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Effect of long-range interaction on graphene edge magnetism
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It has been proposed that interactions lead to ferromagnetism on a zigzag edge of a graphene sheet. While not yet
directly studied experimentally, dramatically improving techniques for making and studying clean zigzag edges
may soon make this possible. So far, most theoretical investigations of this claim have been based on mean-field
theories or more exact calculations using the Hubbard model. But long-range Coulomb interactions are unscreened
in graphene, so it is important to consider their effects. We study rather general nonlocal interactions, including
of the Coulomb 1/r form, using the technique of projection to a strongly interacting edge Hamiltonian, valid at
first order in the interactions. The ground states as well as electron/hole and exciton excitations are studied in
this model. Our results indicate that ferromagnetism survives with unscreened Coulomb interactions.
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I. INTRODUCTION

Noninteracting graphene nanoribbons with zigzag edges
are famous for hosting a nearly flat band of edge states [1,2].
In the presence of electron-electron interaction, the existence
of edge magnetic order [3] has been predicted by a multi-
tude of theoretical work using both analytical [1,4–11] and
numerical [12–20] techniques. The consensus emerging from
these works is that edge states localized at the same edge
are coupled ferromagnetically to form superspins, which then
couple antiferromagnetically between edges. In addition to
ground-state properties, low-energy magnetic excitations in
graphene nanoribbons have also attracted much theoretical
attention [6,9,21,22]. A relatively large spin-correlation length
up to the order of micrometers has been found for a single
zigzag edge; this is attributed to the large spin stiffness in
this system and boosts confidence in potential spintronics
applications of graphene edge magnetism [23]. Although
conclusive experimental evidence for edge magnetism is still
lacking due to limited control over edge orientation, there has
been significant progress in recent years towards the synthesis
and characterization of zigzag edges [24–26].

A large number of theoretical studies on graphene edge
magnetism represent the interaction by an on-site Hubbard
term for simplicity. For the Hubbard model on a honeycomb
lattice, arguments in support of edge magnetism [11] can be
constructed based on Lieb’s theorem [27]. The Coulomb inter-
action in pristine graphene on a nonmetallic substrate is, nev-
ertheless, poorly screened due to a vanishing density of states
at the Dirac points [28,29]. The influence of nonlocal com-
ponents of the interaction has been investigated both in bulk
graphene [30–33] and in restricted geometries [4,8,13,34,35].
(By “nonlocal” we mean having a longer range than on
site.) However, many studies on graphene nanoribbons with
nonlocal interactions have adopted a mean-field treatment,
neglecting fluctuations whose role is especially important in
low dimensions [36]. Exact diagonalization has been employed
in other studies; despite the light it sheds on the nature of the
ground states, correlations in manageably small systems are
usually enhanced compared to the thermodynamic limit.
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In the present work, we study the effect of long-range
interactions on graphene edge ferromagnetism in the limit of
weak interactions but beyond the mean-field level. Focusing
on a semi-infinite graphene sheet with a single zigzag edge, we
find the effective Hamiltonian by projecting the interaction into
the Hilbert space of edge states; we then propose a sufficient
condition for the maximum spin ferromagnetic multiplet to be
the half-filling ground states. Using exact diagonalization, we
discuss the possible ground states for interactions in violation
of this condition. The long-range Coulomb interaction is
shown to satisfy the sufficient condition upon extrapolation
to the limit of infinite long-distance cutoff. We also examine
the simplest low-energy excitations of the ferromagnetic
ground states on a single edge. For short-range interactions,
single-particle excitations and single-hole excitations have
linear spectra ∝ vδk, where |δk| � 1 is the distance from
either Dirac point, with a slope v controlled by the interaction
strength. Spin-1 excitons have a small-momentum dispersion
that is proportional to vQ2 ln Q. For the long-range Coulomb
interaction, v → ∞, and the dispersion of single-particle or
single-hole excitations near the Dirac points scales as δk ln δk.
Finally, for both short-range and Coulomb interactions, a
sufficiently large particle-hole symmetry-breaking term in the
Hamiltonian can destabilize the ferromagnetic ground state.

II. MODEL

We study a semi-infinite graphene sheet on the xy plane,
modeled by a honeycomb lattice which is terminated by an
infinite zigzag edge (see Fig. 1). All carbon atoms reside in
the half plane y � 0, and the outermost atoms on the zigzag
edge (which belong to the A hexagonal sublattice) lie on the
x axis. In units of the Bravais lattice constant a = 2.46 Å,
it is convenient to represent the position of carbon atoms by
�r(m,n) = (m/2)x̂ + (

√
3n/2)ŷ, where n � 0. While m is always

an integer, note that n is an integer only on the A sublattice:
for A atoms n and m are both even or both odd, while for B

atoms n + 2/3 and m are both even or both odd.
The zero modes associated with the zigzag edge are given

by [1,2]

e
†
k = 1√

2π

∑
n�0,m

eik m
2 gn(k)c†m,n,A, (1)
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FIG. 1. Sketch of a semi-infinite graphene sheet with a zigzag
edge.

where k is the crystal momentum along the edge direction,

gn(k) ≡ θ

(
k− 2π

3

)
θ

(
4π

3
− k

)√
1−4 cos2

k

2

(
−2 cos

k

2

)n

(2)

describes the decay of the wave function into the
bulk, and the c operators obey the usual anticommuta-
tion relations {cm,n,A,c

†
m′,n′,A} = {cm,n,B,c

†
m′,n′,B} = δmm′δnn′ ,

{cm,n,A,c
†
m′,n′,B} = 0. (We have temporarily suppressed the

spin index.) These edge states exist only for 2π/3 < k <

4π/3, i.e., in 1/3 of the one-dimensional Brillouin zone 0 �
k < 2π . The wave function is nonzero only on the A sublattice
and is localized near the zigzag edge. The localization length
ξk = −[ln |2 cos (k/2)|]−1 vanishes at k = π and diverges near
the Dirac points k = 2π/3 and k = 4π/3.

In addition to the edge states, we also have bulk states which
are labeled by k, ky , and s:

b
†
k,ky ,s

= 1

2π

1√
2

⎧⎨
⎩

∑
n�0,m

eik m
2

[
2i sin nky +

(
2 cos

k

2

)
2i sin(n + 1)ky

]
t

Es(k,ky)
c
†
m,n,A −

∑
n� 1

3 ,m

eik m
2

[
2i sin

(
n + 2

3

)
ky

]
c
†
m,n,B

⎫⎬
⎭.

(3)

Here the bulk dispersion relation is

Es(k,ky) = st

√(
2 cos

k

2

)2

+ 1 + 2

(
2 cos

k

2

)
cos ky, (4)

with nearest-neighbor hopping strength t ; ky is the crys-
tal momentum perpendicular to the edge, 0 � ky � π ,
and s = ± is a subband index. Near the Dirac points,
where (k,ky) = (2π/3,π ) + (δk,δky) or (k,ky) = (4π/3,0) +
(δk,δky), Es(k,ky) takes a Lorentz invariant form Es(k,ky) =
st

√
(δky)2 + (3/4)(δk)2 . In this noninteracting model, at zero

temperature and half filling, the s = − subband is completely
filled and the s = + subband is completely empty. While
the edge states are half filled, for the semi-infinite sheet we
cannot ascertain which half is filled at this point, unless
other ingredients, such as next-nearest-neighbor hopping, edge
potential, and electron-electron interaction, are present.

We now introduce a weak repulsive electron-electron
interaction. The following extended Hubbard model mani-
festly respects SU (2) spin symmetry and also particle-hole
symmetry at half filling:

Hint = 1

2

∑
n,m

∑
δm,δn

U(δm,δn)

(∑
σ=±

c†m,n,σ cm,n,σ − 1

)

×
(∑

σ ′=±
cm+δm,n+δn,σ ′cm+δm,n+δn,σ ′ − 1

)
. (5)

Here (δm,δn) runs over all vectors �δ = (δm/2)x̂ + (
√

3δn/2)ŷ
pointing from one lattice site to another; for instance, U(0,0)

stands for the strength of the on-site Hubbard interaction,
U(0,2/3) is the interaction between nearest-neighbor sites
(belonging to different sublattices) in the y direction, U(1,1/3)

is the interaction between nearest-neighbor sites at π/6 angle
with the x direction, and U(2,0) is the interaction between next
nearest neighbors (belonging to the same sublattice) in the
x direction. The sum over n and δn is such that both n � 0
and n + δn � 0. To lighten notations, we have suppressed the
sublattice indices A and B in this expression because they
are uniquely determined by the position indices (m,n) and
(m + δm,n + δn).

In general U(δm,δn) = U(−δm,−δn), but apart from this con-
straint U can be an arbitrary function of δm and δn. Nev-
ertheless, we further assume that U obeys parity symmetry,
U(δm,δn) = U(−δm,δn). For the Hubbard model, U(δm,δn) vanishes
unless δm = δn = 0. On the other hand, for the unscreened
Coulomb interaction, U(δm,δn) is inversely proportional to
distance at large distances [8,37,38],

U(δm,δn) = U0
d√

d2 + |�δ|2
, (6)

where U0 is the on-site interaction and the half-nearest-
neighbor distance d = 1/(2

√
3) accounts for the finite spread

of the carbon π orbitals.
Assuming U(δm,δn) � t , we expect that the low-energy

degrees of freedom are composed of the edge states ek , with
2π/3 < k < 4π/3, and the bulk states in the vicinity of the
two Dirac points [12,13]. As a first approximation at O(U ),
we neglect the dynamics of the bulk states completely; they
are assumed to be half filled and not spin polarized as in
the noninteracting case [7,11]. This approximation allows the
projection of the interaction onto the Hilbert space of the edge
states. More concretely, we invert Eqs. (1) and (3) to express
the c operators in terms of e and b, then take the expectation
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values for pairs of b operators using

〈b†k,ky ,−,σ bk′,k′
y ,−,σ ′ 〉 = 〈bk,ky ,+,σ b

†
k′,k′

y ,+,σ ′ 〉
= δσσ ′δ(k − k′)δ(ky − k′

y). (7)

After some algebra, we find

Hint = 1

2

∑
n

∑
δm,δn

U(δm,δn)

∫ 2π
3

− 2π
3

dq

2π
eiq δm

2 O
†
n+δn

(q)On(q), (8)

where the sum over (δm,δn) is now limited to vectors on one
of the sublattices; recalling that edge states exist only on the
A sublattice, δm and δn are now both even or both odd. Again,
n � 0 and n + δn � 0. On(q) is bilinear in e,

On(q) ≡
∫

dkgn(k + q)gn(k)

[∑
σ=±

e
†
k+q,σ ek,σ − δ(q)

]
. (9)

Here q measures the momentum difference between two edge
states, so the operator On(q) is nontrivial only when |q| <

2π/3. Note that On(q) annihilates all members of the fully
polarized ferromagnetic multiplet at half filling for any n and
q, which means the ferromagnetic multiplet states are always
eigenstates of Hint with zero energy.

Due to the constraint on the (δm,δn) summation, many
terms in the interaction (most notably the nearest-neighbor
interaction) do not enter the projected effective Hamiltonian
in the edge-state subspace, Eq. (8). Although the authors of
Ref. [4] predict a charge-polarized ground state when the
nearest-neighbor interaction prevails over the on-site interac-
tion, our picture is consistent with their weak-interaction limit,
where the charge-polarized state always has a higher energy
and the nearest-neighbor interaction is unimportant.

Just like Eq. (5), Eq. (8) manifestly respects SU (2) sym-
metry and particle-hole symmetry at half filling. In particular,
the particle-hole transformation cm,n,σ → c

†
m,n,σ corresponds

to ek,σ → e
†
2π−k,σ and On(q) → −On(q) in the edge-state

subspace. (The form ek,σ → e
†
k,σ previously suggested in the

Hubbard model [11] is the combination of a particle-hole
transformation and a parity transformation.) The particle-hole
symmetry is broken by either a weak next-nearest-neighbor
hopping |t2| � t in the bulk or a weak potential localized
at the edge |Ve| � t ; the latter can arise, for example, at a
graphene-graphane interface [7]. When � = t2 − Ve �= 0, a
dispersion develops for the edge states:

H = Hint + H�, H� = �
∑
σ=±

∫ 4π
3

2π
3

dk(2 cos k + 1)e†k,σ ek,σ ,

(10)

assuming the Fermi energy is fixed at the new Dirac point
εF = 3t2 [7,11].

In the remainder of this paper we analyze the edge-state
Hamiltonian given by Eq. (10) at half filling.

III. GROUND STATE

We first study the ground state of the particle-hole symmet-
ric Hamiltonian (8), keeping � = 0.

For the projected Hubbard model, it has been proven in
Ref. [11] that the fully polarized ferromagnetic multiplet states
with maximum total spin are the unique ground states. In the
Hubbard case, Eq. (8) becomes

Hint, Hubbard = 1

2
U

∞∑
n=0

∫ 2π
3

− 2π
3

dq

2π
O†

n(q)On(q). (11)

It is obvious that Hint, Hubbard is positive semidefinite. Since
the ferromagnetic multiplet states are always zero-energy
eigenstates, they must belong to the ground-state manifold
of Hint, Hubbard. Furthermore, it is also possible to show that
they are the only states annihilated by On(q) for any n and q

and therefore the unique ground states of Hint, Hubbard [11].
We emphasize again that the proof rests on the positive
semidefiniteness of the Hamiltonian.

Let us explore the extent to which the proof outlined
above can be generalized in our extended Hubbard model.
In analogy to a semi-infinite tight-binding chain, through the
transformation

On(q) =
∫ π

0

dK

π
OK (q) sin K(n + 1), (12)

the generic interaction Hamiltonian (8) can be formally
diagonalized:

Hint = 1

2

∫ 2π
3

− 2π
3

dq

2π

∫ π

0

dK

2π
Ũ (k,q)O†

K (q)OK (q), (13)

where

Ũ (K,q) ≡
∑
δm,δn

U(δm,δn) cos(Kδn) cos
qδm

2
. (14)

The spectrum of Ũ (K,q) does not give the spectrum of the
interacting problem because OK (q) does not obey simple
commutation relations. Nevertheless, if Ũ (K,q) is positive
semidefinite for 0 � K � π and −2π/3 � q � 2π/3, we
can borrow the arguments from the case of the Hubbard
model and show that the ferromagnetic multiplet states are
the unique ground states of Eq. (8) at half filling. [That a state
is annihilated by all On(q) is equivalent to it being annihilated
by all OK (q).] The positive semidefiniteness of Ũ (K,q) is thus
a sufficient condition for ferromagnetic ground states.

As a simple example, we consider the model with only
on-site and next-nearest-neighbor interactions:

U(0,0) ≡ U, U(±2,0) ≡ U2‖, U(±1,1) = U(±1,−1) ≡ U2∠,

(15)

and U(δm,δn) = 0 for other (δm,δn). (The nearest-neighbor
interactions drop out, as noted in Sec. II.) In the next-
nearest-neighbor interaction we have introduced an anisotropy
between the direction parallel to the edge U2‖ and the directions
at an angle of π/3 with the edge U2∠. While such anisotropy
is not necessarily realistic, we shall see that U2‖ and U2∠ have
very different effects on edge magnetism.

For this model,

Ũ (K,q) = U + 2U2‖ cos q + 4U2∠ cos K cos
q

2
; (16)

as cos q/2 > 0, the minimum of Ũ with respect to K is
obtained at K = π . The positive-semidefiniteness condition
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FIG. 2. The ground-state phase diagram of Eq. (15) at half filling
on the U2‖/U − U2∠/U plane. The ground states are ferromagnetic
below the phase boundary and have reduced degeneracy above the
boundary. The boundary is obtained by exact diagonalization in
a system with N = 720 in the Sz = N/2 − 1 sector and is well
approximated by the two straight lines corresponding to the trial wave
functions f (k) ∝ sin k and f (k) ∝ k − π (see text). Also shown is the
much smaller region where the sufficient condition for ferromagnetic
ground states, Eq. (17), is satisfied.

of Ũ (K,q) is therefore equivalent to

∀ q ∈
[
−2π

3
,
2π

3

]
, U + 2U2‖ cos q � 4U2∠ cos

q

2
. (17)

This is a sufficient condition for the ground states to be
ferromagnetic in the model specified by Eq. (15). It requires
that neither U2‖ nor U2∠ should be greater than U . In particular,
Eq. (17) becomes U2∠ � U/4 when U2‖ = 0 and U2‖ �
U when U2∠ = 0; in the isotropic case U2‖ = U2∠ ≡ U2,
Eq. (17) is reduced to U2 � U/3.

It is natural to wonder whether the fully polarized fer-
romagnetic multiplet remains the ground states of Eq. (15)
at half filling when the sufficient condition (17) is violated.
To answer the question we perform exact diagonalization on
Eq. (15). Assuming a system size of L unit cells along the
edge, the number of different edge-state momenta allowed is
approximately N = L/3. It is convenient to take advantage of
the good quantum numbers of the Hamiltonian, namely, the z

component of the total spin Sz and also the total momentum
Q along the edge direction [13]. We measure Q relative to the
fully polarized state |FM ↑〉 where every edge state is singly
occupied by a spin-up electron; for this state Sz = N/2 and
Q = 0.

In Fig. 2 we plot the ferromagnetic phase boundary
for Eq. (15) on the U2‖ − U2∠ plane, obtained from exact
diagonalization. For comparison we also show the region
where the sufficient condition (17) is satisfied. In most of the
parameter space, we find that the ground states at half filling are
uniquely given by the (N + 1)-fold-degenerate ferromagnetic
multiplet with Sz = −N/2, − N/2 + 1, . . . ,N/2 and Q = 0.
In particular, the ground states are always ferromagnetic in the
isotropic case U2‖ = U2∠. However, in the region above the
phase boundary where U2∠ is relatively large compared to both
U and U2‖, the ground states are not part of the ferromagnetic
multiplet, but rather form a negative-energy manifold with a
lower degeneracy and a lower total spin. For fixed U and U2‖,
the degeneracy is reduced as U2∠ gradually increases, and
eventually, for sufficiently large U2∠ the ground state becomes
a nondegenerate singlet state in the Sz = 0 sector.

In Fig. 3, choosing a fixed U2‖/U , we plot EGS(Sz) (the
ground-state energy in the sector labeled by Sz) as a function

FIG. 3. The ground-state energy in the Sz sector EGS(Sz) versus |Sz| for U2‖ = 0 and various U2∠/U outside of the ferromagnetic regime.
The results are obtained by exact diagonalization in a system with N = 12.
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of |Sz| for different U2∠/U outside of the ferromagnetic
regime. We observe that EGS(Sz) is a monotonically increasing
function of |Sz| in general and becomes a strictly increasing
function of |Sz| if U2∠ is sufficiently large. This property
of EGS(Sz) allows us to determine the ferromagnetic phase
boundary in Fig. 2 by calculating EGS(Sz = N/2 − 1), which
for a given N is considerably less numerically intensive than
EGS(Sz = 0). Reasonably accurate estimates of the phase
boundary can then be made through a variational calculation.
We can characterize an arbitrary Q = 0 state in the Sz =
N/2 − 1 sector by

∫ 4π
3

2π
3

dkf (k)ek,↑e
†
k,↓|FM ↑〉. (18)

The ferromagnetic state in this sector corresponds to f (k) = 1,
i.e., an equal-weighted superposition of all states where every
edge state is singly occupied. The energy expectation value as
a functional of f is a linear combination of U , U2‖, and U2∠:

E[f ] = UC0[f ] + U2‖C2‖[f ] + U2∠C2∠[f ]. (19)

If E[f ] < 0, the ground states cannot be the ferromagnetic
multiplet whose energy is always zero. For f (k) ∝ sin k,
C0 = 0.100, C2‖ = 0.0964, and C2∠ = −0.0730; for f (k) ∝
k − π , C0 = 0.0946, C2‖ = 0.0887, and C2∠ = −0.0687. For
these two trial wave functions, the trajectories above which
E[f ] < 0 are plotted in Fig. 2; both trajectories are very
close to the ferromagnetic phase boundary obtained from exact
diagonalization.

It should also be cautioned that anisotropy is not necessary
to stabilize nonferromagnetic ground states. For instance, we
can also study an isotropic interaction consisting of an on-
site term and six fifth-nearest-neighbor terms (or, equivalently,
next-nearest-neighbor terms on the same sublattice):

U(0,0) ≡ U, U(0,±2) = U(±3,1) = U(±3,−1) ≡ U5, (20)

and U(δm,δn) = 0 for other (δm,δn). For this model

Ũ (K,q) = U + 2U5

(
cos 2K + 2 cos K cos

3q

2

)
, (21)

so our sufficient condition for ferromagnetism becomes U5 �
U/3. In a system with N = 720, exact diagonalization shows
that a nonferromagnetic ground state appears when U5 >

80.48U , i.e., when the nonlocal U5 term is far stronger than
the on-site interaction.

Our exact diagonalization results for both models indicate
that while ferromagnetism is favored by the on-site interaction,
it may be destabilized by sufficiently strong nonlocal interac-
tions. This is in agreement with the findings of Ref. [33] that
the effective on-site part of the interaction in bulk graphene is
reduced by a weighted average of nonlocal interactions.

FIG. 4. The minimum of Ũ (K,q) for 0 � K � π and −2π/3 �
q � 2π/3, Ũmin, versus R, the long-distance cutoff introduced
artificially in the Coulomb interaction Eq. (6).

We now investigate whether the unscreened Coulomb
interaction, Eq. (6), satisfies the sufficient condition for fer-
romagnetism. To this end, we introduce a long-distance cutoff
R and minimize Ũ (K,q) for the interaction that is given by
Eq. (6) for |�δ| � R but vanishes for |�δ| > R. In Fig. 4 we show
Ũmin, the minimum of Ũ (K,q) for 0 � K � π and −2π/3 �
q � 2π/3, as a function of R for R � 500. While Ũmin

oscillates wildly, its lower envelope is an increasing function
of R, and Ũmin does not go below 0.2U0 for 50 � R � 500.
This strongly implies that Ũmin remains positive as R → ∞
and provides evidence that the ferromagnetic multiplet states
are the unique ground states for the unscreened Coulomb
interaction.

A remark is in order about the short-distance cutoff d =
1/(2

√
3) in Eq. (6). If d is treated as a tunable parameter

of our model, then the observation that Ũmin(R → ∞) > 0 is
valid only when d � 1. If d is close to 1, Ũmin oscillates around
zero even for R up to 500. Nevertheless, as shown in the next-
nearest-neighbor model and the fifth-nearest-neighbor model,
violation of the sufficient condition for ferromagnetism Ũmin �
0 is not an indication of ground states being nonferromagnetic.
Indeed, we have verified in the Sz = N/2 − 1 sector that the
ground states remain ferromagnetic for R up to 20 and d up
to 10.

IV. LOW-ENERGY EXCITATIONS

In this section we discuss the low-energy single-particle,
single-hole, and particle-hole excitations of the ferromagnetic
ground state and also the effect of the particle-hole symmetry-
breaking term �.

It is simplest to consider the excitations from the maximum
Sz state |FM ↑〉. We can rewrite the projected Hamiltonian of
Eq. (10) in a form which explicitly annihilates |FM ↑〉:

Hint =
∫

dk[εp(k)e†k,↓ek,↓ + εh(k)ek,↑e
†
k,↑] −

∫
dkdk′dq

2π
	(k,k′,q)ek,↑e

†
k′−q,↓ek′,↓e

†
k+q,↑

+ 1

2

∫
dkdk′dq

2π
	(k,k′,q)(e†k+q,↓e

†
k′−q,↓ek′,↓ek,↓ + ek+q,↑ek′−q,↑e

†
k′,↑e

†
k,↑), (22)
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where the domains of integration are such that all edge states have momenta between 2π/3 and 4π/3, the interaction kernel is

	(k,k′,q) = g0(k)g0(k′)g0(k + q)g0(k′ − q)

1 − 16 cos k
2 cos k+q

2 cos k′
2 cos k′−q

2

1

2

∑
δm,δn

U(δm,δn) cos
qδm

2

[(
4 cos

k′

2
cos

k′ − q

2

)|δn|
+

(
4 cos

k

2
cos

k + q

2

)|δn|
]

,

(23)

and the energy to create one single spin-down electron or one
single spin-up hole is

εp/h(k) = 1

2

∫ 4π
3

2π
3

dk′

2π
	(k,k′,k′ − k) ± �(2 cos k + 1). (24)

As noted in Refs. [11,12], the interaction 	(k,k′,q) is strongly
momentum dependent. For both Hubbard and Coulomb
interactions, 	(k,k′,q) is positive, so that spin-down electrons
attract spin-down holes, which favors the formation of bound
states between the two. The third term in Eq. (22) generally
gives rise to interaction between edge states with the same
spin orientation, although for the Hubbard model it vanishes
due to an additional symmetry of the kernel, 	(k,k′,q) =
	(k,k′,k′ − k − q).

A. Single-particle and single-hole excitations

We first examine the eigenstates deviating slightly from half
filling, namely, the single-particle excitations and single-hole
excitations. They are represented by e

†
k,↓|FM ↑〉 [of energy

εp(k)] and ek,↑|FM ↑〉 [of energy εh(k)], respectively. Using
the definitions (24) and (23) and the fact that δn + δm is even, it
is easy to show that εp/h(k) = εp/h(2π − k), so we may focus
on 2π/3 � k � π .

Near the Dirac point 0 < k − 2π/3 � 1, we can expand
Eq. (24) to obtain

εp/h(k) ≈ (v ∓
√

3�)

(
k − 2π

3

)
, (25)

where the velocity v depends only on the interactions:

v ≡
√

3

2

∑
δm,δn

U(δm,δn)

∫ 4π
3

2π
3

dk′

2π

(
2 cos

k′

2

)|δn|
cos

(
k′− 2π

3

)
δm

2
.

(26)

Since the k′ integral is finite, v is finite for any short-range
interaction. Equation (25) shows that, as in the projected
Hubbard model [11], the single-particle and single-hole
excitations are generally gapless at the Dirac points for a single
zigzag edge.

For the next-nearest-neighbor model (15), v is always
positive:

v =
√

3

6
U + 3

4π
U2‖ +

(
1√
3

− 3

2π

)
U2∠. (27)

Nevertheless, v may become negative for certain strongly
nonlocal interactions. An example is the term with δm = 4
and δn = 0, which gives a coefficient of −3/(16π ). The
ferromagnetic ground state will be unstable against the creation

of electrons or holes near the Dirac points in the case of
v < 0, or, more generally, v <

√
3|�|, when the particle-hole

symmetry-breaking term � is nonzero.
The case of unscreened Coulomb interaction (6) is es-

pecially interesting. In this case the low-energy behavior of
εp/h(k) is controlled by the long -range part of U(δm,δn). When
|δn| � 1 or |δm| � 1, the k′ integral is dominated by k′ near
the Dirac points, and we find [39]

∫ 4π
3

2π
3

dk′

2π

(
2 cos

k′

2

)|δn|
cos

(
k′ − 2π

3

)
δm

2

≈ 1

2π
Re

[
2√

3|δn| − iδm

+ (−1)|δn|ei π
3 δm

2√
3|δn| + iδm

]
.

(28)

Approximating the sum over δn and δm by integrals over
x = δm/2 and y = √

3δn/2 and discarding the subleading
contribution from the oscillating term, we see that v ∝ ln R,
where R is the long-distance cutoff:

v ≈
∫

dx

∫
dy

U0d√
x2 + y2

1

2π

|y|
x2 + y2

≈ U0d

2π

∫ 2π

0
dθ | sin θ |

∫ R

d

dr

r
= 2U0d

π
ln

R

d
. (29)

As R → ∞, the only other large distance scale in the problem
is given by the inverse distance to the Dirac points, which
should therefore replace R as the distance cutoff. In other
words, for the unscreened Coulomb interaction, εp/h has the
following behavior for 0 < k − 2π/3 � 1:

εp/h(k) ≈ 2U0d

π

(
k − 2π

3

)
ln




k − 2π
3

, (30)

where 
 � 1 is a momentum cutoff. This behavior is not
affected by the particle-hole symmetry-breaking term �,
which merely shifts 
.

In Fig. 5 we plot εp/h(k)/(k − 2π/3) versus ln (k − 2π/3)
at 0 < k − 2π/3 � 1 for the Coulomb interaction with various
R and show how the logarithmic divergence in Eq. (30) is cut
off at low energies by R. We also plot the velocity v given by
Eq. (26) as a function of ln R in Fig. 6. These results suggest
that the Coulomb interaction produces a divergent “Fermi
velocity” for edge modes near the Dirac points, a behavior
reminiscent of the marginal Fermi liquid in bulk graphene
with Coulomb interaction [40].

It is also useful to consider k = π since this is where
εp/h(k) obtains its maximum for the Hubbard interaction
and the Coulomb interaction in the absence of particle-hole
symmetry breaking. At k = π Eq. (24) is again greatly
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FIG. 5. The single-particle/single-hole dispersion for the Coulomb interaction near the Dirac point. εp/h(k)/[U0(k − 2π/3)] is plotted
against ln (k − 2π/3) for 10−5 � k − 2π/3 � 0.1 and different values of long-distance cutoff R, with the particle-hole symmetry-breaking
perturbation � set to zero. For comparison we also show the velocity given by Eq. (26) for each R as a horizontal line. The black line has a
slope of 2d/π .

simplified:

εp/h(π ) = ∓� +
(√

3

2π
− 1

6

)
U(0,0) +

(
1

6
−

√
3

8π

)
U(1,0)

+ 1

π

′∑
δm

U(δm,0)

[
8

δm

(
δ2
m − 4

) sin
π

6
δm

− 4
√

3

δ2
m − 4

cos
π

6
δm

]
, (31)

where the sum is over even δm with δm � 4.
Also, εp/h(π ) is finite for any short-range interaction.

Interestingly, εp/h(π ) depends on U(δm,δn) only if δn = 0: it is,

FIG. 6. The velocity given by Eq. (26) for the Coulomb interac-
tion as a function of the long-distance cutoff R. The fitted line has a
slope of 0.1836 while 2d/π = 0.1838.

for instance, independent of U2∠ in the next-nearest-neighbor
model (15). For the Coulomb interaction (6), the δm sum turns
out to be convergent, and we find

εp/h(π ) ≈ ∓� + 0.189U0, (32)

where U0 is the on-site interaction strength. Therefore, when
� > �c(R → ∞) = 0.189U0 for the unscreened Coulomb
interaction, the maximum Sz state | FM ↑〉 becomes unstable
towards the creation of a spin-down electron at k = π ,
e.g., by absorption from the bulk. [For Hubbard interac-
tion with strength U , the condition is � > �c(R = 0) =
(
√

3/(2π ) − 1/6)U ≈ 0.109U [11].] Similarly, when � <

−�c(R → ∞), there is an instability towards the creation of
a spin-up hole at k = π .

In Fig. 7 we plot εp(k) versus k for 2π/3 � k � 4π/3 for
the Coulomb interaction with different values of long-distance
cutoff R, both when � = 0 and when � = �c(R), so that
εp(π ) vanishes. Notice that for the Coulomb interaction
εp(k) > 0 for 0 < k − 2π/3 � 1 even when � = �c(R); that
is, as we increase |�|, single-particle or single-hole creation
energy becomes negative at k = π sooner than it does near
the Dirac points.

B. One-particle-one-hole sector

We turn to the half-filled sector with N − 1 spin-up
electrons and one spin-down electron, so that Sz = N/2 − 1.
This sector hosts one spin-down electron and one spin-up hole
relative to the |FM ↑〉 state and accommodates the excitations
that would be seen as magnons in an effective spin model.

Let the total momentum relative to |FM ↑〉 be Q, and
without loss of generality we assume Q � 0. Denoting an
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FIG. 7. The single-particle dispersion for the Coulomb interaction. εp(k)/U0 is plotted against k for 2π/3 � k � 4π/3 and different values
of long-distance cutoff R. The particle-hole symmetry-breaking perturbation � is either zero (solid symbols) or �c(R) (open symbols).

eigenstate by∫ 4π
3 −Q

2π
3

dkf (k; Q)ek,↑e
†
k+Q,↓|FM ↑〉, (33)

we obtain the following Schrödinger’s equation:

[E − εh(k) − εp(k + Q)]f (k; Q)

= −
∫

dk′

2π
	(k,k′ + Q,k′ − k)f (k′; Q), (34)

where E is the energy eigenvalue. The ferromagnetic state
in the one-particle-one-hole sector, f (k; Q = 0) = 1, is obvi-
ously a zero-energy solution.

It is possible for f (k,Q) to have a δ-function peak
at k = k0. In this case the solution to Eq. (34) is part
of the one-particle-one-hole continuum and has an energy
E = εh(k0) + εp(k0 + Q). Another possibility is having E <

εh(k) + εp(k + Q) for any k, in which case f (k; Q) does not
have any δ-function peaks, and the solution is a particle-hole
bound state or an exciton. Since it reduces Sz by 1, it can also
be viewed as a magnon in an effective spin model.

For any short-range interaction, we can show that the
exciton energy has the following Q � 1 behavior:

E(Q) = 3v

2π

(
1 − 3�2

v2

)
Q2 ln


′

Q
, (35)

where v is the velocity equation (26) that also appears in the
single-particle dispersion and 
′ � 1 is again a momentum
cutoff. The inverse exciton mass, or the spin stiffness of
the ferromagnetic zigzag edge, is therefore logarithmically
divergent. The derivation of Eq. (35) is sketched in the
Appendix, where we see the divergence arises due to the linear
behavior of εp/h(k) near the Dirac points. This divergence is
possibly related to the large spin stiffness found by Refs. [6,22]
for U comparable to t .

Although similar exciton dispersions have been previ-
ously reported in carbon nanotubes [41], in contrast to
Eq. (35) they originate from the long-range nature of the
Coulomb interaction. In fact, since in the Coulomb inter-
action with a long-distance cutoff R we have v ∝ ln R, we
expect that Eq. (35) is modified to E(Q) ∝ Q2 ln2 Q for
R → ∞; that is, the spin stiffness is even more divergent
than a logarithm for the unscreened Coulomb interaction.

Figure 8 shows E(Q)/Q2 plotted against ln Q at 0 <

Q � 1 for some values of R and � = 0, where E(Q) is
found by solving Eq. (34) numerically via Chebyshev series
expansion [42].

It is also helpful to examine the effect of � on the exciton
dispersion, taking as an example the Coulomb interaction
with a long-distance cutoff R. As depicted in Fig. 9, when
|�| = �c(R) so that εp(π ) = 0, the exciton dispersion
E(Q) calculated numerically also approximately vanishes at
Q = ±π/3, and the exciton wave function strongly favors
the state with a spin-down electron at π and a spin-up hole
at either Dirac point. For |�| > �c(R), in parallel with
the Hubbard case [11], E(±π/3) becomes negative, which
indicates that the ground state at half filling is no longer
maximally spin polarized; instead, the edge states near π

become more likely to be doubly occupied, and the edge states
near the Dirac points become more likely to be unoccupied.

Finally, we mention that in the two-particle-two-hole
sector, the excitons in the one-particle-one-hole sector can
form an additional bound state below the exciton continuum.
Nevertheless, for both the Hubbard and the Coulomb
interactions with |�| < �c(R), we find numerically that the
bottom of the two-particle-two-hole bound-state dispersion
remains positive; we thus conjecture that the ferromagnetic
ground state is stable for |�| up to �c(R). We also mention
that the bound-state picture provides an intuitive explanation
for the nonferromagnetic regime in Fig. 3: for M < N/2,
we can usually form an M-particle-M-hole bound state with
a non-negative binding energy, i.e., with an energy lower
than or equal to the sum of energies of an (M − 1)-particle-
(M − 1)-hole bound state and a one-particle-one-hole bound
state. Therefore, if the one-particle-one-hole ground state has
a negative energy as happens for sufficiently large U2∠, then
as M increases and |Sz| decreases, the ground-state energy in
the Sz sector either stays the same or decreases.

V. DISCUSSION AND CONCLUSIONS

In our effective model (8) at O(U ), we have ignored the
dynamics of low-lying bulk degrees of freedom near the Dirac
points, so an obvious issue is whether this approximation is
justified. For the on-site Hubbard interaction, the answer is
partly given by Refs. [11,43], where effective Hamiltonians
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FIG. 8. The exciton dispersion for the Coulomb interaction at small momenta. E(Q)/(U0Q
2) is plotted against ln Q for 0.01 � Q � 0.1

and different values of long-distance cutoff R, with the particle-hole symmetry-breaking perturbation � set to zero. The lowest 100 Chebyshev
polynomials are retained in the numerical solution.

are found to O(U 2/t) by integrating out the bulk states and
neglecting retardation. While Ref. [11] finds that the O(U 2/t)
correction to the Hamiltonian has a q2 ln q behavior for small
momentum transfer q, such behavior does not necessarily hint
at a breakdown of the perturbation theory, as logarithms also
appear at O(U ), e.g., in the exciton dispersion equation (35).
Reference [43] further shows that, as far as the effective
spin model is concerned, the interaction strengths are only
weakly modified by the bulk states even for U comparable to
t . In other words, there is no evidence that the perturbation
theory in U/t is divergent. However, while a weak Hubbard
interaction is known to be irrelevant in the bulk, a weak
Coulomb interaction is marginally irrelevant and may lead
to further logarithmic corrections [29,40]. It therefore remains
an open question whether integrating out the bulk states at
O(U 2/t) qualitatively changes the physics of the O(U ) edge
model for the unscreened Coulomb interaction.

Another problem that we have not discussed so far is the
interedge coupling in realistic graphene nanoribbons. We now
consider a ribbon of large but finite width W � 1 with two
zigzag edges, whose overall ground state is antiferromagnetic.
The interedge coupling originates in part from the direct
interaction between opposite edges, which is significant even
at the first order in interaction if it is long range [O(U0/W )
in the Coulomb case]. Interedge coupling is also mediated
by bulk states, which is second order in interaction and is
O(U 2/(tW 2)) in the Hubbard case [11]. Yet another source is
the hopping amplitude between edge states of opposite edges,
which exists even in the absence of interactions and leads to
an energy gap exponentially small in W . For wide ribbons
W � 1, it is well known that the edge states are no longer
strictly localized near one edge when their momenta are
within O(1/W ) of the Dirac points. The hopping amplitude
at momentum k thus grows rapidly as k approaches the

FIG. 9. The exciton dispersion for the Coulomb interaction. E(Q)/U0 is plotted against Q for 0 � Q � 2π/3 and different values of
long-distance cutoff R. The particle-hole symmetry-breaking perturbation � is either zero (solid symbols) or �c(R) (open symbols). The
lowest 100 Chebyshev polynomials are retained in the numerical solution.
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Dirac points, eventually reaching O(t/W ) [5,44]. Under our
assumption U � t , this is actually a much larger energy
scale than that of the direct interedge Coulomb interaction or
that of the bulk-mediated interedge interaction. Thus it is not
justified to ignore the interedge hopping amplitude near the
Dirac points in the effective model for a nanoribbon. In fact, at
the mean-field level, it is exactly the part of the Brillouin zone
near the Dirac points that contributes the most to the interedge
superexchange interaction [5,8], and the spin-wave dispersion
becomes linear for small momenta once the interedge
coupling is taken into account [9]. Although an effective edge
model incorporating the interedge hopping [12] is often much
less analytically accessible beyond the mean-field level, we
hope further insight on the effect of Coulomb interaction
in finite-width nanoribbons can be gleaned from exact
diagonalization.

In conclusion, we have investigated the effects of long-
range interactions on the zigzag edge states of a semi-infinite
graphene sheet. By projecting the interaction onto the edge-
state subspace, we obtain an effective model for which the
states in the maximally polarized ferromagnetic multiplet are
zero-energy eigenstates. A sufficient condition is found for
the ferromagnetic multiplet to be the ground states, and we
presented evidence that the unscreened Coulomb interaction
satisfies this condition, which implies that its ground states

are ferromagnetic. In cases where the sufficient condition
is not met, exact diagonalization results indicate that the
ground state can be nonferromagnetic, provided that certain
nonlocal components of the interaction are sufficiently strong.
We also discussed the single-particle excitations, single-hole
excitations, and spin-1 excitons of the maximum Sz ground
state. For short-range interactions the single-particle and
single-hole excitations have linear dispersions near the Dirac
points, as described in Eq. (25). The slope v also governs the
exciton energy at small momenta, Eq. (35), which shows a
vQ2 ln Q behavior. For the unscreened Coulomb interaction
v becomes logarithmically divergent as a function of the
long-distance cutoff, corresponding to a δk ln δk behavior,
where δk � 1 is the distance from either of the Dirac points.
The edge states acquire a dispersion due to a particle-hole
symmetry-breaking perturbation �; the ferromagnetic ground
state can be destroyed if |�| is large enough.
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APPENDIX: EXCITON DISPERSION AT SMALL MOMENTA FOR A SINGLE ZIGZAG EDGE
WITH SHORT-RANGE INTERACTIONS

For simplicity, we illustrate the derivation of Eq. (35) with the Hubbard interaction U(0,0) = U . Generalization to nonlocal
interactions is tedious but straightforward; it is briefly discussed at the end of this appendix.

Expanding the denominator of the kernel 	 in Eq. (34), we can isolate the k dependence of f (k; Q):

f (k; Q) = − g0(k)g0(k + Q)

E − εh(k) − εp(k + Q)

∞∑
l=0

(
4 cos

k

2
cos

k + Q

2

)l

U�l(Q), (A1)

where �’s are independent of k and are defined as

�l(Q) =
∫ 4π

3 −Q

2π
3

dk′

2π
g0(k′ + Q)g0(k′)

(
4 cos

k′

2
cos

k′ + Q

2

)l

f (k′; Q). (A2)

Inserting Eq. (A1) into Eq. (A2), we obtain an infinite number of linear equations satisfied by �:

�l(Q) = −
∫

dk′

2π

(
1 − 4 cos2 k′+Q

2

)(
1 − 4 cos2 k′

2

)
E − εh(k′) − εp(k′ + Q)

(
4 cos

k′

2
cos

k′ + Q

2

)l

×
∞∑

l′=0

(
4 cos

k′

2
cos

k′ + Q

2

)l′

U�l′(Q). (A3)

For Q � 1, the integrand on the right-hand side can be expanded to O(E) and O(Q2).

�l(Q) =
∫

dk′

2π

(
1 − 4 cos2 k′

2

)2

εh(k′) + εp(k′)

(
4 cos2 k′

2

)l ∞∑
l′=0

(
4 cos2 k′

2

)l′

U�l′(Q)

+E

∫
dk′

2π

(
1 − 4 cos2 k′

2

)2

[εh(k′) + εp(k′)]2

(
4 cos2 k′

2

)l ∞∑
l′=0

(
4 cos2 k′

2

)l′

U�l′(0)

+ 2
∫ 2π

3 +


2π
3

dk′

2π

− 3
4

(
1 − 3�2

v2

)
Q2

v
(
2k + Q − 4π

3

) − √
3�Q

∞∑
l′=0

U�l′(0). (A4)
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In the second and the third lines we have approximated �l′(Q) ≈ �l′(0), assuming that �l(Q) is well behaved at Q = 0 and any
difference is O(Q). In the third line we have retained the most singular contribution at O(Q2), which is in the vicinity of the
Dirac points (hence the factor of 2), as the remaining terms contain no infrared divergence.

Using Eq. (A2) and recalling that the Q = 0 solution is f (k; 0) = 1, we have
∞∑

l′=0

U�l′(0) =
∞∑

l′=0

∫ 4π
3

2π
3

dk

2π
g2

0(k)U

(
4 cos2 k

2

)l′

= U

3
(A5)

and
∞∑

l′=0

(
4 cos2 k′

2

)l′

U�l′(0) =
∞∑

l′=0

∫ 4π
3

2π
3

dk

2π
g2

0(k)U

(
16 cos2 k

2
cos2 k′

2

)l′

= εh(k′) + εp(k′)
1 − 4 cos2 k′

2

; (A6)

therefore

�l(Q) =
∫

dk′

2π

(
1 − 4 cos2 k′

2

)2

εh(k′) + εp(k′)

(
4 cos2 k′

2

)l ∞∑
l′=0

(
4 cos2 k′

2

)l′

U�l′(Q)

+E

∫
dk′

2π

1 − 4 cos2 k′
2

εh(k′) + εp(k′)

(
4 cos2 k′

2

)l

− 1

8πv

(
1 − 3�2

v2

)
Q2U ln


′

Q
. (A7)

Now, we multiply the entire expression by [1 − 4 cos2 (k/2)][4 cos2 (k/2)]
l
U , then sum over l and integrate over k. The left-hand

side then cancels the first term on the right-hand side, and using v = U/(2
√

3), we are left with Eq. (35).
In the presence of nonlocal interactions, one needs to assign three more indices to �, namely δm, δn, and α = 1, 2 [corresponding

to the two terms in the third line of Eq. (23)]. All three indices should be summed over in Eq. (A3) and, subsequently, in
Eqs. (A5), (A6), and (A7).
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