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The recent experimental discovery of ϕ0 Josephson junctions by Szombati et al. [Nat. Phys. 12, 568
(2016)], characterized by a finite phase offset in the supercurrent, requires the same ingredients as topological
superconductors, which suggests a profound connection between these two distinct phenomena. Here, we show
that a quantum dot ϕ0 Josephson junction can serve as a qualitative indicator for topological superconductivity:
microscopically, we find that the phase shift in a junction of s-wave superconductors is due to the spin-orbit
induced mixing of singly occupied states on the quantum dot, while for a topological superconductor junction it is
due to singlet-triplet mixing. Because of this important difference, when the spin-orbit vector of the quantum dot
and the external Zeeman field are orthogonal, the s-wave superconductors form a π Josephson junction, while the
topological superconductors have a finite offset ϕ0 by which topological superconductivity can be distinguished
from conventional superconductivity. Our prediction can be immediately tested in nanowire systems currently
used for Majorana fermion experiments and thus offers a realistic approach for detecting topological bound
states.
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I. INTRODUCTION

Non-Abelian anyons are the building blocks of topological
quantum computers [1]. The simplest realization of non-
Abelian anyons are Majorana bound states (MBSs) in topolog-
ical superconductors (TSs) [2]. Such a TS can be induced by
an s-wave superconductor (SC) in systems of nanowires with
spin-orbit interaction (SOI) subject to a Zeeman field [3–6], in
chains of magnetic atoms [7–10], and in topological insulators
[11–16]. However, providing experimental evidence for the
existence of this new phase of matter has remained a major
challenge.

Here we present a qualitative indicator of MBS based on ϕ0

Josephson junctions (ϕ0JJs). In ϕ0JJs the Josephson current is
offset by a finite phase, ϕ0, so that a finite supercurrent flows
even when the phase difference between the superconducting
leads and the magnetic flux enclosed by the Josephson junction
(JJ) vanishes. Such ϕ0JJs have been discussed in systems based
on unconventional superconductors [17–22], ferromagnets
[23–26], quantum point contacts [27], topological insulators
[28], nanowires [29–31], diffusive systems [32,33], and in
Josephson junctions with alternating critical current density
[34]. Recently, the connection between ϕ0JJs based on
nanowires and TSs has been discussed and a quantitative
enhancement of the anomalous current was predicted for the
topological phase [35]. Most relevant for the present work,
the emergence of a ϕ0JJ was theoretically predicted [36–38]
in a system of a quantum dot (QD) with SOI subject to a
Zeeman field when coupled to s-wave superconducting leads
and observed in recent experiments [39]. Interestingly, the
ingredients for observing a ϕ0JJ in this type of system largely
overlap with those required to generate MBSs. Therefore, it
is expected that ϕ0JJ can provide a platform for detecting the
effects of topological superconductivity.

In this work, we focus on two models for ϕ0JJs based
on QDs which, compared to previous studies [36–38], are in
the singlet-triplet anticrossing regime. In the first model, two
s-wave SCs are tunnel coupled via a two-orbital QD with SOI
and subject to a Zeeman field, see Fig. 1(a), wherein we find a

finite phase shift caused by the SOI-induced mixing of singly
occupied states of the QD. In the second model, replacing the
two s-wave SCs by two TSs, see Fig. 1(b), we again find a finite
phase shift which results from the singlet-triplet mixing of the
doubly occupied QD states. When the spin-orbit vector �D

and the magnetic field are orthogonal, the system is invariant
under a composition of time reversal and mirroring in the plane
perpendicular to �D, under which the superconducting phase
goes to opposite itself; because the energy must be invariant
under this symmetry, there can be no terms that are odd
in the superconducting phase difference in the Hamiltonian
and thus no nontrivial phase offset [24,40]. However, the
MBSs in the TS leads are not time-reversal invariant and
thus transform nontrivially under the above transformations.
Consequently, we anticipate a nonzero phase shift for this case.
Indeed, we show that the phase shift ϕ0 is equal to π for the
s-wave superconducting leads [41], while ϕ0 �= 0,π for the
TSs leads (unlike [42,43]), which can, consequently, be used
as a qualitative indicator of MBSs.

II. JOSEPHSON JUNCTION MODELS

Our starting point for both of the JJ models outlined above
is the Hamiltonian

Hν = HD + Hν,L + Hν,t, (1)

where ν = S,TS corresponds to the model with s-wave SC
leads and TS leads, respectively. The first term in this
expression HD = H0 + HZ + HSOI is the Hamiltonian of
an isolated QD. Here, H0 = (Vg + δ/2)na + (Vg − δ/2)nb +
U/2

∑
τ nτ (nτ − 1) + Uabnanb describes a QD with two

orbitals τ = a,b at energy difference δ > 0 with respect to
a gate voltage Vg . The particle number operator of orbital τ

is nτ = ∑
s d

†
τsdτs with dτs the electron annihilation operator

with spin s = ↑,↓ quantized along the z axis in orbital τ . The
intraorbital (interorbital) Coulomb interaction strength is U

(Uab). Furthermore, HZ = −gμBB
∑

τ (d†
τ↑dτ↑ − d

†
τ↓dτ↓)/2

describes a Zeeman field B along the z axis of magnitude
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FIG. 1. Setups for ϕ0JJs. (a) Two s-wave SCs (red) are tunnel
coupled via a QD (yellow) with two orbitals a and b. The QD is
subject to an external magnetic field B at some relative angle θ

to its SOI �D. (b) Same visual encodings. The SCs are replaced
by two TSs (blue). The QD now couples to the two inner MBS
(crosses) �1,2 of the TSs. (c) Spectrum of the bare QD as a function
of B for the double occupancy sector. Red bands contribute to our
effective description; green bands do not. We have chosen δ = 1 meV,
g = 40, U = 0.9 meV, and Uab = 0.6 meV, 	D = 0.1 meV, so that
B (2) = 302 mT. (d) Same as (c) but for the single occupancy sector
with B (1) = 432 mT.

B = |B| with g the electron g factor and μB the Bohr
magneton. Lastly, HSOI = i�D/2 · ∑

s,s ′ (d
†
bsσ ss ′das ′ − H.c.)

describes the SOI on the QD, where �D = 	D(sin θ,0, cos θ ),
in which 	D �= 0, θ ∈ [0,π ] is the angle of the SOI vector
with respect to the Zeeman field and σ is the vector of Pauli
matrices.

The second term in Eq. (1) describes the isolated supercon-
ducting leads. For the first model, HS,L = ∑

η,kσ Ekγ
†
η,kσ γη,kσ ,

where γη,kσ is the quasiparticle annihilation operator in SC
η = 1,2 with momentum k, pseudospin σ = ⇑,⇓, and energy

Ek =
√

ξ 2
k + �2 with � the superconducting gap and ξk the

single-electron dispersion relation in the normal metal state.
The nondegenerate ground state of the s-wave superconduc-
tors, |0η〉, is defined so that γη,kσ |0η〉 = 0. For the second
model, we assume that the localization length of the MBS
wave functions is much smaller than the length of TSs. We also
neglect contributions of bulk quasiparticles which are valid for
energies much smaller than the energy gap. Consequently the
MBSs are at zero energy and HTS,L = 0. Hence the ground state
of the TS leads is fourfold degenerate which, upon choosing
a fixed parity subspace, becomes twofold degenerate. In the
following, we consider the odd parity subspace; however, the
results for the even parity ground state subspace are identical.
Finally, if the localization length of the MBS wave function is
comparable to the length of the TSs, a finite energy splitting
between the MBS in the same TS is induced, HTS,L �= 0.
However, within the perturbation theory approach carried out
in the next section, this energy splitting only modifies the
energy denominators in the effective Hamiltonian and can
be neglected when it is small on the energy scale of the

separation between the TS chemical potentials and the QD
energy levels [44].

The last term in Eq. (1) describes the tunnel coupling
between the superconducting leads and the QD. For the first
model, it is given by

HS,t =
∑
ητ

∑
ks

tητ e
iϕη/2 c

†
η,ksdτs + H.c., (2)

with cη,ks being the annihilation operator of an electron
with momentum k and spin s in SC η [45]. It is related
to the quasiparticle operators by cη,k↑ = ukγη,k⇑ + vkγ

†
η,−k⇓

and cη,−k↓ = ukγη,−k⇓ − vkγ
†
η,k⇑ with coherence factors

uk = (1/
√

2)
√

1 + ξk/Ek and vk = (1/
√

2)
√

1 − ξk/Ek. The
tunneling Hamiltonian also contains the superconducting
phase ϕη of SC η and real, spin, and momentum-independent
tunneling amplitudes tητ . The more general case of spin-
dependent tunneling amplitudes does not alter our results (see
also Appendixes B and C). For the second model, the coupling
of the TSs and the QD is given by

HTS,t =
∑
ητ

∑
s

tητ e
iϕη/2 �ηdτs + H.c., (3)

with �η being the MBS in TS η which is spatially closest to
the QD [46–48]. We assume that its partner �′

η at the opposite
end of the TS does not couple to the QD. However, they form
nonlocal fermionic operators C1 = (�′

1 + i�1)/2 and C2 =
(�2 + i�′

2)/2. Additionally, we assume temperatures that are
smaller than the superconducting gap � and the separation
between the MBS and the next finite-energy Andreev bound
state �′, kBT � �,�′.

We now proceed with a discussion of HD in the regime
of δ > U > UAB � |	D| common to typical experiments
[39]. First, we address the case of a doubly occupied dot,
na + nb = 2. For 	D = 0, the spectrum consists of three
singlet (triplet) bands which are constant (split) as a function
of the Zeeman field. As experimentally observed in [49], for
finite 	D and θ , the singlet and triplet bands anticross; see
Fig. 1(c). In all following discussions, we operate the QD in the
regime close to the anticrossing of the singlet |S〉 = d

†
b↑d

†
b↓|0D〉

and the triplet |T 〉 = d
†
a↑d

†
b↑|0D〉, which occurs at the Zeeman

field B(2) = (δ − U + Uab)/gμB . Here, |0D〉 is the vacuum
state on the dot. The effective Hamiltonian, valid to lowest
order in 	D, which acts in the two-level subspace spanned by
|S〉 and |T 〉 is H

(2)
ST = (2Vg − δ + U )|S〉〈S| + (2Vg + Uab −

gμBB)|T 〉〈T | + [i	D sin(θ )/2|T 〉〈S| + H.c.]. The spectrum
of H

(2)
ST is given by E

(2)
± with corresponding orthonormal

eigenstates

|E(2)
± 〉 = iS±|S〉 + T±|T 〉. (4)

Here, S±,T± are real functions of the system parameters; see
also Appendix A.

Second, we discuss the case of a singly occupied dot, na +
nb = 1. For 	D = 0, the energy levels for opposite spins split
as a function of the Zeeman field. For finite 	D and θ , an
energy gap opens up at the crossing point B(1) = δ/gμB of the
spin-up band in orbital a and the spin-down band in orbital b;
see Fig. 1(d). We will denote the four eigenvalues of the singly
occupied sector by E

(1)
λ for λ = 1, . . . ,4. The corresponding
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orthonormal eigenstates are given by∣∣E(1)
λ

〉 =
∑

s

(iAλsd
†
as + Bλsd

†
bs)|0D〉. (5)

Here, Aλs , Bλs are real functions of the system parameters; see
Appendix A. The relative imaginary unit in both Eq. (4) and
Eq. (5) is due to the SOI. We adjust the filling and the gate
voltage of the QD, so that its ground state is given by E

(2)
− while

its first excited states are given by E
(2)
+ and E

(1)
λ for some fixed

λ. The separation between E
(2)
− to the states E

(1)
λ′ with λ′ �= λ is

assumed to be large, |E(1)
λ′ − E

(2)
− | � E

(1)
λ − E

(2)
− . Finally, the

remaining occupancy sectors of the QD, whose energies are
much larger than the QD-lead coupling, are not relevant for
our results and are hence omitted.

III. DETECTING TOPOLOGICAL SUPERCONDUCTIVITY

In order to calculate the superconducting current, we tune
the chemical potential of the superconductors close to the
E

(2)
− level. We require for the SC JJ that πνF tητ tη′τ ′ � E

(1)
λ −

E
(2)
− ,|	D| sin(θ ),� with νF the normal-state density of states

of the leads at the Fermi energy and for the TS JJ that tητ �
E

(1)
λ − E

(2)
− ,|	D| sin(θ ), so that in both cases the states E

(2)
+ and

E
(1)
λ on the QD serve as virtual tunneling states. Our approach

is valid for angles θ ∈ [θc,π − θc], where θc is a critical angle
determined by the conditions above; see also Appendix D.
Furthermore, we work in a temperature regime of kBT �
E

(1)
λ − E

(2)
− ,|	D| sin(θ ). The effective tunneling Hamiltonian

HS,t (HTS,t) valid up to fourth (second) order in the tunneling
amplitudes acting on the ground state of the isolated dot and
s-wave (odd parity) ground state of the uncoupled leads is

H eff
ν,t = (

E0
ν cos ϕν + Ea

ν sin ϕν

)
Tν + Ẽν, (6)

with ϕS = 2ϕTS = ϕ1 − ϕ2 and TS = 1, TTS = C
†
1C2 + H.c. =

i�2�1 [44]. The first term in Eq. (6) arises due to Cooper
pair (nonlocal fermion) tunneling across the (TS) SC JJ. The
second term is an energy offset, due to processes for which
there is no such transport. At zero temperature, the Josephson
current, defined by Iν = 2e∂ϕEν,GS/h̄ with Eν,GS the ground
state energy of the coupled system, is given by

Iν = −I c
ν sin

(
ϕν − ϕ0

ν

)
, ϕ0

ν = arctan
(
Ea

ν /E0
ν

)
, (7)

where the critical current is I c
ν =

2κνe
√

(E0
ν )2 + (Ea

ν )2sgn(E0
ν )/h̄. Because in the TS case

the ground state is a function of ϕ, the sign of the Josephson
energy also depends on the phase difference: κTS = −1/2
when −E0

TS cos ϕTS − Ea
TS sin ϕν + ẼTS is the ground state

energy and κTS = 1/2 otherwise. In the SC case the ground
state is independent of ϕ and therefore κS = 1. Notice that
there is a finite phase shift only when Ea

ν �= 0. For the BCS JJ
the coefficients in Eq. (6) are given by

E0
S = gSt1bt2bB

2
λ↑

(
A2

λ↑t1bt2b + B2
λ↑t1at2a

)
,

Ea
S = gSt1bt2bAλ↑B3

λ↑(t1at2b − t1bt2a). (8)

The prefactor gS > 0, which is not relevant for the phase shift
ϕ0

S, includes the coherence factors and energy denominators
picked up in the perturbation theory; see also Appendix B.
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FIG. 2. (a) Phase shift ϕ0
ν (θ ) (left panel) and Josephson current

Iν(θ ) at ϕν = 0 (right panel) for λ = 4 and θ ∈ [θc,π − θc] with
θc = 0.3. System parameters are chosen as in Fig. 1 with B = B (2),
Vg = −0.80 meV, t1a = t2b = 0.01 meV, t1b = 0.05 meV, and t2a =
0.04 meV. Compared to the SC JJ the phase shift (Josephson current
at ϕS = 0) is nonzero for the TS JJ. (b) Experimental proposal. Left
panel: SQUID geometry of a nanowire QD JJ and a reference junction
without a QD connected in parallel. The current-phase relation of the
Josephson current through the QD JJ is measured with respect to the
reference junction by tuning the flux f through the SQUID. Right
panel: top view (upper panel) and side view (lower panel) of the QD
JJ. Local gates are applied to define the tunnel coupled QD (yellow)
as a short segment in a nanowire (gray) which is proximity-coupled
to an s-wave SC (red). Local gates are also used to orient the dot
SOI �D (green) and wire SOI �W (orange), respectively. To measure
ϕ0

ν (θ ) and Iν(θ ), a magnetic field B is rotated in the plane parallel to
the SC film.

The SC JJ exhibits in general a finite phase shift, when
t1at2b − t1bt2a �= 0. For ϕS = 0, the sign of the supercurrent
is determined by sgn(t1at2b − t1bt2a) and sgn(Aλ↑Bλ↑) ∝
sgn(	D). The origin of the phase shift in the SC JJ is the
superposition of singly occupied QD orbitals. Depending on
the virtual state, an electron tunnels with amplitude ∝iAλ↑Bλ↑
when switching orbitals on the dot or ∝(Bλ↑)2 or ∝(Aλ↑)2 if the
orbital is constant. Thus Cooper pairs tunneling with amplitude
Ea

S when the former process occurs once and amplitude E0
S

when the process occurs an even number of times Appendix B.
Notably, when the relative angle between Zeeman field and

SOI is θ = π/2 the SOI only mixes opposite spins in different
orbitals so that Aλ↑ = Bλ↓ = 0 for λ = 1,4 and Aλ↓ = Bλ↑ =
0 for λ = 2,3. Thus Ea

s = 0 and the phase shift ϕ0
S vanishes;

see Fig. 2(a).
Unlike the SC JJ, the TS JJ allows for nonzero phase shift,

see Fig. 2(a), at θ = π/2. The coefficients in Eq. (6) for the
TS JJ when λ = 1,4 are given by

E0
TS(π/2) = gTSB

2
λ↑S−T−(t1bt2a − t1at2b),

(9)
Ea

TS(π/2) = −gTSB
2
λ↑(S2

−t1bt2b + T 2
−t1at2a),

where the prefactor gTS > 0 includes the energy denominators
of the perturbation theory; see also Appendix C. In comparison
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to the SC JJ, the sign of the supercurrent at ϕTS = 0 in the TS
JJ is determined by parity i�2�1. If the parity fluctuates, the
supercurrent exhibits fluctuations as well. So the observation
of a phase shift requires sufficiently long parity lifetimes which
can be up to minutes [50]. Focusing on the case when λ = 1,4,
the processes that contribute to E0

TS(π/2) in Eq. (9) come from
virtual tunneling sequences taking a singlet to a triplet state,
with amplitude ∝iS−T−, and the corresponding sequences
taking a triplet to the singlet state, with an amplitude ∝
−iS−T−. We emphasize that these processes are only possible
due to the singlet-triplet mixing described in the previous
section. When the order in which the nonlocal fermion is
created or destroyed is opposite between these processes, the
tunneling sequences differ in phase by ϕTS + π and acquire the
same tunneling coefficients so that their sum is proportional
to cos(ϕTS). Distinctly, Ea

TS(π/2) originates from sequences
that take the singlet (∝S2

−) or triplet (∝T 2
−) to itself. In both

cases there exist two sequences that, again, differ in phase by
ϕTS + π but have the same tunneling coefficients, so that their
sums are ∝sin(ϕTS). When B � B(2) or λ = 2,3, E0

TS = 0 and
we obtain a ϕ0

TS = π/2 JJ for TS.

IV. EXPERIMENTAL PROPOSAL

In this section, we propose an experiment similar to [39]
for detecting topological superconductivity using a QD ϕ0JJ.
We consider a nanowire (NW) which is aligned along the
x direction and proximity-coupled to an s-wave SC; see
Fig. 2(b). By using local bottom gates, we form a tunnel
coupled QD as a short slice in the wire. The electric field
produced by the gates points along the y direction, so that
the dot SOI �D points along the z direction. Furthermore,
we contact the wire segments with back gates that generate
electric fields along the z direction and consequently induce a
wire SOI �W that points along the y direction. We also apply
an external magnetic field B that can be rotated in the xz plane.
Alternatively, the external magnetic field B is kept fixed and the
sample is rotated. Finally, we connect the resulting QD JJ to a
reference junction without a QD forming a SQUID geometry.
By tuning the flux f through the SQUID, the current-phase
relation of the QD JJ and consequently the anomalous phase
shift can be measured with respect to the reference junction.

Our proposed experiment proceeds in three steps.
(1) Initialization. We adjust the size of the QD so that

the singlet-triplet anticrossing occurs for a field close to the
topological phase transition, gμBB∗ =

√
�2 + μ2 with the

chemical potential of the NW leads, μ, tuned to E
(2)
− . Moreover,

we adjust the gate voltage Vg and filling of the QD so that its
ground state is given by E

(2)
− , while its first excited states are

E
(2)
+ and E

(1)
4 .

(2) Trivial phase. We consider the regime of a weak Zeeman
field, B < B∗. The NW chemical potential is placed well above
the magnetic field gap. In this limit, the SOI correction to the
NW dispersion is irrelevant. Also, the effect of the Zeeman
field on the NW leads is negligible, as it is well below the
field B∗ [51]. Hence the QD JJ is described by the effective
tunneling Hamiltonian H eff

S,t . We expect not to observe an
anomalous phase shift when the magnetic field B and the dot
SOI �D are orthogonal, ϕ0

S(θ = π/2) = 0.

(3) Topological phase. The setup is tuned to the topological
phase by increasing the magnitude of the Zeeman field so
that B > B∗. The NW chemical potential is tuned inside the
magnetic field gap. A MBS emerges at the NW boundaries and
the QD JJ is described by the effective tunneling Hamiltonian
H eff

TS,t . We expect to observe a change in the phase shift of the
Josephson current from ϕ0

S(π/2) = 0 to some ϕ0
T S(π/2) �= 0.

The proposed setup also allows us to measure the phase shift
dependence on the relative angle θ between B and �D by
rotating B in the xz plane. We note that the MBS are unaffected
by this rotation because dot SOI �D and the wire SOI �W are
always orthogonal [6]. Notably, for typical system parameters
of nanowire QD JJs, we find that, at zero phase difference
between the leads, |IS| ≈ 10 pA, while |ITS| ≈ 1 nA, which
corresponds to an increase by two orders of magnitude.

Finally, we remark that for a well-defined Josephson
current, we consider only regions with sizable energy gap, i.e.,
deep inside the trivial or topological phase. In particular, at the
phase boundary, the MBS delocalize and our effective theory
breaks down. In general, we expect the behavior of the phase
shift to be nonuniversal across the topological phase transition.

V. CONCLUSIONS

We have introduced a qualitative indicator for the detection
of topological superconductivity based on a QD ϕ0JJ. We
found that for this setup the trivial SCs always form a πJJ,
while the TSs can form a ϕ0JJ with ϕ0 �= 0,π . This change
in phase shift is accompanied by a significant increase in the
magnitude of the critical current. These observations can be
probed by simple modifications of recent experimental setups
in nanowire QD JJs [39].

ACKNOWLEDGMENTS

We acknowledge support from the Swiss NSF and NCCR
QSIT. We are grateful to J. Klinovaja for useful comments.

APPENDIX A: QUANTUM DOT WITH SPIN ORBIT
INTERACTION IN A ZEEMAN FIELD

This first section of the appendix provides a more detailed
discussion of the model for an isolated QD with SOI subject
to an external Zeeman field as given by HD in the main text.
The Hilbert space of the system is spanned by the occupation
number states

|na↑,na↓,nb↑,nb↓〉 = (d†
a↑)na↑(d†

a↓)na↓(d†
b↑)nb↑(d†

b↓)nb↓ |0D〉,
(A1)

where nτs ∈ {0,1} is the occupation number of an electron
with spin s in orbital τ . Since the total number of electrons on
the QD is conserved, we can address each sector with fixed
total occupation number separately.

1. Double occupancy sector

We start with an analysis of the double occupancy sector.
A basis is given by the singlet states

|1,1,0,0〉, |S〉 = |0,0,1,1〉, (|1,0,0,1〉 − |0,1,1,0〉)/
√

2,

(A2)
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and the triplet states

|T 〉 = |1,0,1,0〉, (|1,0,0,1〉 + |0,1,1,0〉)/
√

2, |0,1,0,1〉. (A3)

Representing HD in terms of these basis states we find that

H
(2)
D =

⎛⎜⎜⎜⎜⎜⎜⎝
2Vg + δ + U 0 0 −i	 sin(θ )/2 i	 cos(θ )/

√
2 i	 sin(θ )/2

0 2Vg − δ + U 0 −i	 sin(θ )/2 i	 cos(θ )/
√

2 i	 sin(θ )/2
0 0 2Vg + Uab 0 0 0

i	 sin(θ )/2 i	 sin(θ )/2 0 2Vg + Uab − gμBB 0 0
−i	 cos(θ )/

√
2 −i	 cos(θ )/

√
2 0 0 2Vg + Uab 0

−i	 sin(θ )/2 −i	 sin(θ )/2 0 0 0 2Vg + Uab + gμBB

⎞⎟⎟⎟⎟⎟⎟⎠.

(A4)

Here, the top left 3 × 3 block acts on the singlet subspace, while the bottom right 3 × 3 block acts on the triplet subspace and
the off-diagonal blocks contain the SOI which couples the singlet to the triplet subspace. The spectrum of H

(2)
D is depicted in

Fig. 1(c) of the main text. The effective Hamiltonian, valid to lowest order in 	, which acts in the two-level subspace spanned
by |S〉 and |T 〉 is

H
(2)
ST =

(
2Vg − δ + U −i	 sin(θ )/2
i	 sin(θ )/2 2Vg + Uab − gμBB

)
. (A5)

It contains the bare energies of the singlet |S〉 and the triplet |T 〉 on its diagonal. The SOI interaction then couples these levels
via the off-diagonal terms. The spectrum of H

(2)
ST is given by

E
(2)
± = 2Vg + [(U + Uab − gμBB − δ)/2] ±

√
[(U − Uab + gμBB − δ)/2]2 + (	 sin(θ )/2)2. (A6)

We see that the effect of the SOI is the opening of an energy gap at the crossing point of the bare singlet and triplet energy levels.
In terms of the angle between the Zeeman field and the SOI axis, the gap is maximal when θ = π/2 and vanishes when θ = 0.
The eigenstates of H

(2)
ST are

|E(2)
± 〉 =

(
iS±
T±

)
⇔ |E(2)

± 〉 = iS±|S〉 + T±|T 〉, (A7)

where the coefficients are given by

T± = ± 1√
2

√
1 ∓ U − Uab + gμBB − δ√

(U − Uab + gμBB − δ)2 + (	 sin θ )2
, S− = −sgn(	)T+, S+ = sgn(	)T−. (A8)

The mixing of the singlet and the triplet is minimal when 	 = 0 or θ = 0 and it is maximal when θ = π/2.

2. Single occupancy sector

We next discuss the single occupancy sector of the QD which is spanned by the basis states

|1,0,0,0〉, |0,1,0,0〉, |0,0,1,0〉, |0,0,0,1〉. (A9)

The matrix representation of HD in terms of these basis states is given by

H
(1)
D = 1

2

⎛⎜⎜⎜⎝
2Vg − δ − gμBB 0 i	 cos θ i	 sin θ

0 2Vg − δ + gμBB i	 sin θ −i	 cos θ

−i	 cos θ −i	 sin θ 2Vg + δ − gμBB 0

−i	 sin θ i	 cos θ 0 2Vg + δ + gμBB

⎞⎟⎟⎟⎠. (A10)

Here, the top left 2 × 2 block acts on the subspace of orbital b, while the bottom right 2 × 2 block acts on the subspace of orbital
a. The off-diagonal blocks contain the SOI which couples the a orbital to the b orbital. The spectrum of H

(1)
D is depicted in

Fig. 1(d) of the main text and is given by

E
(1)
λ = Vg + 1

2 (δλ1 + δλ2 − δλ3 − δλ4)
√

(	 sin θ )2 + (gμBB + (δλ1 − δλ2 − δλ3 + δλ4)
√

δ2 + (	 cos θ )2)2. (A11)

Here, δλλ′ for λ,λ′ = 1, . . . ,4, is the Kronecker δ. The eigenstates of H
(1)
D are of the form

∣∣E(1)
λ

〉 =

⎛⎜⎝ Bλ↑
Bλ↓
iAλ↑
iAλ↓

⎞⎟⎠ ⇔ ∣∣E(1)
λ

〉 =
∑

s

(iAλsd
†
as + Bλsd

†
bs)|0D〉. (A12)
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We now determine the coefficients Aλs and Bλs for the different relative angles θ between Zeeman field and SOI axis.

a. Zeeman field and SOI axis are orthogonal (θ = π/2)

For θ = π/2, the SOI is proportional to σx so that we expect the eigenstates of H
(1)
D to be linear combinations of opposite

spins in different orbitals. Indeed, we find that the only coefficients which are nonzero are given by

B1↑ = A4↓ = 1√
2

√
1 − gμBB + δ√

(gμBB + δ)2 + 	2
, B4↑ = −A1↓ = sgn(	)√

2

√
1 + gμBB + δ√

(gμBB + δ)2 + 	2
,

A3↑ = −B2↓ = 1√
2

√
1 + gμBB − δ√

(gμBB − δ)2 + 	2
, A2↑ = B3↓ = sgn(	)√

2

√
1 − gμBB − δ√

(gμBB − δ)2 + 	2
.

(A13)

The remaining coefficients are vanishing, B1↓ = A1↑ = A2↓ = B2↑ = A3↓ = B3↑ = B4↓ = A4↑ = 0.

b. Zeeman field and SOI axis are parallel (θ = 0,π )

In the case of θ = 0,π , the SOI is proportional to σ z. Consequently, we expect the eigenstates of H
(2)
D to be mixtures of same

spins in different orbitals. For θ = 0, we find that the nonvanishing coefficients are given by

B1↓ = A2↓ = −B3↑ = A4↑ = sgn(	)√
2

√
1 − δ√

	2 + δ2
, A1↓ = −B2↓ = A3↑ = B4↑ = 1√

2

√
1 + δ√

	2 + δ2
. (A14)

The remaining coefficients are all zero, B1↑ = A1↑ = A2↑ = B2↑ = A3↓ = B3↓ = B4↓ = A4↓ = 0. For θ = π , we find find that

B1↓ = A2↓ = −B3↑ = A4↑ = − sgn(	)√
2

√
1 − δ√

	2 + δ2
, A1↓ = −B2↓ = A3↑ = B4↑ = 1√

2

√
1 + δ√

	2 + δ2
. (A15)

As before, the remaining coefficients vanish, B1↑ = A1↑ = A2↑ = B2↑ = A3↓ = B3↓ = B4↓ = A4↓ = 0.

c. Zeeman field and SOI axis are nonorthogonal and nonparallel (θ �= 0,π/2,π )

We assume that 	 �= 0; for 	 = 0 we note that H
(1)
D is already diagonal. When θ �= 0,π/2,π , the SOI is proportional to both

σx and σ z. This means that the SOI mixes states of all spin species in all orbitals. We find that the components of the respective
eigenstates are given by

B1↑ = 1

N1

gμBB +
√

δ2 + (	 cos θ )2 −
√

(gμBB +
√

δ2 + (	 cos θ )2)2 + (	 sin θ )2

	 sin θ
,

B2↑ = 1

N2

gμBB −
√

δ2 − (	 cos θ )2 −
√

(gμBB −
√

δ2 + (	 cos θ )2)2 + (	 sin θ )2

	 sin θ
,

B3↑ = 1

N3

gμBB −
√

δ2 − (	 cos θ )2 +
√

(gμBB −
√

δ2 + (	 cos θ )2)2 + (	 sin θ )2

	 sin θ
,

B4↑ = 1

N4

gμBB +
√

δ2 + (	 cos θ )2 +
√

(gμBB +
√

δ2 + (	 cos θ )2)2 + (	 sin θ )2

	 sin θ
,

B1↓ = 1

N1

	 cos θ

δ +
√

δ2 + (	 cos θ )2
, B4↓ = 1

N4

	 cos θ

δ +
√

δ2 + (	 cos θ )2
,

B2↓ = 1

N2

	 cos θ

δ −
√

δ2 + (	 cos θ )2
, B3↓ = 1

N3

	 cos θ

δ −
√

δ2 + (	 cos θ )2
,

Aλ↑ = 1

Nλ

Bλ↑Bλ↓, Aλ↓ = 1

Nλ

,

(A16)

where Nλ is a normalization factor which we choose so that
√

A2
λ↑ + A2

λ↓ + B2
λ↑ + B2

λ↓ = 1. The normalization also ensures that

when θ → 0,π/2,π the expressions above reproduce the the corresponding limiting cases.
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APPENDIX B: s-WAVE SUPERCONDUCTOR ϕ0 JOSEPHSON JUNCTION

This second section of the appendix gives a more detailed discussion of the SC JJ described by HS in the main text.

1. Effective tunneling Hamiltonian

We begin with a derivation of the effective tunneling Hamiltonian H eff
S,t . Compared to the main text, we allow for a slightly

more general tunneling Hamiltonian with spin-dependent tunneling amplitudes,

HS,t =
∑
ητ

∑
ks

tητse
iϕη/2 c

†
η,ksdτs + H.c. (B1)

Because it is only the relative phase between the two superconductors which is a physical quantity, we assume that ϕ2 = 0 while
ϕ1 ≡ ϕ. We now briefly discuss the different tunneling processes which can occur in the system. Therefore, we rewrite HS,t in
terms of the quasiparticle operators,

HS,t =
∑

τ

∑
k

t1τ↑eiϕ/2ukγ
†
1,k⇑dτ↑ + t1τ↑eiϕ/2vkγ1,k⇓dτ↑ + t2τ↑ukγ

†
2,k⇑dτ↑ + t2τ↑vkγ2,k⇓dτ↑

+ t1τ↓eiϕ/2ukγ
†
1,k⇓dτ↓ − t1τ↓eiϕ/2vkγ1,k⇑dτ↓ + t2τ↓ukγ

†
2,k⇓dτ↓ − t2τ↓vkγ2,k⇑dτ↓ + H.c., (B2)

where we have assumed that ξk = ξ−k. We see that there are two types of tunneling processes. On the one hand, there are
processes in which we destroy an electron on the dot and create a quasiparticle on one of the SC leads (or vice versa). Here,
electrons and quasiparticles carry the same type of spin or pseudospin. On the other hand, there are processes in which we use
the superconducting condensate to simultaneously create (or destroy) an electron on the dot and a quasiparticle on the SC leads.
In this case, electron and quasiparticle always carry the opposite type of spin or pseudospin. Because of our convention for the
superconducting phases, whenever we destroy (create) an electron on the dot and destroy or create a quasiparticle on SC η = 1
we pick up a phase of eiϕ/2 (e−iϕ/2) during the tunneling process.

We now derive the effective tunneling Hamiltonian H eff
S,t using the projection method [52]. Up to fourth order in the tunneling

amplitudes we find that

H eff
S,t = PSHS,t(E

(2)
− − HD − HS,L)−1(1 − PS)HS,t PS + PS HS,t[(E

(2)
− − HD − HSC,L)−1(1 − PS)HS,t]

3 PS, (B3)

where PS = |01,E
(2)
− ,02〉〈01,E

(2)
− ,02| is the projector on the E

(2)
− state on the dot and the ground states of the SC leads. It acts

within the reduced Hilbert space of the states E
(2)
± ,E

(1)
λ on the dot and the full Hilbert space of the SC leads. Evaluating Eq. (B3)

yields an expression as given by Eq. (6) in the main text with ν = S and

E0
S = gSt1b↓t2b↓B2

λ↑
(
A2

λ↑t1b↑t2b↑ + B2
λ↑t1a↑t2a↑

)
,

Ea
S = gSt1b↓t2b↓Aλ↑B3

λ↑
(
t1a↑t2b↑ − t1b↑t2a↑

)
. (B4)

We point out that, unlike Eq. (8) in the main text, this result holds also for spin-dependent tunneling amplitudes. The coupling
constant is given by

gS = 2
∑
k,q

ukuqvkvq(
E

(1)
λ + Eq − E

(2)
−

)
(E(2)

+ + Ek + Eq − E
(2)
− )

(
E

(1)
λ + Ek − E

(2)
−

) > 0. (B5)

We give a complete table of the tunneling sequences (up
to Hermitian conjugation) contributing to the Cooper pair
transport in Figs. 3 and 4. Here, we note that the sum of the
processes in each row of Fig. 3 and Fig. 4 is ∝(S+T− − S−T+)2.
This factor is unity because the states E

(2)
± are orthonormal;

see Eq. (A8). This explains why the singlet-triplet mixing
does not enter the effective tunneling Hamiltonian. We omit
the presentation of ẼS since it is not relevant to compute
the Josephson current. The phase shifts ϕ0

S(θ ) and Josephson
currents IS(θ ) at ϕS = 0 are plotted in Fig. 9.

Finally, we highlight that it is sufficient to consider a
parabolic normal state dispersion for the topologically trivial
superconducting phase, i.e., to neglect the effects of SOI. To
see this, recall that in the topologically superconducting phase
of the nanowires the chemical potential needs to be carefully
tuned inside of the gap opened by the magnetic field, while

for typical experiments in the trivial superconducting phase
the chemical potential lies well above the gap opened by the
magnetic field. In the latter case, the small linear correction of
the SOI to the parabolic dispersion of the nanowire becomes
practically irrelevant. Hence we do not expect that the SOI axis
in the wire has any measurable effect on the anomalous phase
offset in the trivial superconducting phase of the wire, i.e., we
expect a trivial phase offset in the case when Zeeman field and
SOI axis on the dot are orthogonal. This also means that a wire
SOI axis that is misaligned with respect to the dot SOI axis will
not affect the phase shift of the supercurrent. This argument
was also verified by recent experiments, see Ref. [39], which
were carried out in the trivial superconducting phase at around
100–200 mT. In these experiments the gates applied to the
quantum dot inevitably cause its SOI axis to deviate from the
intrinsic wire SOI axis, while at the same time no nontrivial
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eiϕ/2.

eiϕ/2.

↑

↑↓

↑↓

↑⇓

↑⇓

↑
↑⇓ ⇓

↑ ⇓

⇓

−

γ†
1,k⇓db↓

d†b↑γ
†
2,q⇓

d†b↓γ2,q⇓

γ1,k⇓db↑

↑
↑

↑⇑

eiϕ/2.

↑⇑

↑⇑ ↓ ⇑

↑ ⇑

eiϕ/2.

↑ ⇑

↑
↑

↑ ↑↑ ↑⇑ ⇓

η = 1 η = 2

⇑ ⇓

−

a b

γ†
1,k⇑db↑

d†b↓γ
†
2,q⇑

γ1,k⇑db↓

d†b↑γ2,q⇑

−

−

−

−

eiϕ/2.

eiϕ/2.

↑↓

↑⇓

↑

−

γ†
1,k⇓db↓

γ1,k⇓db↑

↑↓⇓ ⇑
−d†b↓γ

†
2,q⇑

−

↑⇓ ⇑↑

⇑

↑
↑

d†b↑γ2,q⇑

eiϕ/2.

eiϕ/2.

↑↓

↑ ⇓

↑

↑↓ ⇓⇑ −

↑ ⇓⇑ ↑

⇑

↑
↑

γ†
2,q⇓db↓

−d†b↓γ
†
1,k⇑

d†b↑γ1,k⇑

−

γ2,q⇓db↑

t1b↑

t2b↓

t1b↓

t2b↑

t1b↓

t2b↑

t1b↑

t2b↓

t1b↓

t2b↓

t1b↑

t2b↑

t1b↓

t2b↓

t1b↑

t2b↑

T−

−iAλ↑

Bλ↑

iAλ↑

Bλ↑

T−

S2
+

S−i

−iS−

T 2
+

Bλ↑

iAλ↑

−iAλ↑

Bλ↑

S−i S−i

B2
λ↑

A2
λ↑

−iS+

T+

−iS+

T+

B2
λ↑

A2
λ↑

T− T−

eiϕ/2.

eiϕ/2.

↑

↑↓

↑↓

↑⇓

↑
↑⇓ ⇓

⇓

−

−

−

γ†
1,k⇓db↓

γ1,k⇓da↑

d†b↓γ2,q⇓

d†a↑γ
†
2,q⇓

↑
↑

eiϕ/2.

↑⇑

↑⇑ ↓ ⇑

↑ ⇑

eiϕ/2.

↑
↑ −

γ†
1,k⇑da↑

d†b↓γ
†
2,q⇑

γ1,k⇑db↓

−

−

−

−

eiϕ/2.

eiϕ/2.

↑↓

↑⇓

↑

−

γ†
1,k⇓db↓

↑↓⇓ ⇑
−d†b↓γ

†
2,q⇑

−

↑⇓ ⇑↑

⇑

↑
↑

γ1,k⇓da↑

−

d†a↑γ1,q⇑

−

eiϕ/2.

eiϕ/2.

↑↓

↑ ⇓

↑

↑↓ ⇓⇑ −

↑ ⇓⇑ ↑

⇑

↑
↑

γ†
2,q⇓db↓

−d†b↓γ
†
1,k⇑

d†a↑γ1,k⇑

−

γ2,q⇓da↑

t1a↑

t2b↓

t1b↓

t2a↑

t1b↓

t2a↑

t1a↑

t2b↓

t1b↓

t2b↓

t1a↑

t2a↑

t2b↓

t1b↓

t2a↑

t1a↑

B2
λ↑

T−

S2
+

B2
λ↑

T−

B2
λ↑

S−i

B2
λ↑

−iS−

T 2
+

S−i

B2
λ↑

B2
λ↑

−iS+

T+

−iS+

T+

T− T−

S−i

B2
λ↑

B2
λ↑

d†a↑γ2,q⇑

FIG. 3. Tunneling sequences (up to Hermitian conjugation) of the SC JJ for contributions ∝cos ϕS. We use the basis
|n1k⇑,n1k⇓,na↑,na↓,nb↑,nb↓,n2q⇑,n2q⇓〉 = (γ †

1k⇑)n1k⇑ (γ †
1k⇓)n1k⇓ (d†

a↑)na↑ (d†
a↓)na↓ (d†

b↑)nb↑ (d†
b↓)nb↓ (γ †

2q⇑)n2q⇑ (γ †
2q⇓)n2q⇓ |01,0D,02〉 . Filled (empty)

dots are used to visually represent a filled (empty) level.

phase offset was measured when Zeeman field and dot SOI
axis are orthogonal.

APPENDIX C: TOPOLOGICAL SUPERCONDUCTOR ϕ0

JOSEPHSON JUNCTION

1. Effective tunneling Hamiltonian

We devote this third part of the appendix to the derivation
and discussion of the effective tunneling Hamiltonian H eff

TS,t
for the TS JJ. Here, the lowest order contribution comes at
t2. This is, roughly, due to the remarkable property of MBSs
being their own antiparticle: it takes two steps in a sequence of
intermediate states to transfer a nonlocal fermion from the left
to the right TS (or vice versa) and to return to the ground state
of the quantum dot. This will ensure an enhancement in critical
current, for sufficiently small tunneling, and a 4π periodicity
of the supercurrent as a function of the phase difference. Also
we note that our arguments apply to the effective Hamilto-
nian containing amplitudes, while a real transport process
would be described eventually by probabilities (amplitudes
squared).

We now begin with derivation of the effective Hamiltonian
for the TS JJ. In general, the tunnel coupling between the SC

leads and the QD is described by the tunneling Hamiltonian,

Ht =
∑

η

∑
s

∫
dx dx ′ t̃ηs(x,x ′)eiϕη/2�†

ηs(x)ds(x
′) + H.c.

(C1)
Here, �

†
ηs(x) is the creation operator of an electron with spin

s at position x in SC lead η and ds(x ′) is the annihilation of
an electron with spin s at position x ′ in the QD. Furthermore,
t̃ητ s(x,x ′) is the tunneling matrix element. If the leads are
topological superconducting leads, we can rewrite the electron
operators in the TSs in terms of quasiparticle operators [46],

�†
ηs(x) = �ηs(x)�η + ψ ′

ηs(x)�′
η + · · · . (C2)

Here, as in the main text, �η is the zero-energy MBS which
is localized at the boundary of the TS η that is spatially
closest to the QD, while �′

η is the zero-energy MBS that
is localized at the opposite end. The corresponding MBS
wave functions are given by ψη(x) and ψ ′

η(x), respectively.
Moreover, “+ · · · ” refers to the contributions of finite-energy
quasiparticles, which we neglect as we are interested only
in energies much smaller than the energy gap. Similarly,
assuming for simplicity that the QD consists of only two
orbitals a and b, we can expand the electron operator in the
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eiϕ/2.

eiϕ/2.

↑

↑↓

↑↓

↑⇓

↑
↑⇓ ⇓

⇓
−

↑⇓

γ†
1,k⇓db↓

−

d†b↑γ
†
2,q⇓

γ1,k⇓da↑

d†b↓γ2,q⇓

eiϕ/2.

eiϕ/2.

↑

↑↓

↑⇓

−

γ†
1,k⇓db↓

−

γ1,k⇓da↑

↑↓⇓ ⇑

↑ ⇑⇓ ↑

−d†b↓γ
†
2,q⇑

−

⇑

↑ ⇑

↑
↑

d†b↑γ2,q⇑

↑
↑

eiϕ/2.

↑⇑

↑⇑ ↓

↑

eiϕ/2.

γ†
1,k⇑da↑

γ1,k⇑db↓

↑⇑

↑⇑ ⇓↑

⇓
−

d†b↑γ
†
2,q⇓

−
⇓

↑↓

d†b↓γ2,q⇓

↑
↑

eiϕ/2.

↑⇑

↑⇑ ↓ ⇑

↑ ⇑

eiϕ/2.

↑
↑

γ†
1,k⇑da↑

d†b↓γ
†
2,q⇑

↑

γ1,k⇑db↓

⇑
d†b↑γ2,q⇑

−

−

−

−

t1a↑

t2b↓

t1b↓

t2b↑

t1b↓

t2b↑

t1a↑

t2b↓

t1b↓

t2b↓

t1a↑

t2b↑

t1a↑

t2b↑

t1b↓

t2b↓

B2
λ↑

T−

S2
+

iAλ↑

Bλ↑

T−

B2
λ↑

−iS−

T 2
+

iAλ↑

Bλ↑

S−i S−i

B2
λ↑

−iS+

T+

iAλ↑

Bλ↑

T−

T−

iAλ↑

Bλ↑

T+

iS+

B2
λ↑

−iS−

eiϕ/2.

eiϕ/2.

↑

↑↓

↑↓

↑⇓

↑
↑⇓ ⇓

↑ ⇓

⇓

−

d†a↑γ
†
2,q⇓

−

γ1,k⇓db↑

d†b↓γ2,q⇓

γ†
1,k⇓db↓t1b↓

t2a↑

t1b↑

t2b↓

S−i

B2
λ↑

T 2
+

−iAλ↑

Bλ↑

−iS−

↑
↑

↑⇑

eiϕ/2.

↑⇑

↑⇑ ↓ ⇑

↑ ⇑

eiϕ/2.

↑
↑

−

γ†
1,k⇑db↑

d†b↓γ
†
2,q⇑

γ1,k⇑db↓

−

d†a↑γ2,q⇑

−

−

−

−

t1b↑

t2b↓

t1b↓

t2a↑

S2
+

B2
λ↑

T−

−iAλ↑

Bλ↑

T−

↑
↑

eiϕ/2.

↑⇑

↑⇑ ↓

↑

eiϕ/2.
γ1,k⇑db↓

↑⇑

↑⇑ ⇓↑

⇓
−

−
⇓

↑↓

d†b↓γ2,q⇓

γ†
1,k⇑db↑

d†a↑γ
†
2,q⇓

−

−

t1b↑

t2a↑

t1b↓

t2b↓

T−

−iAλ↑

Bλ↑

T+

iS+

B2
λ↑

−iS−

eiϕ/2.

eiϕ/2.

↑

↑↓

↑⇓

γ†
1,k⇓db↓

−

↑↓⇓ ⇑

↑ ⇑⇓ ↑

−d†b↓γ
†
2,q⇑

−

⇑

↑ ⇑

↑
↑

γ1,k⇓db↑

−

iS−

t1b↓

t2b↓

t1b↑

t2a↑

B2
λ↑

−iAλ↑

Bλ↑

−iS+

T+

T−

d†a↑γ2,q⇑

FIG. 4. Same as Fig. 3 but for contributions ∝sin ϕS to the effective Hamiltonian of the SC JJ.

QD according to

ds(x
′) =

∑
τ=a,b

ξτs(x
′)dτs, (C3)

where dτs is the annihilation operator of an electron with spin
s in orbital τ of the QD and ξτs(x ′) is the corresponding wave
function. Now, we insert the expansions given in Eq. (C2) and
Eq. (C3) into Eq. (C1). Assuming that the wave functions of
the MBSs �′

η have zero overlap with the QD wave functions,
this yields the tunneling Hamiltonian given in Eq. (3) of the
main text,

Ht → HTS,t =
∑
ητ

∑
s

tητse
iϕη/2 �ηdτs + H.c., (C4)

where we have defined new tunneling amplitudes

tητs =
∫

dx dx ′ t̃ηs(x,x ′)ψηs(x)ξτs(x
′). (C5)

For simplicity, we will assume that the tunneling amplitudes
tητs are real. We now derive an effective Hamiltonian
considering the tunneling amplitudes as small perturbations.

Once more, we emphasize that the lowest order processes
which contribute to the Josephson current are of second order
in the tunneling amplitudes. In particular these processes do
not mix the total fermion parity of the TS leads. Because of
that, we focus on the odd parity subspace of the TSs. The
results for the even parity subspace of the TSs are identical.
The effective tunneling Hamiltonian up to second order in the
tunneling amplitudes is given by

H eff
TS,t = PTSHTS,t(E

(2)
− − HD − HTS,L)−1(1 − PTS)HTS,t PTS,

(C6)

where PTS = |11,E
(2)
− ,02〉〈11,E

(2)
− ,02| + |01,E

(2)
− ,12〉〈01,E

(2)
− ,

12| is the projector on the E
(2)
− state on the dot and the ground

states of the TS leads. It acts within the reduced Hilbert space
of the states E

(2)
± ,E

(1)
λ on the dot and the odd parity ground

state subspace of the TS leads. In particular, 0η (1η) denotes
the ground state in which the nonlocal fermionic mode in TS
η is unoccupied (occupied). When evaluating Eq. (C6) we
find that the result is of the form as given in the main text by
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↑
↑

1 0

10 ↑↓

↑0 0

e−iϕ/2

↑
↑
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↑ 11

1 0↑↓

eiϕ/2.

(a)

↑
↑

10

1 0↑↓

↑0 0

↑
↑

1 0

↑ 11

10 ↑↓
eiϕ/2.

e−iϕ/2

(b

↑
↑

10

↑ 11

eiϕ/2.

↑
↑

1 0

↑
↑

10

↑

↑
↑

1 0

0 0

e−iϕ/2

↑ 11

10 ↑↓10 ↑↓

↑0 0

e−iϕ/2

eiϕ/2.

1 0↑↓ 1 0↑↓

↑ ↑↑ ↑

− −

− −

− −

− −

iC†
1da↑

d†b↓C2

C2db↓

id†a↑C
†
1

iC†
1db↓

iC†
1db↓

d†a↑C2

iC†
1da↑ C2db↓

C2da↑

id†b↓C
†
1

d†a↑C2 id†a↑C
†
1

C2da↑

id†b↓C
†
1 d†b↓C2

T−

B2
λ↑

−iS−

a b

t1a↑

t2b↓

t2b↓

t1a↑

S−i

T−

S−i

T−

t1b↓

t2a↑

T−

−iS−

t2a↑

t1b↓

T−

T−

T−

T−

B2
λ↑

S−i

−iS−

S−i

−iS−

t1a↑

t2a↑

t2a↑

t1a↑

t2b↓

t1b↓

t1b↓

t2b↓

)

FIG. 5. Tunneling sequences of the TS JJ for θ = π/2. We use the basis |n1,na↑,na↓,nb↑,nb↓,n2〉 = (C†
1)n1 (d†

a↑)na↑

(d†
a↓)na↓ (d†

b↑)nb↑ (d†
b↓)nb↓ (C†

2)n2 |01,0D,02〉. Filled (empty) dots are used to visually represent a filled (an empty) level. (a) Tunneling sequences
that give contributions ∝cos(ϕTS). (b) Tunneling sequences that give contributions ∝sin(ϕTS).

Eq. (6) with ν = TS and

E0
TS = gTS

[
Bλ↑T−(Aλ↑T− + Bλ↓S−)(t1a↑t2b↑ − t1b↑t2a↑)

+B2
λ↑S−T−(t1b↓t2a↑ − t1a↑t2b↓)

]
,

Ea
TS = −gTS

[
(Aλ↑T− + Bλ↓S−)2t1b↑t2b↑

+B2
λ↑(S2

−t1b↓t2b↓ + T 2
−t1a↑t2a↑)

−Bλ↑S−(Aλ↑T− + Bλ↓S−)(t1b↑t2b↓ + t1b↓t2b↑)
]
, (C7)

0 0.5 1

π
4

π
2

3 π
4

500 1000
B(2)

θ = π/2

λ = 1, 4

ϕ0
TS

B [mT]

FIG. 6. Phase shift ϕ0
TS as a function of the magnitude of the

external magnetic field B at θ = π/2 for λ = 1,4. For λ = 2,3 the
phase shift is independent of B and given by ϕ0

TS = π/2. For the SC
JJ we do not observe a phase shift when θ = π/2, ϕ0

S = 0. We see that
the phase shift is peaked at B = B (2) when the singlet triplet mixing
is maximal and it saturates at π/2 when B � B (2). Note however
that our perturbative approach is not valid when B � B (2), because
additional energy levels would have to be taken into account.

where we have introduced the coefficient

gTS = 2

E
(1)
λ − E

(2)
−

> 0. (C8)

There are also processes which do not transport a nonlocal
fermion across the JJ and thus lead to a contribution ẼTS which
is independent of the superconducting phase difference. In
these processes each TS interacts separately with the QD. In
particular this means that the action of the effective tunneling
Hamiltonian on the two odd parity ground states of the TS is
identical. Consequently, this contribution is proportional to
the identity operator and is not relevant when computing the
zero-temperature Josephson current. For the case when θ =
π/2 we have listed all the intermediate tunneling sequences

0.3 π
2

0

0.5

1

0.3
2

π
0

0.5

1

0.3
2

0

0.5

1

0.3
2

π
0

0.5

1

λ = 4 λ = 4
ν = SC ν = TSC

θ θ

θc θc

π

FIG. 7. Estimate of the critical angle θc when λ = 4 by analyzing
the conditions for the weak coupling limit as a function of θ .
The system parameters are chosen as in the main text and the
Appendixes. In the left panel we plot πνF t2/(	 sin θ ) (red dashed)
and πνF t2/|E(1)

4 − E
(2)
− | (red solid). In the right panel we plot

t/(	 sin θ ) (blue dashed) and t/|E(1)
4 − E

(2)
− | (blue solid). We find

that θc = 0.3. This choice of critical angle also works for λ = 1,2,3.

195421-10



DETECTING TOPOLOGICAL SUPERCONDUCTIVITY WITH . . . PHYSICAL REVIEW B 95, 195421 (2017)

FIG. 8. Magnitude of the critical current |I c
ν (θ )| for different choices of λ. The system parameters are chosen as in the main text and the

Appendixes.

which contribute to the Josephson current in Fig. 5. The phase
shift ϕ0

TS(θ = π/2) for λ = 1,4 is plotted as a function of the
external Zeeman field in Fig. 6. The phase shifts ϕ0

TS(θ ) and
Josephson currents ITS(θ ) at ϕTS = 0 are plotted in Fig. 9.

Lastly, one might think that also finite energy quasi-
particles contribute to the effective Hamiltonian. This is
indeed true. However, the finite energy quasiparticle sequences
of intermediate states which contribute to the Josephson
current are of fourth order in the tunneling amplitudes and
suppressed by the superconducting gap. Compared to that the
Majorana bound state contributions are of second order in
tunneling amplitudes. For this reason, we neglect finite energy
quasiparticle contributions for the TS-Dot-TS junction when
working in the weak tunnel coupling limit.

APPENDIX D: CRITICAL ANGLE

The effective Hamiltonians for the SC JJ and the TS JJ are
valid in the weak tunnel coupling limit. For the SC JJ this limit
is defined by

πνF tητ tη′τ ′ � E
(1)
λ − E

(2)
− ,	 sin(θ ),� (D1)

and for the TS JJ by

tητ � E
(1)
λ − E

(2)
− ,	 sin(θ ). (D2)

These conditions fix a critical angle θc > 0 so that our
perturbative approach is valid when θ ∈ [θc,π − θc]. In this
section we want to determine this critical angle for the system
parameters which we have chosen in Fig. 3 of the main text. To
get a sense of scales, we consider an InAs nanowire QD JJ with
SC leads of length L = 1 μm. We assume that the effective
mass of the electrons in the wire is given by m = 0.05me,
where me is the bare electron mass. Furthermore, we expect
that the Fermi energy of the leads is given by EF = 0.1 meV
and the induced superconducting gap by � = 0.1 meV. The
density of states at the Fermi level of the nanowires in the

normal metal state is given by νF = L
π

√
2m

h̄2
1√
EF

. For the order

of magnitude of the tunnel coupling between dot and leads
we assume that t = 0.01 meV. Furthermore, we fix Vg so that
E

(1)
λ (π/2) − E

(2)
− (π/2) ≈ 0.1 meV. This means that depending

on the choice of λ we have (Vg|λ=1,Vg|λ=2, Vg|λ=4, Vg|λ=4) =
(0.89 meV,0.20 meV,−0.12 meV,−0.80 meV). We can now
graphically find an estimate for θc; see Fig. 7. A choice of
critical angle that works for all λ is given by θc = 0.3.

APPENDIX E: CRITICAL CURRENTS

1. Critical current of the SC JJ

In this section of the appendix we compute the critical current IS,c. First, we need to find an approximate value for the
coefficient gS. To this end, we notice that it can be rewritten as

gS = �2

2

∫ h̄ωc

−h̄ωc

ν(E1)dE1

∫ h̄ωc

−h̄ωc

ν(E2)dE2
1√

E2
1 + �2

√
E2

2 + �2

× 1[(
E

(1)
λ0

− E
(2)
−

) +
√

E2
1 + �2

][
(E(1)

λ0
− E

(2)
− ) +

√
E2

2 + �2
][

(E(2)
+ − E

(2)
− ) +

√
E2

1 + �2 +
√

E2
2 + �2

] , (E1)

where ν(E) = ∑
k δ(E − Ek) is the density of state of the leads in the normal state at energy E and ωc is a cutoff frequency

which is typically of the order of the Debye frequency of the crystal. For simplicity, we now assume that ν(E) ≈ νF for |E| � �

and ν(E) = 0 for |E| < �. This yields

gS ≈ (�νF )2

2

(∫ −�

−h̄ωc

dE1 +
∫ h̄ωc

�

dE1

)(∫ −�

−h̄ωc

dE2 +
∫ h̄ωc

�

dE2

)
1√

E2
1 + �2

√
E2

2 + �2

× 1[(
E

(1)
λ0

− E
(2)
−

) +
√

E2
1 + �2

][(
E

(1)
λ0

− E
(2)
−

) +
√

E2
2 + �2

][
(E(2)

+ − E
(2)
− ) +

√
E2

1 + �2 +
√

E2
2 + �2

] . (E2)
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FIG. 9. Phase shift ϕ0
ν (θ ) (top row) and Josephson current Iν(θ ) at ϕS = 0 (bottom row) for λ = 1,2,3. The system parameters are chosen

as in the main text. The jumps in the Josephson current ITS(θ ) correspond to a change of the ground state of the junction.

Defining ξ± = (E(1)
λ − E

(2)
± )/� allows us to rewrite this expression as

gS ≈ 4α

π2

mL2

h̄2�EF

, (E3)

where we have introduced the dimensionless factor

α =
∫ ∞

1
dx

∫ ∞

1
dy

1√
1 + x2

√
1 + y2(

√
1 + x2 +

√
1 + y2 + ξ− − ξ+)(

√
1 + x2 + ξ−)(

√
1 + y2 + ξ−)

(E4)

and we have assumed that h̄ωc � � which ensures that the Cooper potential of the BCS theory is a good approximation to the
actual electron pairing potential. We note that α is a function of the relative orientation of SOI axis and Zeeman field, α = α(θ ).
For the system parameters chosen in the main text we find that α ≈ 10−1. In total the critical current is then given by

I c
S ≈ 8α

π2

meL2

h̄3�EF

√(
E0

S

)2 + (
Ea

S

)2
sgn

(
E0

S

)
. (E5)

We have plotted I c
S (θ ) in Fig. 8. For the case when θ = π/2 and λ = 2,3 we have I c

S = 0 because B2(3)↑ = 0. Moreover, there
exists a significant difference in magnitude of the critical currents for the cases when λ = 1,4 which are most relevant for our
experimental proposal in the main text. We can understand this because IS,c|λ=1/IS,c|λ=4 ∝ (B1↑/B4↑)4 ≈ 10−6: the virtual state
E

(1)
1 only contains a small amount of B1↑ due to the SOI, while E

(1)
4 consists mostly of B4↑; hence B4↑ � B1↑. The conclusion

is that the absence or presence of a phase shift can most easily be measured when virtual tunneling occurs via the E
(1)
4 state. (See

Fig. 9 and Fig. 2(a) in the main text.)

2. Critical current of the TS JJ

For the TS JJ we find that the critical current is given by

I c
TS = 4κTSe

h̄
(
E

(1)
λ0

− E
(2)
−

)√(
E0

TS

)2 + (
Ea

TS

)2
sgn

(
E0

TS

)
. (E6)

We plot I c
TS(θ ) in Fig. 8. Again we see a significant difference in magnitude when comparing the most relevant cases of λ = 1

and λ = 4. This can be explained in the same way as for the SC JJ. However, this time we have for example at θ = π/2,
ITS,c|λ=1/ITS,c|λ=4 ∝ (B1↑/B4↑)2 ≈ 10−3.
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