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Absolute determination of optical constants by reflection electron energy loss spectroscopy
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We present an absolute extraction method of optical constants of metal from the measured reflection electron
energy loss spectroscopy spectra with the help of a recently developed reverse Monte Carlo technique. The
method is based on a direct physical modeling of electron transportation with an optimization procedure of
the energy loss function (ELF). The optical constants and the electron inelastic mean free path were obtained
after verifying the accuracy of the derived ELF with the f- and ps-sum rules. This approach provides a valid
and universal tool to investigate intrinsic properties of metals by using the electron energy loss spectroscopy
technique.
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I. INTRODUCTION

There is a continuous interest and effort in the determination
of optical constants of solids due to their importance in both
fundamental research and applications. For this purpose, opti-
cal methods based on reflectance and absorption spectroscopy
as well as spectroscopy ellipsometry are the most extensively
employed approaches, by which the measured data for metals
and semiconductors are compiled to form a popular database of
optical constants [1,2]. However, many materials still lack the
data in the intermediate photon energy range around 20–50 eV.
Furthermore, the available data in the current database usually
consist of various energy regions measured by different groups
and means; thereby the data may not be smoothly joined. On
the other hand, the electron energy loss spectroscopy [3–5]
can provide an alternative way for deriving information about
the dielectric response of a solid to an external electric field
carried by electrons, which is, in principal, a rather different
technique compared with optical methods. In recent years a
well established technique based on the reflection electron
energy loss spectroscopy (REELS) has been developed [6–16]
to obtain optical constants in a rather wide range of energy loss
of electrons (i.e., photon energy). The typical energy loss range
is 1–100 eV, and the measurements can be performed once or
maybe several times under different experimental conditions
but with the same spectrometer. Such an ability to derive
optical constants in a wide photon energy range with only one
spectrum is the main advantage of REELS compared with the
optical measurements. In addition, it also holds the opportunity
to get the optical constants for nonzero momentum transfers.

In deriving the energy loss function (ELF), Im[−1/ε(ω)],
and thereby the optical constants (n,k), where ε = n + ik

is the complex dielectric function of the solid, from the
measured REELS spectra, precise and accurate knowledge
of the electron energy loss processes has crucial importance.
Electron interaction with a sample is comprised of the electron
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elastic scattering and the bulk- as well as surface-electronic
excitation for electron inelastic scattering. Among the various
strategies for the extraction of optical constants from a REELS
spectrum, many of the previous works [6–8,16] used an
analytical algorithm [17] to get the single inelastic scattering
distribution, i.e., the differential inverse inelastic mean free
path (DIIMFP), by neglecting the influence of the elastic
scattering completely. Since the ELF is directly related to the
DIIMFP, such a treatment was later modified to compensate for
the influence of elastic scatterings by applying a scaling fac-
tor [9,10]. However, the obtained effective ELF has ambiguous
physical meaning. In the same spirit, a REELS spectrum was
analytically constructed as a convolution of multiple inelastic
scattering distributions contributed by surface and bulk excita-
tions [11,12,18]. The weighting factors for the corresponding
energy loss distributions represent only the partial intensity
of electrons inelastically scattered in the solid. Although these
attempts have promoted advances in understanding of electron
interactions with solid surfaces and have provided valuable
optical data for some metals [12], this kind of analytical
modeling still has serious problems: (a) Calculations require
preknowledge as input of electron inelastic mean free path
(IMFP) and surface excitation parameter (SEP), which actually
are results determined by the optical constants (specifically by
the ELF) of the sample; (b) although the REELS spectrum
intensity is scaled with the elastic peak intensity, however,
without taking account of the elastic scattering process exactly
in the analysis of the measured spectrum the obtained ELF
data are not absolute and, therefore, the ELF must be scaled
by introducing artificial scaling factors [12]; (c) furthermore,
the shape of the REELS spectrum is actually also sensitive
to the ratio of cross sections between elastic and inelastic
scattering, and thus electron elastic scattering also influences
the derived ELFs; (d) lastly the analytical algorithm [12] which
includes surface excitation assumes homogeneous scattering
properties of a sample while the surface excitation is, in fact,
depth dependent [19–21].

In our previous work [15] a reverse Monte Carlo (RMC)
method, which integrates the Monte Carlo (MC) simulation
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of the REELS spectrum and the Markov chain Monte
Carlo (MCMC) technique for updating of the ELF, was
established to include elastic and multiple scattering effects
in the evaluation of ELF from an experimental spectrum.
The RMC method overcomes the drawbacks of various
analytic methods in that (a) elastic scattering of electrons is
taken into account completely, which consequently ensures
the absolute determination of the ELF values rather than a
relative one; (b) the multiple scattering effects including the
surface excitation are taken into account in a well-developed
MC technique [21], which has been proven to be the most
accurate method so far for REELS spectrum analysis [22].
The absolute values of the optical constants were obtained
successfully by the RMC method for SiO2 in our previous
work [15]; however, the use of a constant fitting parameter S

for accounting of surface excitation effects approximately has
inevitably limited potential application for solids with complex
electronic structures, such as transition metals. The critical
issue in our previous calculation was that S represents the
depth independent surface excitation probability; this rough
assumption makes the DIIMFP calculations relatively poor
and limits the accuracy of the final quantitative evaluation of
optical constants which are merely bulk property.

In the present work, the framework of the RMC method
is extended to allow the MC modeling of the depth-
dependent surface excitations in the simulation for a more
sophisticated description of the electron inelastic scattering
process. The surface mode of collective excitations [23]
rises from the presence of a sample boundary between
material and vacuum; the surface excitation probability
should depend on the distance of electron position to the
surface. A measured REELS spectrum is a superposition
of energy losses due to bulk and surface modes and
therefore must be decomposed. According to the previous
investigations on the surface excitation effects [24–26],
for accurate MC simulation of REELS spectrum one has to use
directly a spatial- (depth- and directional-) dependent DIIMFP.
Two typical models are available to calculate the DIIMFP, i.e.,
the semiclassical one [20,27] and the quantum mechanical
one [28,29]. In this work, the semiclassical model is used,
partly because it gives very close results with the quantum
mechanical model in most cases [30], while more importantly
it is computationally more efficient. REELS spectra of iron
were measured for primary energies of 1000, 2000, and 3000
eV. The self-consistency of the ELFs was achieved with our
RMC method. The accuracy of the ELF and the validity of the
method were verified by comparing the obtained data with the
literature and also by evaluating the f - and ps-sum rules.
In addition to optical constants, the IMFP, which is more
commonly measured by the elastic peak electron spectroscopy
(EPES), was deduced as well based on the obtained ELF. This
RMC method will certainly extend the quantitative ability of
the REELS spectroscopy.

II. THEORY

A. Monte Carlo simulation

The main feature of the MC modeling of electron-solid
interactions for a REELS spectrum consists of the use of Mott’s

cross section for electron elastic scattering and a dielectric
response theory for electron inelastic scattering. Details of
the sampling procedure of the electron flight length from a
depth-dependent DIIMFP inside a sample and in vacuum,
which is the key to the present simulation of multiple electron
scattering, can be found in our previous work [21].

1. Elastic scattering

The relativistic expression of electron-atom scattering, i.e.,
Mott’s cross section [31], is employed for the treatment of
electron elastic scattering,

dσ

d�
= |f (ϑ)|2 + |g(ϑ)|2, (1)

where the scattering amplitudes,

f (ϑ) = 1

2iK

∞∑
�=0

{(� + 1)(e2iδ+
� − 1)

+ l(e2iδ−
� − 1)}P�(cos ϑ);

g(ϑ) = 1

2iK

∞∑
�=1

{−e2iδ+
� + e2iδ−

� }P 1
� (cos ϑ), (2)

are calculated by the partial wave expansion method [32].
P�(cos ϑ) and P 1

� (cos ϑ) are the Legendre and the first-order
associated Legendre functions. δ+

� and δ−
� represent spin-

up and spin-down phase shifts of the �th partial wave. In
the calculation of the phase shifts, the Thomas-Fermi-Dirac
atomic potential [33] is used and the atomic number of the
sample is the only required input parameter.

2. Inelastic scattering

a. Bulk model. Under a homogeneous sample assumption
and in the case of a fast electron moving inside an infi-
nite sample, the electron inelastic scattering can be com-
pletely described by the dielectric theory via the bulk ELF,
Im[−1/ε(ω,q)]. The differential inelastic cross section, i.e.,
DIIMFP, is given by

d2λ−1
in

d(h̄ω)dq
= 1

πa0E
Im

[ −1

ε(ω,q)

]
1

q
, (3)

where a0 is the Bohr radius, h̄ω and h̄q are, respectively, the
energy loss and the momentum transfer for an electron of
kinetic energy E. λin is the IMFP. In this scheme, only the
bulk excitation mode is considered.

b. Surface model. Owing to the presence of a surface
boundary at the interface of a bulk material and vacuum,
surface excitation mode occurs. For the configuration of
REELS measurement signal electrons penetrate the sample
surface twice. A measured REELS spectrum is contributed
by signal electrons which have gone through both bulk
and surface excitations. In order to give a more accurate
quantitative description of REELS spectrum, two typical
models, namely, the semiclassical one [20,27] and the quantum
mechanical one [28,29], were worked out to yield the depth-
dependent DIIMFPs. In this work, the semiclassical model
is employed for its higher numerical efficiency [30]. The
expression of the depth-dependent DIIMFP containing both
the bulk ELF term, Im[−1/ε(ω,q)], and the surface ELF term,
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Im[−1/(ε(ω,q)+1)], is written as

σ (z) = 2

πv2

∫ q+

q−
dq

1

q
Im
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1
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]
�(−z) + 4 cos α
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0
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and
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{
Im
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2 cos
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where ω̃ = ω − qv sin θ cos φ sin α, q‖ = q sin θ , v⊥ =
v cos α, for an electron penetrating the surface from the solid
(or vacuum) side into the vacuum (or solid) side, respectively.
The integral limits of q are determined by the energy and mo-
mentum conservation relations as q± = √

2E ± √
2(E − ω).

Details of the derivation of the above DIIMFP can be found in
our previous work [30].

B. Determination of optical constants

Since the inelastic scattering cross section of the signal
electrons in a REELS spectrum is determined by the ELF, the
dielectric function ε(ω,q), the relevant optical constants, and
IMFP can therefore be evaluated from the measured REELS
spectrum by the RMC method. In the RMC procedure, a trial
ELF is parametrized as a sum of a number of Drude-Lindhard
functions:

Im

[ −1

ε(q,ω)

]
=

N∑
i=1

AiIm

[ −1

ε(q,ω; ωpi,γi)

]
, (6)

where the 3N oscillator parameters, Ai , ωpi , and γi , are,
respectively, the oscillator strength, the energy, and the width
of the ith oscillator. They are arbitrarily selected for the long
wavelength limit, q → 0, as the initial input. For finite q

values, the dielectric function ε(q,ω) is extended from the
long wavelength limit, namely, the optical dielectric function
ε(ω), via Ritchie and Howie’s scheme [34]. Based on the first
set of the oscillator parameters, a MC simulation is performed
to produce an initial simulated REELS spectrum, I sim

0 (�E).
A “goodness” of the oscillator parameters after n iterations is
defined as

χ2
n =

∑
j

[
I sim
n (�Ej ) − I exp(�Ej )

]2
σ (�Ej )2, (7)

where I exp(�Ej ) is the experimental intensity and σ (�Ej ) is a
weighting factor to specify the importance at an interested en-
ergy loss �Ej . The optimal values of 3N oscillator parameters
are determined by a successive procedure; i.e., the simulation
of REELS spectrum is performed iteratively in order to min-

imize the goodness parameter, χ2
n . In this way, the final ELF

will converge and represent the true value of the sample. For
materials having a complex shape of ELF, such as transition
metals, about 50 or more Drude-Lindhard terms are necessary
for an adequate expression of ELF. The determination of the
ELF thus actually turns into a task of global optimization in a
hyperspace of over 100 dimensions. The simulated annealing
method (SA) [35], as one of the most popular probabilistic
searching techniques for MCMC sampling, is employed for
adjusting the parameter set to reduce computation time. In
analogy to the annealing process to find the ground state of a
crystalline condensed matter, χ2

n is regarded as the potential
energy in SA. During the MCMC sampling process, a Boltz-
mann probability distribution P (�E) = exp(−�E/kBTn) is
used as the acceptance function, where �E = χ2

new − χ2
old is

the difference in the potential energy between the old step and a
new trial step. In our calculation, the “temperature” is set with
a fast annealing algorithm as Tn(�Ej ) = T0/(1 + n), where T0

is the initial value. In this way, the final optimized ELF, as a sum
of Drude-Lindhard terms, is independent of the choice of the
initial parameter set, as a basic property of the MCMC method.

Once the final ELF, Im[−1/ε(ω)], is obtained by the
RMC method, the real part, Re[−1/ε(ω)], is deduced through
an analytical Kramers-Kronig relation. Then the real and
imaginary parts of the dielectric function can be obtained as,
respectively,

ε1 = −Re[−1/ε(ω)]

Im[−1/ε(ω)]2 + Re[−1/ε(ω)]2 ,

ε2 = Im[−1/ε(ω)]

Im[−1/ε(ω)]2 + Re[−1/ε(ω)]2 . (8)

Upon the complex dielectric function, the optical constants,
n and k, can therefore be derived as

n =
√

ε1 +
√

ε1
2 + ε2

2

2
, k =

√
−ε1 +

√
ε1

2 + ε2
2

2
. (9)
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FIG. 1. Evolution of ELF in the RMC process, showing updating
of the trail ELFs of Fe with MCMC iteration steps. The final ELF is
depicted in red line. Variation of the “potential” is displayed by the
black line.

III. EXPERIMENT

Three REELS spectra for a mechanically polished polycrys-
talline iron sheet sample were recorded with primary electron
energies at 1000, 2000, and 3000 eV in an energy loss range
of 0–100 eV by the home-built electron spectrometer ESA-31
at ATOMKI [36]. The analyzer works in a fixed retardation
ratio mode with a relative energy resolution of 5 × 10−3. In
the present experiments the used pass energies were around
100 eV, and in this way the analyzer energy resolution was
around 0.5 eV. The full widths at half maximum, being the
convolution of the analyzer and the electron source generated
widening of the elastic peak, were around 0.6–0.7 eV. The
incident angle of the primary electron beam is 50°with respect
to the surface normal of the sample and the angle of the
analyzed electrons is 0° relative to the surface normal.

IV. RESULTS AND DISCUSSION

MC simulations for the REELS spectra were performed
for this geometry and for the three primary electron energies.
Figure 1 shows the evolution of the trial ELF as a function

of the number of MCMC steps. The corresponding goodness
parameter, χ2

n , or equivalently the potential in the parameter,
space changes with trial ELF at each step. The potential χ2

n

curve shows a feature of local fluctuations while in an overall
decline tendency. This is ensured by the MCMC samplings
of the SA algorithm, whereas by applying the acceptance
function of P (�E) = exp(−�E/kBT ) an equilibrium state
of Boltzmann distribution shall be reached after the “melting”
stage [23]. Moreover, as the “temperature” T cools down with
iterative steps, the Boltzmann distribution eventually turns into
the lowest energy state. For an intuitionistic view, the evolution
of the optical constants is shown in Fig. 2, where the refractive
index n and the extinction coefficient k are depicted each as
a function of the RMC iteration steps, corresponding to the
updating of ELFs in Fig. 1.

By the RMC algorithm each REELS spectrum measured
under a certain experimental condition will yield an ELF of
the sample. In this paper, we have performed calculations
for three experimental spectra measured at 1000, 2000, and
3000 eV in order to check the consistency of the obtained
ELFs. Figure 3(a) shows that the agreement between the final
simulated and experimental REELS spectra on the absolute
intensity scale is excellent, covering the whole range from the
elastic peak down to an energy loss of 100 eV, for all three
primary energies. Here the absolute intensity means that the
spectrum is scaled with the intensity of the elastic peak, as
shown in the inset of Fig. 3(a). To reveal the importance of
surface excitations, we have calculated REELS spectra taking
into account only the pure bulk excitation by employing the
bulk model in Sec. II. Thus the contribution of surface exci-
tations is derived by subtraction of the pure bulk contribution
from the full spectra, as displayed in Fig. 3(a). One can see
that at a lower primary energy the contribution from surface
excitation becomes more important; this is because the surface
excitation probabilty increases with lowering electron energy.
Figure 3(b) shows the corresponding bulk ELF, Im[−1/ε(ω)],
and the related surface ELF, Im[−1/(ε(ω)+1)], for the three
energies determined in an absolute way by the RMC method,
without resorting to any artificial normalization procedure. An
overall consistency among the three ELFs has been gained as
expected. To check the accuracy of these ELFs, f - and ps-sum

FIG. 2. Evolution of (a) the refractive index n and (b) the extinction coefficient k of Fe, corresponding to ELFs in Fig. 1, in the RMC
process. The final values are shown with red lines.
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FIG. 3. (a) Comparison of simulated REELS spectra (solid lines) and measured spectra (dotted lined) of Fe at 1000, 2000, and 3000 eV. The
inset shows the normalization on the elastic peak intensity. Contributions from bulk and surface excitations from MC simulation are illustrated
as well. (b) The final bulk energy loss function, Im[−1/ε(ω)], and the surface energy loss function, Im[−1/(ε(ω) + 1)], obtained from the
REELS spectra for the corresponding energies by the RMC method.

rules were calculated, which are defined, respectively by,

Zeff = 2

π�2
p

∫ ∞

0
ωIm[−1/ε(ω)]dω, (10)

Peff = 2

π

∫ ∞

0

1

ω
Im[−1/ε(ω)]dω, (11)

where h̄�p =
√

4πnae2/me and na is the atomic density of
the sample. The obtained results are summarized in Table I,
where the data above 100 eV are taken from measurements
performed by Henke et al. [37]. The nominal theoretical values
for f - and ps-sum rules are the atomic number (Z = 26 for
Fe) and 1, respectively. We found that for all three energies
the obtained values are very close to the theoretical values; the
relative errors are very small for both sum rules. This clearly
indicates that our calculated ELFs give reasonable optical

TABLE I. List of f -sum and ps-sum rule checks for ELFs derived
from REELS spectra at 1000, 2000, and 3000 eV and for averaged
ELF (RMC).

Primary Relative Relative
energy Zeff (f sum) error Peff (ps sum) error

1000 eV 25.95 −0.19% 1.024 2.4%
2000 eV 25.80 −0.76% 1.045 4.5%
3000 eV 26.24 0.92% 1.051 5.1%
RMC 25.99 −0.04% 1.040 4.0%

properties of the Fe sample from the near-visible to the soft
x-ray photon energy region. Therefore, this agreement also
confirms that the present MC modeling of electron interaction
with solid surface is quite reasonable. The sum rules calculated
taking an average over the three energies are also given in
Table I.

To minimize the uncertainties, we take an average over
the ELFs for the three energies. Figure 4 shows the averaged

FIG. 4. Comparison of ELFs deduced by the present RMC
method with Werner’s REELS data and DFT calculation, Palik’s
compiled data (lacking data in 26–50 eV) and Henke’s experiment.
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FIG. 5. Comparison on the refractive index n and extinction
coefficient k of Fe between the RMC method and Palik’s data.

ELF in comparison with the results of Werner et al. [12],
Palik [1], and Henke et al. [37]. In the low energy loss region
(<25 eV), the RMC result agrees well with the Werner’s data
from a deconvolution of REELS spectra while above 15 eV
it deviates from Palik’s data. In the intermediate energy loss
region, i.e., 25–50 eV, our RMC result is closer to Werner’s
density functional theory (DFT) calculation; meanwhile below
40 eV it deviates from Henke’s data which were deduced from
atomic scattering factors. In the high energy loss region, the
present ELF is very close to Henke’s data but has a sharper M2,3

edge around 55–60 eV and it is not as strong as that of Werner’s
data by REELS measurement and DFT calculation. We note
that the agreement with Henke’s data in the high energy loss
region is important because the absorption properties of a solid
should approach the atomic properties above the ionization
edge. Thus, the present absolute ELF generally falls into the
data distribution range from different sources. It agrees with
Werner’s REELS data in the low energy loss region, with
the first-principle DFT calculation in the intermediate energy
loss region and with the atomic data in the high energy loss
region.

Finally, optical constants are obtained with ELF by using
Eq. (9) in Sec. II. Figure 5 displays the calculated refractive
index n and extinction coefficient k of Fe in the photon energy
range of 0–100 eV, in comparison with Palik’s database of
optical constants. In addition to the perfect agreement with
the experimental data in the high energy loss region, our
data also join smoothly the extinction coefficient k of Palik’s
database in the absent range of 26–40 eV. Furthermore, the
IMFP, one of the most important parameters for chemical
quantification by surface electron spectroscopy techniques,
was calculated with the obtained ELF by adopting a dielectric
response theory [38]. The calculated IMFP was then compared
with the NIST IMFP database [39] in Fig. 6. A systematic
deviation of about 5 Å (relative error 20%−30%) from the
Tanuma-Powell-Penn (TPP-2M) formula [40] in the electron
energy of 500–2000 eV was found. Though the TPP-2M result
is closer to the data obtained from the EPES measurements
by Lesiak et al. [41], our results agree with another EPES

FIG. 6. IMFP as a function of primary electron energy. Solid line:
present results by RMC method; dashed line: TPP-2M formula which
concides with the data from Refs. [38,43] (not shown here); dotted
line: results from EPES measurements by Lesiak; dot-dashed line:
results from EPES measured by Koch.

measurement by Koch [42]. We note that such systematic
deviation is a direct result of the difference between the
present ELF and that of Palik, which was adopted for the
fitting procedure of the empirical TPP-2M formula. We note
also that by virtue of a comprehensive description of the
experiment, REELS excels over EPES in that the IMFP can
be determined in the whole energy range in principle with one
measurement of the REELS spectrum at one primary energy.
Though practically one prefers to perform several REELS
measurements at several primary energies for averaging, for
EPES separate measurements at the required primary energies
are inevitable.

V. SUMMARY

We have obtained ELF and optical constants of iron in
the energy range of 0–100 eV from the measured REELS
spectra with the help of the recently developed RMC method.
The f - and ps-sum rules for the energy averaged ELF are,
respectively, 25.99 and 1.04 with relative errors of −0.038%
and 4.0%. The ELF used in the REELS spectrum simulation is
approximated as the sum of the Drude-Lindhard type functions
whose parameters are determined by a global optimization
with a MCMC method. The optimization procedure modulates
the simulated REELS spectrum to approach the measured one.
A combination of a spatially varying DIIMFP derived under
the semiclassical framework for electron inelastic scattering
along with Mott’s cross section for electron elastic scattering
was adopted in the Monte Carlo simulation which gives
an accurate description of electron transport in a REELS
experiment. The advantage of REELS in deriving the IMFP of
Fe is demonstrated by comparing the current calculation with
NIST IMFP data. The method provides a valid and universal
tool to investigate intrinsic optical properties of metals with
REELS.
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