)
per solid angle d� can be calculated via a generalization of
Fermi’s golden rule [15]:

dIG

d�
∝ ω2

out

(2π )2c4
|M|2 × δ(ωin − ωout − ωph), (1)

where

iM2πδ(ωin − ωout − ωph) ≡ 〈ωout,ν; ωph,λ|iT̂ |ωin,μ〉 (2)

is a short-hand notation for the scattering matrix element.
We focus on the case of Stokes scattering and factored out
the energy-conserving δ function from the matrix element.
For a phonon with finite lifetime, the δ function is to be
replaced by a Lorentzian with a full width at half maximum
of γph. In the expression above, the state |ωin,μ〉 represents an
incoming photon with frequency ωin and polarization μ, while
the state |ωout,ν; ωph,λ〉 ≡ |ωout,ν〉 ⊗ |ωph,λ〉 is comprised of
one outgoing photon of frequency ωout and polarization ν and
one outgoing (in-plane) optical phonon with frequency ωph

and polarization λ. Since the photon momentum is negligible,
we use its frequency rather than its momentum to label the
state. All photons are assumed to have momentum along the z

direction, i.e., to be polarized in-plane, which is reasonable as
the photon detector in an experiment is positioned on the axis
of the incoming light perpendicular to the sample.

The operator iT̂ = Ŝ − 1 denotes the nontrivial part of the
scattering matrix (S matrix). Within the framework of dia-
grammatic, time-dependent perturbation theory, the scattering
matrix element is given by [31]

iM × 2πδ(ωin − ωout − ωph)

=
[

lim
t→(∞−iε)

〈ωout,ν; ωph,λ|T

× exp

(
−i

∫ +t

−t

dt ′ Ĥint(t
′)
)

|ωin,μ〉
]

connected,
amputated

diagrams only

, (3)

FIG. 1. Leading order contributions in a diagrammatic expansion
of the Raman scattering matrix element. Wavy lines represent pho-
tons, curly (gluon-type) lines phonons, and straight lines electrons.

where the subscript text indicates that, in an expansion of
the exponential in terms of Feynman diagrams, only the fully
connected diagrams are to be retained and the propagators
for the three external lines (one each for the in- and outgoing
photon and one for the phonon) are to be removed and replaced
by the corresponding polarization vectors. The operator Ĥint

in the formula above represents the sum of the interaction
parts of the Hamiltonian (technically taken to be in the
interaction picture), i.e., it is the sum of the electron-photon
and electron-phonon interaction Hamiltonian and T denotes
the time-ordering symbol.

The leading order contributions in a diagrammatic expan-
sion of the T -matrix element are shown in Fig. 1. These
diagrams represent the leading order terms in the independent
particle picture, i.e., correlation effects beyond those included
in the one-particle Green’s functions are neglected. In particu-
lar, we neglect excitonic effects and correlation contributions
to the electron-phonon coupling besides those included already
on the DFT level. For optical transitions in the visible regime,
excitonic effects are assumed to be negligible in graphene
and only play a role when the excitation energy approaches
the van Hove singularity of the density of states [32]. While
excitonic effects might affect the quantitative results in this
energy regime, the qualitative results and the conceptual
understanding of the G peak process can still be understood on
the independent-particle level, as also recently shown for the
case of MoTe2 [33]. Electronic correlation effects were shown
to give a large contribution to the electron-phonon coupling for
phonons with momenta near � and K [34]. Since here we are
only interested in processes involving the phonons at �, these
corrections can, in a first approximation, be taken into account
by a simple rescaling of the electron-phonon coupling [34].
However, since we will always compare the calculated Raman
intensities or matrix elements to a calculated reference value
(e.g., to an intensity at a certain ωin), this correction factor will
always cancel in the ratio and is thus not included here.

Explicitly, the contributions from the leading order
Feynman diagrams read

iM1 =
∑
spin

∑
k

∫
dω

2πi
eiω0+

tr
[
Gk(ω)γ μ

k Gk(ω − ωin)

× (
gλ

k

)†
Gk(ω − ωout)

(
γ ν

k

)†]

iM2 =
∑
spin

∑
k

∫
dω

2πi
eiω0+

tr
[
Gk(ω)

(
γ ν

k

)†
Gk(ω + ωout)

× (
gλ

k

)†
Gk(ω + ωin)γ μ

k

]
. (4)
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Here, γ
μ

k and g
μ

k are 2 × 2 matrices in electronic band
space whose entries are the electron-light and electron-phonon
coupling matrix elements between two electronic states at k for
a photon/phonon with polarization μ. The matrix form of the
electronic Green’s function is denoted by Gk(ω), while “tr”
denotes the trace in the space of electronic bands. Since all
coupling matrices and Green’s functions are diagonal in spin,
the spin sum just yields a factor of 2. The sum over k points is
understood to represent an integration over the entire first BZ,
which we carry out by sampling the BZ with a regular mesh.
Satisfactory convergence was achieved with a 480 × 480 × 1
mesh. Due to the fact that the total matrix element is a sum
over k points, contributions from different parts of the BZ can
interfere constructively or destructively. We will revisit this
important point in Sec. III, when we discuss the interpretation
of our results.

The frequency integral can be evaluated via contour
integration, where the factor 0+ prescribes the closure of the

contour in the upper half of the complex plane. The application
of the residue theorem leads to a sum of three expressions
for each Feynman diagram, i.e., six terms in total, which
correspond to the six terms obtained from an expansion in
terms of time-ordered Goldstone diagrams (compare, e.g.,
Ref. [35] for explicit expressions of the six terms). After the
frequency integration has been carried out, the contributions
to the matrix element at a specific k point can conveniently be
grouped into three classes:

iMk = iMaDR
k + iMSR

k + iMNR
k , (5)

where the superscripts “aDR,” “SR,” and “NR” label the almost
double-resonant, the single-resonant, and the nonresonant
contribution to Mk, respectively. Here, “resonant” refers to
resonance of an electronic transition with the frequency of the
ingoing or outgoing light. For instance, the aDR contribution
reads (in the case of zero doping):

iMaDR
k =

((
γ ν

k

)†)
π,π∗

((
gλ

k

)†)
π∗,π∗

(
γ

μ

k

)
π∗,π[

ωin − �ε
π∗,π
k + iγ̄

π∗,π
k

][
ωout − �ε

π∗,π
k + iγ̄

π∗,π
k

] . (6)

This amplitude describes a process in which an electron is excited from the π to the π∗ band and is subsequently scattered
to an intermediate state in the π∗ band accompanied by emission of a phonon before it finally radiatively recombines with
the hole it left behind. This contribution is maximal when the energy of an electronic transition �ε

π∗,π
k ≡ επ∗

k − επ
k equals the

incoming or outgoing light frequency. In particular, for laser energies ωin � ωph, we have ωin ≈ ωout and the aDR-term becomes
quasi-double-resonant. By contrast, the SR-term

iMSR
k =

∑
s=π,π∗

{ ((
γ ν

k

)†)
π,π∗

(
γ

μ

k

)
π∗,s

((
gλ

k

)†)
s,π[

ωout − �ε
π∗,π
k + iγ̄

π∗,π
k

][−ωph − �ε
s,π
k + iγ̄

s,π
k

] +
((

gλ
k

)†)
π,s

((
γ ν

k

)†)
s,π∗

(
γ

μ

k

)
π∗,π[

ωph − �ε
s,π
k + iγ̄

s,π
k

][
ωin − �ε

π∗,π
k + iγ̄

π∗,π
k

]
}

(7)

can only become single resonant as the second factor in the
denominator involves the phonon frequency. In the expressions
above, the quantity γ̄

s,s ′
k is the average of the decay widths of

the states |s,k〉 and |s ′,k〉. For simplicity, we use a constant
value of 100 meV for the decay width of one state.

All other terms appearing in iMk are summarily included in
iMNR

k . These include terms that show resonant behavior with
respect to the phonon frequency. However, the set of electronic
transitions form an area in k space that is much smaller than
the corresponding area for the transitions that are in resonance
with respect to the incoming or outgoing light and its weight
in the sum over all k points is negligible and hence we do not
include these terms in the single-resonant category. We also
want to point out that, at least in the case of graphene, the sum
of the nonresonant contributions is by no means negligible, as
demonstrated in the next section.

III. RESULTS AND DISCUSSION

The calculation of the Raman intensity using Feynman
diagrams allows us to investigate the origin of various
experimentally established facts about the G line intensity.
We will first confirm that our model correctly predicts the
strong dependence of IG on the laser frequency ωL = ωin and
show that this strong dependence cannot be explained by the
energy dependence of the joint density of states (JDOS) alone.

Secondly, we focus on the combined Fermi energy (εF)
and ωL dependence of IG. As first measured and conceptually
explained in Ref. [24] and subsequently reproduced experi-
mentally in Ref. [36], the intensity of the G line is greatly
enhanced when 2εF approaches a value of ωL − ωph/2. Our
first principles approach allows us to investigate this behavior
as a function of ωL as well, going beyond the low-energy
approximation used in the analytic work by Basko [15] and
the recent theoretical work by Hasdeo et al. [37], which
relies on a tight-binding model and only considers the almost
double-resonant term of the matrix element. We find that the
relative increase of IG at the “critical” values of εF depends
nonmonotonically on the laser energy.

Finally, we demonstrate that the common textbook approx-
imation [35] of retaining only the almost double-resonant term
in the Goldstone diagram expansion of the Raman amplitude
fails in graphene. Instead, at low laser energies, the full set
of leading order Goldstone diagrams must be included to
get quantitative agreement with the full result. At higher
energies, however, it is sufficient to approximate the full
Raman amplitude with the sum of the almost double-resonant
and the single-resonant terms. Moreover, we demonstrate that
the simple picture of only taking into account the resonant
states (within a band of ± the electronic decay width) fails.
We find that the amount of states which contribute to the
total G peak intensity depends strongly on the laser energy.
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FIG. 2. (a) Intensity IG (blue line) vs laser energy ωL. The red,
dashed line represents the joint density of states (JDOS) as a function
of transition energy. The shaded regions correspond to the three
different regimes discussed in the text. Inset: Transition energy �εk

on part of the high-symmetry line �-K-M-�. The right panel shows
the JDOS. (b),(c) Zoom-in into the low- and mid-range energy regime
of panel (a). The green dashed lines represent an ω2

L [panel (b)]
and ω4

L [panel (c)] behavior, in agreement with previous analytical
calculations [15] and experiment [14], respectively.

For low ωL, we can confirm the prediction of the analytical
work of Basko [15] that electronic states from almost the
entire BZ contribute. For larger values of ωL (ωL � 2.5 eV),
however, we find that one needs to consider only a broad energy
band of width ≈2 eV around the resonance energy window
[ωL − ωph,ωL] to obtain quantitative agreement with the full
Raman amplitude. By contrast, considering only the resonant
energy band of width ±100 meV severely overestimates the
matrix element as destructive quantum interference effects are
neglected.

A. Laser energy dependence

The calculated laser energy dependence of IG is shown in
Fig. 2(a) (blue line). We find a strong dependence of IG on ωL.
This behavior cannot be simply understood in terms of the joint
density of states (red line). The Raman intensity strongly peaks
at a laser energy corresponding to the van Hove singularity
of the JDOS at around 4.1 eV, connected to the flatness of
the transition energy band structure [see inset of Fig. 2(a)],
as generally expected for optical spectra. At low excitation
energies, however, the intensity is suppressed even though a
sizable number of bright electronic transitions is available.
This is in contrast to a simple absorption spectrum, which
shows finite intensity whenever dipole-allowed electronic
transitions are available. Indeed, in the limit of constant or
only slowly varying electron-light coupling matrix elements
and in the absence of excitonic effects, the photon absorption

rate is proportional to JDOS(ωL)/ωL, i.e., its shape is mostly
determined by the joint density of states, in contrast to the
Raman intensity, which strongly deviates from the shape of
the JDOS. To understand this more complex behavior of IG

as a function of laser energy, we divide the excitation energy
range of interest into three different regimes, as indicated by
the three colored shades in Fig. 2(a).

In the first regime, corresponding to laser energies ωL �
1.5 eV, the Raman intensity follows an ω2

L behavior [see
Fig. 2(b)], in agreement with the analytical result obtained
by Basko [15]. However, when compared to the case of higher
excitation energies, the intensity is relatively suppressed. This
suppression can be understood in terms of (approximate)
angular momentum conservation. In the low-energy limit,
the band structure appears to be almost circularly symmetric
[“Dirac cone” around the K point, see inset of Fig. 2(a)]. Due
to the continuous in-plane rotation symmetry in this regime,
the z component of the angular momentum is conserved and
thus the initial and final states must carry the same total
angular momentum. Since the electronic system is in its
ground state both before and after the scattering event, its
contribution to the total angular momentum can be ignored.
A (circularly polarized) photon carries angular momentum of
±h̄ and so does the created (circularly polarized) E2g phonon,
as it transforms like a two-dimensional vector under rotations.
Therefore the final state, consisting of one photon and one
phonon can possess total angular momentum +2h̄, 0h̄, or
−2h̄. This differs from the angular momentum of the initial
state (one photon) of ±h̄ and hence this process would be
disallowed by angular momentum conservation in the case
of a perfectly circularly symmetric band structure. Since the
band structure only very weakly deviates from the circularly
symmetric conic shape in the low-energy regime, the G peak
intensity is relatively suppressed in this regime, even though
still nonvanishing due to the presence of weak trigonal warping
effects that break the full rotation symmetry.

If one increases the laser energy to the second regime
(1.5 � ωL � 2.5 eV), the band structure strongly deviates
from its circularly symmetric low-energy shape and becomes
strongly trigonally warped. The continuous rotation symmetry
is broken down to the 120◦-rotation symmetry of the lattice and
the (approximately) exact angular momentum conservation
is consequently reduced to angular momentum conservation
up to integer multiples of 3h̄ only. Thus an initial state
with angular momentum ±h̄ can be scattered to a final
state with total angular momentum ∓2h̄. As a consequence,
incoming light with polarization σ± has opposite polarization
after undergoing one-phonon Raman scattering. The selection
rules for linearly polarized light can be obtained from those
for circularly polarized light by taking appropriate linear
combinations and can be conveniently expressed in terms of
Cartesian Raman tensors [38]:

R(x) =
(

0 c

c 0

)
, R(y) =

(
c 0
0 −c

)
, (8)

where the argument in parenthesis refers to the polarization
of the E2g phonon created and the rows (columns) refer to
the x- or y- components of the incoming (outgoing) light
polarization. We verified that our calculations respect these
selections rules up to a relative factor of the order of 10−6.
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FIG. 3. Absolute value (log scale) and phase (color-encoded) of the Raman matrix element Mk on the high-symmetry line �-K-M-�
for ωL = 1.5, 2.5, and 4 eV (left to right). The top horizontal axis displays the transition energy �εk corresponding to the k point on the
high-symmetry line. The shaded area represents the value of the JDOS at the transition energy �εk of the corresponding k point. Lower panels:
Zoom-in into the region between K and M .

While our calculations reproduce the observed approximate
ω4

L dependence of the G peak intensity [14] [see Fig. 2(c)],
the intensity is still very small compared to higher excitation
energies. To understand why the Raman intensity is neverthe-
less still relatively small in the second regime even though
strong trigonal warping effects are present, we focus on the
contributions of the different k points to the total Raman
matrix element Mk = ∑

k Mk and their interplay. To this
end we look at the absolute value and phase of Mk on the
high-symmetry line �-K-M-� for three different values of
ωL, as shown in Fig. 3.

The absolute value of Mk is given on the vertical axis and
its relative phase is color encoded. The top horizontal axis
displays the corresponding electronic transition energy �εk,
while the shaded background shows the value of the JDOS at
this transition energy. The latter is a measure for the weight of
the corresponding k point in the total matrix element when a
full 2D integration over the BZ is performed.

One can clearly identify the resonant states from the figure,
which correspond to the largest values of |Mk| (compare
zoom-in shown in lower panels). For both ωL = 1.5 and 2.5
eV, the resonant states are sharply centered around one point
on each side of K . By looking at the phase of the resonant k
points, one notices that for each “resonance peak” the phase
continuously undergoes a change of π when passing over the
peak, i.e., contributions from k points to both sides of the
resonant k point have opposite phase and cancel each other
(see blue to yellow dots in the first two panels of Fig. 3).
This change of phase by π is typical for a driven system
and is well known from the simple system of a driven and
damped harmonic oscillator. It is of particular importance for
the case of Raman scattering however, as the total Raman

amplitude is a sum over contributions from different k points
and a relative phase of π leads to destructive interference, as
seen for the states centered around the resonant k point. While
the contributions from the vicinity of the resonant k points to
both sides of K cancel separately, it should also be noted that
the “inner” flanks of the two resonance peaks in the �-K and
K-M directions have opposite phase and also mostly cancel
each other as they have similar amplitude and weight. This is
related to the residual continuous rotation symmetry. A final
point to note is the contribution of the nonresonant states near
the van Hove singularity in the vicinity of the M point. While
the amplitude of these contributions is two orders of magnitude
smaller than those of the resonant k points, the corresponding
k points are broadly spread along the K-M direction of the
high-symmetry line, i.e., there are a lot of states along the
high-symmetry lines with similar amplitude, which are also
all in phase (red dots around M in the first two panels of
Fig. 3). Furthermore, when performing a 2D integration over
the entire first BZ, these states enter with a lot of weight as the
JDOS peaks at the corresponding transition energies. Thus, the
total contribution of the region around the van Hove singularity
at M , while nonresonant, is still far from negligible. However,
it turns out that this contribution is mostly canceled by the
sum of the nonresonant contributions from the rest of the BZ
(cyan dots in the �-K and M-� directions in the first two
panels of Fig. 3), which have opposite phase. This fact will be
demonstrated also (and more conclusively) in the last section
of this paper.

This picture of dominating destructive quantum interfer-
ence effects changes significantly for higher laser energy
[ωL � 2.5 eV, see third shaded region in Fig. 2(a)]. As seen
in the third panel of Fig. 3, the contributions of the flanks of
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FIG. 4. (a) G peak intensity IG as a function of Fermi energy εF and laser energy ωL (color-encoded), normalized to the intensity at zero
Fermi energy. (b) Value of εF at which IG reaches a maximum for both electron (full blue line) and hole doping (full red line). The colored
dashed (dotted) lines represent the respective conduction and valence band energy at the k point along the K-M (�-K) direction that is in
resonance with (ωin + ωout)/2. The black lines represent the sum of the respective blue and red lines, i.e., the electron-hole asymmetry. (c) π

and π∗ bands of graphene on part of the high-symmetry line �-K-M-�. The dashed line represents the electron-hole asymmetry of the band
structure. The colored lines denote the positive Fermi levels which lead to the peak intensities as shown in panel (a) for ωL = 1.5 (red), 2.5
(green), and 4 eV (violet). The shaded regions mark k points that do not contribute to the total Raman matrix element in the doped case, as the
corresponding electronic transitions are blocked by the Pauli principle.

the two resonance peaks still destructively interfere with each
other (blue to yellow dots). However, the resonance peak in the
K-M direction becomes very broad along the high-symmetry
line and the contributions are mostly in-phase (cyan to green
dots). Combined with the high JDOS at the corresponding
electronic transition energies, the contributions from these
resonant states dominate the total Raman matrix element
M for higher laser energies. This dominance is ultimately
a consequence of the flatness of the transition band structure
near the van Hove singularity at the M point [see inset of
Fig. 2(a)]. Compared to the lower laser energy regime, here,
the contributions from around the van Hove singularity cannot
be canceled by the sum of the nonresonant contributions from
the bulk of the BZ, as the relative weight and amplitude of
the resonant states is much too large compared to those of the
nonresonant states.

We can summarize the discussion of the laser energy depen-
dence of the G peak intensity as follows: In the very low energy
regime, the intensity is suppressed due to angular momentum
conservation associated with the continuous rotation symmetry
in the low-energy regime. As the excitation energy increases,
the intensity still remains low due to destructive quantum
interference effects, which leads to separate cancellations
among both the resonant and nonresonant contributions to
the Raman matrix element. Finally, for larger laser energies
(ωL � 2.5 eV), the resonant, in-phase contributions from the
K-M direction dominate the Raman matrix element. Due
to their increased weight as one approaches the van Hove
singularity at M , they cannot be suppressed by the sum of the
nonresonant contributions.

B. Fermi energy dependence

Next, we study the Fermi energy dependence of the G

peak intensity. We varied the Fermi level εF from −3 to +3 eV
relative to that of pristine graphene and calculated the resulting

G peak intensity for different values of the laser energy ωL.
We use the rigid band approximation, i.e., we do not take into
account the change of the electronic bands with εF. The results
of the calculation, normalized to the respective intensity for
pristine graphene, are shown in Fig. 4(a).

The different values of ωL are represented by color, from
ωL = 1.5 eV (red) to ωL = 4 eV (violet). For both electron
(right half) and hole doping (left half of the plot), the G

peak intensity shows a strong increase when εF approaches
a critical value. This critical value corresponds well to the
conduction or valence band energy of those states in the
K-M direction that are in resonance with the average of the
incoming and outgoing light energy, (ωin + ωout)/2, as shown
in Fig. 4(b). The strong behavior of IG as a function of εF has
been observed in experiment [24], but so far only for one fixed
laser energy. As can be seen from Fig. 4(a), the strength of
the relative increase of IG is expected to strongly vary with
laser energy. Furthermore, the electron-hole asymmetry [full
black line in Fig. 4(b)] of the εF values at which IG peaks
increases with excitation energy ωL, which can be understood
from the electron-hole asymmetry of the band structure at the
resonant k points in the K-M direction [dashed black line in
Fig. 4(b)].

A conceptual explanation for the observed sensible depen-
dence of IG on εF has already been suggested in the original
paper by Chen et al. [24]. The authors attributed the strong
increase of IG at the critical values of εF to blocking of
destructive quantum interference due to the Pauli principle.
When the Fermi level is increased (lowered), increasingly
more transitions from the π to the π∗ band are blocked,
as the corresponding electronic states in the conduction
(valence) band become occupied (unoccupied). As a result,
these transitions become blocked by the Pauli principle. In
Fig. 4(c), this concept is illustrated for the case of electron
doping and for three different laser energies. The shaded
regions mark those k points that do not contribute to the
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total Raman matrix element as the corresponding electronic
transitions are Pauli blocked. In particular, if the Fermi level
is tuned to certain values, a big part of destructive quantum
interference effects is switched off and as a result the G peak
intensity increases. The strength of this increase, however,
strongly depends on the laser energy. To understand this last
point, we consider the two extreme values of ωL considered in
our calculation, ωL = 1.5 and 4 eV, in more detail.

For the case of ωL = 1.5 eV, we see from Fig. 4(a) that,
on either side of the charge neutrality point, the intensity of
the G peak first goes through a strong increase, followed by
a minimum, and finally a smaller second peak that trails out
as εF is increased even more. This sequence of peaks and dips
is easily understandable in terms of the picture of quantum
interference discussed for the “mid-level” energy regime in the
previous section. There we demonstrated the fact that in this ωL

regime, the total Raman matrix element is suppressed because,
on the one hand, almost-resonant contributions of states from
k points around the resonance points mostly cancel each other,
while, on the other hand, nonresonant contributions from states
around the van Hove singularity are mostly canceled by the
sum of nonresonant contributions from the bulk of the BZ (see
also the left-most panels of Fig. 3 for illustration). When the
Fermi level is now increased from the charge neutrality point
at K , more and more k points around K do not contribute
anymore to the total matrix element because of the Pauli
principle. In terms of the “resonance peak” picture in the Mk
vs k plot from Fig. 3, this means that at first, an increase
in εF blocks contributions from the “inner” flanks of the two
resonance peaks, which destructively interfere with the “outer”
flanks. This results in the observed strong increase of IG.
The increase of IG continues until the Fermi level reaches
the point where it blocks the resonant transitions, at which
point IG reaches a peak value (at approximately εF = 0.71 eV
for electron doping). An even further increase of εF results in
a blocking of contributions from the constructively interfering
“outer” flanks and thus to a decrease of IG until a minimum
intensity is reached [compare dip in red curve of Fig. 4(a) at
around εF = 1.55 eV], corresponding to all almost-resonant
transitions being Pauli blocked. At this value of εF, the only
contributions to the total Raman matrix element come from
the nonresonant states from around the van Hove singularity
and from the bulk of the BZ, which cancel each other. A
further increase of εF, however, leads to Pauli blocking of the
van Hove singularity contribution, which can now no longer
destructively interfere with the nonresonant contributions from
the bulk of the BZ. This leads to another increase of IG again,
which peaks for a second time when εF reaches the van Hove
singularity at M [see small bump in red curve of Fig. 4(a) at
around 1.97 eV]. An even further increase of εF only leads to
more and more parts of the bulk of the BZ being Pauli blocked
and consequently IG trails out with increasing εF.

By contrast, in the case of ωL = 4 eV the G peak intensity
shows a much simpler and less strong behavior as a function of
εF. When εF is increased away from the charge neutrality point,
IG shows almost no response at first before lightly peaking at a
value of approx. εF = 1.65 eV. After that, IG quickly reduces
to zero when εF is increased even more. This is again consistent
with our earlier observation that for higher laser energies, the
G peak is mostly carried by resonant transitions and quantum

interference effects only play a minor role. When εF is first
increased, IG remains largely insensitive as only nonresonant
transitions from around K are Pauli blocked. Only when εF

approaches the resonant states near the van Hove singularity at
M does IG feature a response, when the destructive quantum
interference effects from the “inner” flank (see rightmost panel
in Fig. 3) are switched off. However, since the “resonance
peak” in k space is broad and mostly in-phase, the overall
response of the G peak intensity is not as strong for ωL =
4 eV as for lower laser energy, where the resonance peaks in
k space are very narrow and quantum interference between
the opposing flanks plays a much bigger role. After IG for
ωL = 4 eV reached a peak value at around εF = 1.65 eV, any
further increase of the Fermi level only leads to the blocking
of more and more resonant states, leading to a sharp decrease
of IG [compare violet curve in Fig. 4(a)]. After the entire
broad “resonance peak” in k space has been Pauli blocked, the
relative value of IG compared to the zero doping case remains
insensitive to any further change of εF, confirming our previous
finding that nonresonant states from the bulk of the BZ only
play a minor role at higher laser energies.

To summarize the Fermi energy dependence of the G peak
intensity, our ab initio calculations confirm the suggestion
of Chen et al. that the blocking of quantum interference
effects by shifting the Fermi level is the driving mechanism
behind the strong increase of IG as εF reaches a critical
value. Going beyond this, we demonstrated that the relative
increase of IG at these critical Fermi levels strongly depends
on ωL, as destructive quantum interference effects play an
increasingly less dominant role with increasing ωL. We also
predict that for small laser energies, the G peak intensity shows
a small resurgence even after all resonant states have already
been blocked, when εF approaches the van Hove singularity,
thus blocking its destructive influence on the nonresonant
contributions from the bulk of the BZ.

C. Relevant states for the G peak process

Finally, we address a question first discussed for the low-
energy case by Basko [15], namely which electronic transitions
are relevant for the G peak, i.e., which electronic states need
to be taken into account in a theoretical description. In the
preceding two sections we demonstrated that the influence
of quantum interference effects and of nonresonant states
strongly depends on the laser energy. It is thus not surprising
that the states that need to be considered for a quantitative
description of the G peak also vary with ωL.

To obtain a clear picture of which states contribute to the
G peak, we calculated the G peak intensity for different ωL

with increasingly more states, starting with the ones that are
in resonance with the incoming and/or outgoing light. To be
more precise, we introduce a transition energy window width
εcut and include only those electronic transitions that obey the
condition ∣∣∣∣�εk − ωin + ωout

2

∣∣∣∣ < εcut, (9)

i.e., the included states lie within a window of width 2εcut

around the average resonance frequency (ωin + ωout)/2, as
illustrated in the inset of Fig. 5(a).
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FIG. 5. (a) G peak intensity IG as a function of transition energy
window width εcut as discussed in the text, normalized to the intensity
calculated with all states included. The color corresponds to the laser
energy ωL. Inset: Illustration of the transition energy window width.
Dark shaded region: Window of states that are in resonance with
the incoming or outgoing light frequency for a laser energy of ωL =
2.5 eV. The width of the window is given by the electronic broadening
2γ̄k. Light shaded region: Included transition energy window for
εcut = 1 eV. (b) G peak intensity IG as a function of laser energy ωL

with certain resonant or nonresonant contributions only, normalized
to the value of IG calculated with all contributions. The dashed blue,
red, and black dashed lines correspond to IG calculated only with the
aDR, SR, or NR contributions, respectively, The green line shows
the values of IG calculated with the sum of the resonant aDR and
SR terms, i.e., with M = MaDR + MSR. Inset: Illustration of the
relevant states (as defined in the text) for ωL = 1.5 (left panel) and
4 eV (right panel).

We then proceed to calculate IG with only the states inside
the selected window. The resulting function IG(εcut) is plotted
for different laser energies ωL in Fig. 5(a). For each ωL, we
normalized with respect to the result obtained with all states
included, so that all curves tend to one for large εcut.

In Fig. 5(a), we observe the same behavior as discussed in
the previous two sections. When εcut is first increased from
zero, the first states to be included are the states that are
in resonance with the ingoing and/or outgoing light, which
contribute with a large amplitude to the Raman matrix element.
As a result, IG(εcut) displays a strong increase when the
resonant states are first included. The next states to be included
stem from the flanks of the “resonance peaks” in k space

(compare once more Fig. 3). These states differ in phase from
the resonant states and thus partially destructively interfere,
which leads to a decrease of IG(εcut) when these states are
included.

For low values of the laser energy ωL [red to green
curves in Fig. 5(a)], IG(εcut) increases once more when εcut

is increased. This second peak corresponds to the inclusion
of the states from around the van Hove singularity, which
are all in-phase and thus constructively interfering. Indeed,
the point of steepest ascend in the red to green curves of
Fig. 5(a) corresponds precisely to those values of εcut at which
the energy window encompasses the M point. When εcut is
increased even more, the destructively interfering states from
the bulk of the BZ are taken into account and hence IG(εcut)
decreases again. When enough of these nonresonant states are
taken into account, IG(εcut) finally converges to the value of
IG calculated with all states.

For higher values of the laser energy though, IG(εcut) does
not change any more after the resonant states have been taken
into account, as seen in the behavior of the blue to violet lines
in Fig. 5(a), which converge straight to the correct value of
IG. This once more shows that destructive interference from
nonresonant states does not play a significant role in this ωL

regime.
To further prove this last point, we can consider the resonant

and nonresonant terms separately and calculate the G peak
intensity only with some of them. Recall from Eq. (5) that
the total matrix element can be written as the sum of an
almost double-resonant (aDR), a single-resonant (SR), and a
nonresonant contribution (NR), with each one of them already
implicitly summed over k points. If we calculate IG with only
the aDR, the SR, or the NR contribution as a function of ωL

and normalize to the value of IG including all contributions,
we obtain the dashed lines shown in Fig. 5(b). Doing the
calculation only with the aDR or the NR terms severely
overestimates the G peak intensity for low excitation energies,
while it underestimates the correct result for IG for larger ωL.
A calculation with only the single-resonant terms, on the other
hand, always underestimates the correct value for IG.

More interesting, however, is the result we obtain when
we consider the sum of the aDR and SR contributions in the
total matrix element, i.e., we include all terms in the total
matrix element that can go resonant with either the incoming
or outgoing light. The resulting curve is shown as a green line
in Fig. 5(b). The plot confirms our previous analysis in that, for
higher values of the laser energy (ωL � 2.5 eV), the resonant
contributions are the dominating ones. Indeed, a calculation
that only takes into account the resonant terms in the Raman
matrix element yields very good results in this laser energy
regime.

As a last point, we can finally visualize the required states
for different values of ωL by reconsidering our result obtained
with a transition energy window width εcut shown in Fig. 5(a).
If we start from the maximum considered value of the cutoff
(the full π -band width), and gradually lower the value of εcut

until IG(εcut) differs from the correct value of IG by more
than 2%, we obtain a minimum transition energy window
width around the resonant states that are needed to achieve 2%
accuracy. For this minimal value of εcut, we can visualize the
corresponding k points within this transition energy window
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in a plot of the band structure. This is shown for the two laser
energies ωL = 1.5 and ωL = 4 eV in the inset of Fig. 5(b).
In this representation it becomes immediately clear that for
low laser energies the relevant electronic transitions for the G

peak come from a large part of the BZ, in agreement with the
findings of Basko [15] in his analytical work in the low-energy
limit. For larger values of ωL, this picture changes, however,
in that the relevant states are localized in a broad band of total
width ∼2 eV around the resonance energy. It is important to
note that in neither ωL regime is it sensible to approximate
the Raman amplitude with an expression that only takes into
account resonant electronic transitions (in an energy window
of ± the inverse electronic life time).

IV. CONCLUSIONS

In conclusion, we developed a fully ab initio approach to
the calculation and study of one-phonon Raman intensities and
applied it to the case of monolayer graphene. We demonstrated
explicitly that quantum interference effects play a crucial role
for the understanding and interpretation of the Raman process
leading to the G peak of graphene. In particular, quantum
interference effects from nonresonant states are very important
for a correct low-excitation energy description of the G peak.
We confirmed the conceptual picture of Chen et al. [24]

that Pauli blocking of destructive quantum interference by
tuning the Fermi level to a critical value can lead to a large
enhancement of the G peak intensity. Furthermore, we predict
that the relative increase of the G peak intensity at the critical
Fermi level strongly depends on the laser energy. Finally, our
general approach enabled us to explicitly demonstrate which
electronic states need to be taken into account for an accurate
description of the G peak for a wide range of laser energies,
going beyond the previous analytical analysis by Basko [15] in
the low-energy regime. In particular, we showed that for low
laser energy, transitions from almost the entire first Brillouin
zone need to be considered, whereas at higher laser energy,
only states in a broad band of full width ∼2 eV around the
resonance energy need to be taken into account.

While in this work we focused on a study of one-phonon
Raman intensities in monolayer graphene, our implementation
and method of analysis is completely general. As such, it can
be applied to analyze and study other materials as well [33].
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