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Control of the absorption of a four-level quantum system near a plasmonic nanostructure
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We study the optical response of a four-level double-V-type quantum system which interacts simultaneously
with probe and pump laser fields and is located near a two-dimensional array of metal-coated dielectric
nanospheres. By considering different coupling configurations for the pump/probe laser fields and analyzing
the resulting probe absorption spectrum we reveal a variety of phenomena, such as huge enhancement of the
absorption at the central line, gain without inversion, and a phase-dependent absorption spectrum. We also show
that the enhancement of probe absorption or the gain can be controlled by varying the distance of the quantum
system from the plasmonic nanostructure, the intensity of the pump field(s), and, when applicable, their relative
phase. Our results can find applications in on-chip nanoscale photonic devices.
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I. INTRODUCTION

The strong interaction of light with quantum systems
near plasmonic nanostructures leads to significantly modi-
fied (mainly enhanced) nonlinear optical phenomena at the
nanoscale. These phenomena are attributed to three main
factors: (a) the strong enhancement of the applied electric
field, (b) the significant modification of the quantum system’s
spontaneous decay rate, and (c) the strong exciton-plasmon
coupling occurring for quantum systems near plasmonic
nanostructures. Some of the effects that have been studied
in this research area are Fano effects in energy absorption
[1–4], ultrafast switching and controlled population transfer
[5–11], gain without inversion [12–15], quantum-coherence-
enhanced surface-plasmon amplification [16], controlled op-
tical bistability and multistability [17–20], strongly modified
four-wave mixing [21–24], enhanced second-harmonic gen-
eration [25,26] and nonlinear optical rectification [27], single
[28] and double [29] optical transparency accompanied by
slow light, phase control of absorption and dispersion [30],
strongly enhanced Kerr nonlinearity [31–34], and controlled
Goos-Hänchen shift [35]. These phenomena have various
potential applications in nanophotonics and in quantum tech-
nology at the nanoscale, such as in controllable in ultrafast
nanoswitches, in ultrasensitive nanosensors, in enhancing the
power generated by a photovoltaic device or the efficiency of
a photodetector, in quantum information processing, and in
on-chip nanoscale photonic nonlinear devices.

A quantum system that has shown remarkable optical
response is a four-level double-V-type quantum system that
exhibits quantum interference in spontaneous emission when
placed near a two-dimensional array of metal-coated dielectric
nanospheres. In this quantum system, one V-type transition is
influenced by the interaction with localized surface plasmons,
while the other V-type transition interacts with free-space
vacuum and with the external laser fields. When this system
interacts with a weak probe laser field, it leads to optical
transparency accompanied with slow light [28] and strongly
modified Kerr nonlinearity [31]. Additionally, when the system
interacts with two weak fields it leads to phase-dependent
complete optical transparency and gain without inversion [30].

Many times, in coupled quantum-plasmonic nanostruc-
tures, a strong pump laser field is used for the con-
trol of the optical properties of a weak probe laser field
[12,14,15,21–23,29,32,34]. The combination of the pump field
with the plasmonic nanostructure leads to a significantly
modified optical response for the quantum system when
compared with the case where the quantum system is located
in free space. Here, we study the optical response of the four-
level double-V-type quantum system near a two-dimensional
array of metal-coated dielectric nanospheres when it interacts
simultaneously with a weak probe laser field and with one
or two moderate/strong pump laser fields. Both the quantum
system and the plasmonic nanostructure are shown in Fig. 1.
We consider different coupling configurations for the probe
and pump fields that lead to different optical effects, such
as huge enhancement of the absorption at the central line,
gain without inversion, and a phase-dependent absorption
spectrum. We also show that the enhancement of absorption
or the gain can be controlled through different external
parameters: the distance of the quantum system from the
nanostructure, the intensity of the pump field(s) and, when
applicable, their relative phase.

The article is organized as follows. In the next section we
employ the density matrix equations for the description of
the interaction of the quantum system with the laser fields
under the influence of the plasmonic nanostructure and use
it in order to calculate the absorption spectrum. Then, in
Sec. III we present results for the absorption spectrum of
the probe field under three different pump field couplings for
various parameters of the system. In Sec. IV we summarize
our findings. Finally, we present an Appendix with details of
the calculation of the absorption spectrum.

II. THEORETICAL MODEL

The quantum system under study is shown in Fig. 1(c).
We consider a four-level system with two closely lying upper
states |2〉 and |3〉, and two lower states |0〉 and |1〉 such that
the transition |0〉 ↔ |1〉 is dipolar forbidden. We will call this
system a double-V-type system in order to identify easily two
different three-level V-type transitions in the structure. The
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FIG. 1. (a) A metal-coated dielectric nanosphere and (b) a two-
dimensional array of such spheres used in this work. (c) The energy-
level diagram of the quantum system and the relevant couplings. The
two upper states |2〉 and |3〉 decay with spontaneous emission to the
two lower states |0〉 and |1〉. The transitions from |0〉 to |2〉 and |3〉
are driven by pump laser fields.

quantum system is located in vacuum at distance d from
the surface of the plasmonic nanostructure, which is shown
in Fig. 1(b). We take states |2〉 and |3〉 to characterize two
Zeeman sublevels (J = 1,MJ = ±1), while the two lower
states |0〉 and |1〉 are levels with J = 0. Then, the dipole
moment operator is taken as

�μ = μ′(|2〉〈0|ε̂− + |3〉〈0|ε̂+) + μ(|2〉〈1|ε̂− + |3〉〈1|ε̂+), (1)

where ε̂± = (ez ± iex)/
√

2 describes the right-rotating (ε̂+)
and left-rotating (ε̂−) unit vectors, and μ, μ′ are taken to be
real.

The Hamiltonian that governs the dynamics of the quantum
system can be expressed as

H = Hs + Hext + Hf + Hi. (2)

The Hamiltonian of the system reads

Hs =
j=3∑
j=0

Ejσjj , (3)

where Ej = h̄ωj is the energy of the j th state and σjj =
|j 〉〈j |. We assume that the two upper levels are degenerated
(E3 = E2).

The quantum system interacts in general with two circularly
polarized continuous wave pump electromagnetic (laser)
fields, with total electric field

�E(t) = ε̂+Ea cos(ωat + φa) + ε̂−Eb cos(ωbt + φb), (4)

where Ea (Eb) is the electric field amplitude, ωa (ωb) is the
angular frequency, and φa (φb) is the phase of field a (b). The
pump field a couples state |0〉 with state |2〉, and the pump
field b couples state |0〉 with state |3〉. We assume that both
fields have equal frequencies ωa = ωb = ωL. The Hamiltonian
that describes the interaction of the electromagnetic field
with the quantum system, in the dipole and rotating wave
approximations, is given by

Hext =−h̄�ae
−i(ωLt+φa )σ20−h̄�be

−i(ωLt+φb)σ30 + H.a., (5)

where we have defined �a = μ′Ea/h̄, �b = μ′Eb/h̄, and H.a.
stands for Hermitian adjoint.

We assume that the transitions |2〉, |3〉 to |1〉 lie within
the surface-plasmon bands of the plasmonic nanostructure,
whereas the transitions |2〉, |3〉 to |0〉 are spectrally distant
from the surface-plasmon bands and are thus not influenced
by the plasmonic nanostructure, as it was considered in
Ref. [36]. Therefore, in the transitions |2〉, |3〉 to |0〉 the
spontaneous decay occurs due to the interaction of the quantum
system with free-space vacuum electromagnetic modes. In
view of the previous considerations, the term Hf in Eq. (2)
associated to the medium-assisted electromagnetic field is split
as

Hf = Hf,0 + Hf,1. (6)

The free Hamiltonian describing the interaction with ordinary
vacuum reads

Hf,0 = h̄
∑
k,λ

ωkλa
†
kλakλ, (7)

akλ being a set of bosonic operators obeying the usual
commutation rules: [akλ,a

†
k′λ′] = δkk′δλλ′ , and λ an index for

polarization.
The free Hamiltonian describing the interaction with the

plasmon-modified modes reads

Hf,1 = h̄

∫
d�r

∫ ∞

0
dω ω �f †

λ (�r,ω) �fλ(�r,ω), (8)

which is given in terms of a set of bosonic fields �fλ(�r,ω). Here
�fλ(�r,ω) plays the role of the variable of the electromagnetic

field and the medium, including a reservoir associated to the
losses in the medium. The field operators obey the usual
commutation rules:

[ �fλ(�r,ω), �f †
λ′ (�r ′,ω′)] = δλλ′δ(ω − ω′)δ(�r − �r ′). (9)

195410-2



CONTROL OF THE ABSORPTION OF A FOUR-LEVEL . . . PHYSICAL REVIEW B 95, 195410 (2017)

The interaction Hamiltonian is split into two terms as

Hi = Hi,0 + Hi,1. (10)

The first term in Eq. (10) accounts for the interaction with
ordinary vacuum and reads

Hi,0 = h̄
∑
k,λ

(g−
02akλσ20 + g+

03akλσ30 + H.a.), (11)

the parameter g∓
0k = −√

ωkλ/2h̄ε0V μ′ε̂∓ · êkλ being the cou-
pling constant of the atomic transition |m〉 ↔ |0〉 (m = 2,3)
with the electromagnetic mode.

The second term in Eq. (10) is for the interaction with
plasmon-modified modes and reads

Hi,1 = −
∫ ∞

0
dω[ �μ1 · �E(�r,ω) + H.a.], (12)

where �μ1 = μ(|2〉〈1|ε̂− + |3〉〈1|ε̂+), and �E(�r,ω) is the field
operator (excluding the external driving field), which is defined
through [37]

�E(�r,ω) = i

√
h̄

πε0

ω2

c2

∫
d�r ′√εI (�r ′,ω)

↔
G(�r ,�r ′ ,ω) �f (�r ′ ,ω),

(13)

where
↔
G(�r ,�r ′ ,ω) is the dyadic Green’s tensor. Here, ε(�r ′,ω) =

εR(�r ′,ω) + εI (�r ′,ω) stands for the complex permittivity.
We transform the Hamiltonian in Eq. (2) to the in-

teraction picture using H̃ → U †(t)HU (t), with U (t) =
exp [−i(Hs + Hf )t], where the tilde denotes the interaction
picture. Here it is worth mentioning that the system remains
within the weak-coupling regime, as we will consider distances
between the quantum system and the metallic nanostruc-
ture such that strong-coupling effects do not emerge (see
Refs. [38–41] for details concerning the strong-coupling
regime). We next manipulate the interaction of the system
with the two reservoirs to derive a master equation within the
Born-Markov approximation for the reduced density operator
ρs by carrying out the trace over the baths’ operators while
assuming the zero-temperature bath limit for both reservoirs,
and moving back to the Schrödinger picture. The resulting
master equation reads

∂ρs

∂t
= − i

h̄
[He,ρs] + Lρs, (14)

where He = HA + Hext stands for the atomic plus coherent
part of the Hamiltonian which in an appropriate rotating frame
reduces to

He = −h̄δ(σ22 + σ33)

−
(

h̄�ae
iφ

2
σ02 + h̄�b

2
σ03 + H.a.

)
. (15)

Here, δ = ωL − ω̃ is the detuning from resonance with the
average transition energies of states |2〉 and |3〉 from state |0〉,
with ω̃ = (ω3 + ω2)/2 − ω0, and φ = φa − φb is the phase
difference of the two pump fields. We remind here that we have
assumed the system to be degenerate ω32 = ω3 − ω2 = 0.

The operator Lρs in Eq. (14) accounts for the dissipation
processes which in the Linblad form reads as

Lρs = +γ ′(2σ02ρsσ20 − σ22ρs − ρsσ22)

+ γ ′(2σ03ρsσ30 − σ33ρs − ρsσ33)

+ γ (2σ12ρsσ21 − σ22ρs − ρsσ22)

+ γ (2σ13ρsσ31 − σ33ρs − ρsσ33)

+ κ(2σ13ρsσ21 − σ23ρs − ρsσ23)

+ κ(2σ12ρsσ31 − σ32ρs − ρsσ32)

+ γ ′′(2σ01ρsσ10 − σ11ρs − ρsσ11). (16)

The two first terms in Eq. (16) involve magnitude γ ′ (γ ′ =
μ′2ω̄3/(3πε0h̄c3) corresponds to the decay rate of an atomic
transition in free space). In the current scheme the decay from
the two upper states to the lower level is the same. The term
involving γ ′′ arises from a dipolar forbidden transition, and
thus we expect that γ ′′ � γ,γ ′.

The values of γ and κ are obtained by [42–45]

γ = μ0μ
2ω̄2

h̄
ε̂− · ImG(r,r; ω̄) · ε̂+

= μ0μ
2ω̄2

2h̄
Im[G⊥(r,r; ω̄) + G‖(r,r; ω̄)]

= 1

2
(�⊥ + �‖) , (17)

κ = μ0μ
2ω̄2

h̄
ε̂+ · ImG(r,r; ω̄) · ε̂+

= μ0μ
2ω̄2

2h̄
Im[G⊥(r,r; ω̄) − G‖(r,r; ω̄)]

= 1

2
(�⊥ − �‖). (18)

Here, κ is the coupling coefficient between states |2〉 and
|3〉 due to the anisotropic Purcell effect [46], which is
responsible for the appearance of quantum interference in
spontaneous emission [36,42–45,47–49]. G(r,r; ω) stands for
the dyadic electromagnetic Green’s tensor, where r refers to the
position of the quantum system, and μ0 is the permeability of
vacuum. In addition, G⊥(r,r; ω̄) = Gzz(r,r; ω̄), G‖(r,r; ω̄) =
Gxx(r,r; ω̄) denote the components of the electromagnetic
Green’s tensor where the symbol ⊥ (‖) refers to a dipole-
oriented normal, along the z axis (parallel, along the x axis)
to the surface of the nanostructure. Finally, we define the
spontaneous emission rates normal and parallel to the surface
as �⊥,‖ = μ0μ

2ω̄2Im[G⊥,‖(r,r; ω̄)]/h̄. The degree of quantum
interference is defined as

p = (�⊥ − �‖)/(�⊥ + �‖). (19)

For p = 1 we have maximum quantum interference in spon-
taneous emission [48]. This can be achieved by placing the
quantum system close to a photonic structure that completely
quenches �‖. We stress that when the quantum system is placed
in vacuum, �⊥ = �‖ and κ = 0, so no quantum interference
occurs in the system.

The plasmonic nanostructure considered in this study
is a two-dimensional array of touching metal-coated silica
nanospheres [see Figs. 1(a) and 1(b)]. The dielectric function
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of the shell is provided by a Drude-type electric permittivity
given by

ε(ω) = 1 − ω2
p

ω(ω + i/τ )
, (20)

where ωp is the bulk plasma frequency and τ the relaxation
time of the conduction-band electrons of the metal.

The electromagnetic Green’s tensor that provides �⊥, �‖ is
given by [47,50,51]

GEE
ii ′ (r,r′; ω) = gEE

ii ′ (r,r′; ω) − i

8π2

∫ ∫
SBZ

d2k‖
∑

g

1

c2K+
g;z

× vgk‖;i(r) exp(−iK+
g · r)êi ′ (K+

g ) , (21)

with

vgk‖;i(r) =
∑

g′
Rg′;g(ω,k‖) exp(−iK−

g′ · r)êi(K−
g′ ) (22)

and

K±
g = (k‖ + g, ± [q2 − (k‖ + g)2]1/2). (23)

The vectors g denote the reciprocal-lattice vectors corre-
sponding to the 2D periodic lattice of the plane of scatterers
and k‖ is the reduced wave vector which lies within the surface
Brillouin zone associated with the reciprocal lattice [52]. When
q2 = ω2/c2 < (k‖ + g)2, K±

g defines an evanescent wave. The
term gEE

ii ′ (r,r′; ω) of Eq. (21) is the free-space Green’s tensor
and êi(K±

g ) the polar unit vector normal to K±
g . Rg′;g(ω,k‖)

is the reflection matrix, which provides the sum (over g’s) of
reflected beams generated by the incidence of plane wave from
the left of the plane of scatterers [52]. Also, in Eq. (21), the
terms corresponding to s-polarized waves (those containing
components with the azimuthal unit vector êi(K±

g ) normal to
K±

g ) have small contribution to the decay rates and have been,
therefore, neglected.

The equations for the density matrix elements of the system
are derived from Eq. (14) (see Appendix). We are interested in
the spectral absorption of a weak probe laser field with angular
frequency ωp which scans along either one or the two free-
space transitions |0〉 ↔ |2〉 and |0〉 ↔ |3〉, while the system
is driven by moderate to strong pump laser field(s) along the
same transitions. In the steady-state regime, the absorption
spectrum is proportional to the Fourier transformation of
the correlation function lim

t→∞ 〈[ �E−(r,t ′ + t), �E+(r,t)]〉, where
�E−(r,t)/ �E+(r,t) is the negative/positive frequency part of the

radiation field in the far zone. The radiation field consists of a
free-field operator and a source-field operator that is propor-
tional to the atomic polarization operator [53]. Therefore, the
steady-state absorption spectrum can be expressed in terms of
the atomic correlation function

A(ω) = Re

(
lim
t→∞

∫ ∞

0
〈[ �E−(t ′ + t), �E+(t)]〉e−iωt ′dt ′

)
, (24)

where Re( ) denotes the real part of the magnitude enclosed
in parenthesis. Also, �E+(t) is the positive frequency part of
the fluorescent field, which in the far-field zone (|�r| � c/ωj0,

j = 2,3) reads

�E+(�r,t) = ω2
30

c2|�r| �μ03σ30(t − |�r|/c) + ω2
20

c2|�r| �μ02σ20(t − |�r|/c) ,

(25)

and �E−(t) = ( �E+(t))
†
. We will assume that ω30 = ω20. Substi-

tuting Eq. (25) into Eq. (24) results in an expression containing
two-time correlation functions which are determined by invok-
ing of the quantum regression theorem [53,54] (see Appendix
for details). The absorption spectrum given by Eq. (24) has two
contributions: one of them accounts for the photons absorbed
along the |0〉 ↔ |3〉 transition [the terms involving Û03(τ ) and
Û30(τ ) as defined in Appendix], while the other is related
with the photons absorbed along the |0〉 ↔ |2〉 path [the terms
involving Û02(τ ) and Û20(τ )]. In writing Eq. (24) and in what
follows, we abbreviate ωp − ωL by ω, but we should interpret
ω as a frequency measured relative to the laser frequency ωL,
since we will assume that the hybrid system is driven by a
single or two pump laser fields.

III. NUMERICAL RESULTS

We will study the absorption spectrum of a weak probe laser
field under different coupling configurations of the pump laser
fields. We assume the following parameters for the elements
of the metallic nanostructure: the dielectric constant of SiO2

is taken to be ε = 2.1. In the calculations we have taken
τ−1 = 0.05ωp, ωp being the plasma frequency for gold taken
as h̄ωp = 8.99 eV [55], which in turn determines the length
scale of the system as c/ωp ≈ 22 nm. The lattice constant
of the square lattice is a = 2c/ωp and the sphere radius
S = a/2 = c/ωp with core radius Sc = 0.7c/ωp. We also take
ω̄ = 0.632ωp and calculate the decay rates �⊥ and �‖ in the
presence of the plasmonic nanostructure. The decay rates of
the transitions are taken as γ ′ = 0.3�0, γ = (�‖ + �⊥)/2, and
γ ′′ = 0.001�0.

The results of the calculation of the decay rates are shown
in Figs. 2(a) and 2(b). The large difference between �⊥ and
�‖ due to the anisotropic Purcell effect is obvious. In addition,
Fig. 2(c) displays the result for the quantum interference p

computed using Eq. (19) versus the normalized distance. There
we can see that (i) there is a nonmonotonic behavior of p

on distance and (ii) the value of the quantum interference
parameter remains high or very high (p > 0.95) in the range
of distances considered.

A. Pumping one transition and probing the adjacent transition

First we assume that the pump field is applied on resonance
only along the |0〉↔|2〉 transition (�a �= 0, �b =0, and δ=0).
In addition, we consider that the weak probe field is applied
along the |0〉 ↔ |3〉 transition. Before presenting results for
the absorption spectrum we analyze how the population is
redistributed along the different states of the system under
the application of the pump field. By solving Eq. (A11) we
obtain the steady-state populations as a function of the Rabi
frequency �a , which are depicted in Fig. 3. We have selected
distances where the effect of the plasmonic nanostructure is
quite different. For the two shortest distances considered in
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FIG. 2. (a)[(b)] The decay rates �⊥ [�‖] (in units of �0, with �0

being the decay rate in free space) versus the normalized distance
dωp/c from the atomic system to the plasmonic nanostructure.
(c) Quantum interference parameter p as defined in Eq. (19) versus
the normalized distance dωp/c.

Figs. 3(a) and 3(b), one of the decay rates is strongly enhanced
with regard to the free-space value �0, resulting in a strong
acceleration of the decay to level |1〉. As for the third case
considered in Fig. 3(c), the effect of the nanostructure is to
slow down both decay rates [see Figs. 2(a) and 2(b)]. It is worth
noting that, although the transition |0〉 ↔ |3〉 is not driven by
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FIG. 3. Steady-state population of the states |2〉 (solid curve)
and |3〉 (dashed curve) versus the Rabi frequency �a for δ = 0
for the following cases: (a) d = 0.1c/ωp , (b) d = 0.4c/ωp , and
(c) d = 0.8c/ωp . The parameters used are �b = 0, δ = 0, ω32 = 0,
γ ′ = 0.3�0, and γ ′′ = 0.001�0.

the pump laser field, a non-null value of the population of level
|3〉 is obtained, which results from the quantum interference
induced by the presence of the plasmonic nanostructure. In
addition, we find the existence of an optimum Rabi frequency
value (�a,opt) which maximizes the steady-state population of
the upper levels. For the shortest distance the value is �a,opt =
0.77�0; for the intermediate distance �a,opt = 0.41�0, while
for the largest distance the Rabi frequency which maximizes
population in level |3〉 is �

(1)
a,opt = 0.29�0, whereas the one

which maximizes population in level |2〉 is �
(2)
a,opt = 0.33�0.

In all cases we have checked that the following inequalities
hold: ρ22(∞) − ρ00(∞) < 0 and ρ33(∞) − ρ00(∞) < 0, i.e.,
no inversion is achieved along the driven and the undriven
channels in the bare basis. In addition, the population of the
upper levels tends to become close to each other in the strong
driving regime.

We want to point out that the role of the dissipative process
along the channel |0〉 ↔ |1〉 is essential to obtain a non-null
probe absorption in steady state. Note that if we set γ ′′ = 0,
and after a few cycles of the driving field, all population will be
transferred to level |1〉 and the system will become completely
transparent to the probe field in steady-state conditions. This
relaxation along the dipolar forbidden transition |0〉 ↔ |1〉 is
therefore essential to the phenomenon we are considering,
since it allows one to obtain a non-null value of population
in the upper states at steady state. This kind of relaxation was
also assumed in Ref. [56], where the quenching of spontaneous
emission of an atomic system similar to the one we are
considering was addressed.

We now proceed with the calculation of the probe absorp-
tion spectrum, based on Eq. (24). The corresponding results are
depicted in Fig. 4 for different Rabi frequencies and distances
of the quantum system from the plasmonic nanostructure. Note
that in the absence of the nanostructure (not shown here), we
obtain only a broad absorption line for the chosen values of the
Rabi frequency of the pump field, since in that case level |3〉
remains unpopulated and the Autler-Townes splitting effect,
that may occur here, is not prominent at these Rabi frequencies.
Therefore, absorption at the central line is expected to be
obtained due to the remaining population in level |0〉. However,
the presence of the plasmonic nanostructure strongly modifies
the absorption of the probe field. In Fig. 4(a) we present
the results for the shortest distance, at three different Rabi
frequencies. Here, the most interesting result relies on the
creation of an extremely sharp dip in the absorption line in the
range where �a < �0; the dip disappears at large values of
the Rabi frequency [see dashed-dotted line in Fig. 4(a)], and
a small level of gain (without inversion) emerges close to the
central line. The central dip changes to a huge absorption peak
when the distance is increased up to d = 0.4c/ωp as depicted
in Fig. 4(b), which is more prominent in the regime of low
pump fields. To better highlight the behavior of absorption
at the central line, we present its value at ω = 0 versus the
distance d in Fig. 4(c). We have estimated that the absorption
at the central line can be reduced to up to half of the value in
free space for d = 0.1c/ωp and can be enhanced up to a factor
of 11 when d = 0.4c/ωp.

The previous findings can be attributed to the effect of
quantum interference in the system which, although it takes
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FIG. 4. Steady-state absorption spectrum A(ω) for the degenerate
quantum system (ω32 = 0) driven on resonance δ = 0 along the
transition |0〉 ↔ |2〉 and probed along the transition |0〉 ↔ |3〉 for
distances: (a) d = 0.1c/ωp and (b) d = 0.4c/ωp . The Rabi frequency
of the pump field is set to �a = 0.41�0 (solid curves), �a = 0.77�0

(dashed curves), and �a = 2�0 (dashed-dotted curves). (c) Steady-
state absorption spectrum evaluated at the central line [A(ω = 0)]
versus the distance d for two Rabi frequencies: �a = 0.41�0 (◦) and
�a = 0.77�0 (�). The filled symbols are obtained for d = ∞. (d) The
various contributions to the absorption spectrum for d = 0.4c/ωp and
�a = 0.41�0: the term proportional to (〈σ00(∞)〉 − 〈σ33(∞)〉) (solid
curve), the term proportional to 〈σ30(∞)〉 plus the one proportional
to 〈σ20(∞)〉 (dashed curve), and the term proportional to 〈σ32(∞)〉
(dashed-dotted curve).

place along the undriven paths |3〉 ↔ |1〉 and |2〉 ↔ |1〉, it
also modifies the probe field along the undriven and free-space
decay path |3〉 ↔ |0〉. Using Eq. (A17) in the Appendix, we
can write the absorption spectrum for this particular case as

A(ω) = R4,4(ω)(〈σ00(∞)〉 − 〈σ33(∞)〉) + R4,3(ω)〈σ30(∞)〉
+R4,8(ω)〈σ20(∞)〉 − R4,6(ω)〈σ32(∞)〉. (26)

Equation (26) indicates that the absorption spectrum has four
different contributions: one proportional to the inversion of
the probed transition (the first term which is proportional
to R4,4), the second and third terms are related with the
steady-state value of the lower-to-upper-states coherences
(proportional to R4,3 and R4,8), and the fourth term involves the
upper-states coherence (proportional to R4,6). In the absence
of the plasmonic nanostructure, the second and fourth terms
are null, whereas the first term dominates over the third
term and results in the absorption of the weak probe. In the
presence of the nanostructure, we have plotted apart in Fig. 4(d)
the different contributions for the case exhibiting the largest
enhancement of absorption at the central line (by selecting
d = 0.4c/ωp, and �a = 0.41�0). The solid curve is the one
associated with the inversion and it always has a positive
contribution to the spectrum. It consists of an extremely narrow
Lorentzian line superimposed over a broad Lorentzian line.
The ultranarrow feature is a signature of the emergence of
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FIG. 5. Steady-state absorption spectrum A(ω) for the degenerate
quantum system (ω32 = 0) driven on resonance δ = 0 along the
transition |0〉 ↔ |2〉 and probed along the transition |0〉 ↔ |2〉 for
distances: (a) d = 0.1c/ωp and (b) d = 0.4c/ωp . The Rabi frequency
of the driving field is set to �a = 0.41�0 (solid curves), �a =
0.77�0 (dashed curves), and �a = 2�0 (dashed-dotted curves). The
rest of the parameters are as in Figs. 4(a) and 4(b). (c) Steady-
state absorption spectrum evaluated at the central line [A(ω = 0)]
versus the Rabi frequency for various distances: d = 0.1c/ωp (solid
curve), d = 0.4c/ωp (dashed curve), d = 0.8c/ωp (dotted curve),
and d = ∞ (dashed-dotted curve). (d) Contributions to the absorption
spectrum for d = 0.4c/ωp and �a = 0.63�0: the term proportional
to (〈σ00(∞)〉 − 〈σ33(∞)〉) (solid curve), the term proportional to
〈σ30(∞)〉 plus the one proportional to 〈σ20(∞)〉 (dashed curve), and
the term proportional to 〈σ23(∞)〉 (dashed-dotted curve).

quantum interference. The net contribution of the two terms
related with the lower- and upper-level coherences, i.e., the
dashed curve, also displays a narrow feature at the central
line. Finally, the term involving the coherence of the upper
states (dashed-dotted curve) has a negative sign but its effect
is mostly overshadowed by the other terms.

B. Pumping and probing the same transition

We now consider that both the pump and the probe
laser fields are applied along the |0〉 ↔ |2〉 transition. The
pump field is applied at exact resonance with the |0〉 ↔ |2〉
transition (�a �= 0, �b = 0, and δ = 0). The results obtained
for the absorption spectrum are depicted in Fig. 5(a)[(b)]
when the distance is set to d = 0.1c/ωp[d = 0.4c/ωp], for
several Rabi frequencies. Here, we obtain the emergence of
a hole burned into the central line also appearing in the
absence of the nanostructure. For d = ∞ (absence of the
plasmonic nanostructure) and at high enough Rabi frequencies,
the system renders the probe almost transparent at ω = 0;
however A(ω) > 0 for the whole spectral range (not shown
here). However, the plasmonic nanostructure promotes the
amplification of the probe field, as it is evidenced by the
presence of gain at the central line. The level of gain is
found to be dependent on both the distance d and the Rabi
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frequency of the pump field. This is more clearly shown in
Fig. 5(c), where we plot A(ω = 0) versus the Rabi frequency
for several values of d. Namely, we find the existence of an
optimum pump Rabi frequency which maximizes the gain
at line center, which, for example, for d = 0.4c/ωp assumes
the value �a,opt = 0.63�0. The creation of gain at the line
center can be understood as follows: most of the population is
transferred to the long-lived state |1〉 by the pumping field,
allowing the probe field to interact only with the nearly
vanishing but non-null populations remaining in levels |0〉 and
|2〉 (see Fig. 3). It is worth noting that gain is obtained without
inversion in the bare basis.

We can get further insight about the origin of gain at the
line center by using Eq. (A17) of the Appendix. In the current
situation the absorption spectrum is determined through

A(ω) = R6,6(ω)(〈σ00(∞)〉 − 〈σ22(∞)〉) + R6,9(ω)〈σ30(∞)〉
+R6,2(ω)〈σ20(∞)〉 − R6,4(ω)〈σ23(∞)〉 , (27)

which indicates that the absorption spectrum has four different
contributions: one proportional to the inversion of the probed
transition (the first term which is proportional to R6,6), the
second and third terms which are related with the steady-state
value of the lower-to-upper-states coherences (proportional
to R6,9 and R6,2), and the fourth term which involves the
upper-states coherence (proportional to R6,4). In the absence
of the plasmonic nanostructure the second and fourth terms
are null, whereas the first term slightly dominates over the
third term and results in weak probe absorption at line center,
which is eventually reduced for large pump fields. In the case
with the plasmonic nanostructure, we have plotted separately
in Fig. 5(d) the different contributions for the case which
exhibits the largest gain at ω = 0 (by selecting d = 0.4c/ωp,
and �a = 0.63�0). The solid curve is the one associated
with the population inversion and, as such, it always has
a positive contribution to the spectrum; it consists of an
extremely narrow dip superimposed over a broad Lorentzian
line. The net contributions of the two terms related to the
lower- and upper-level coherences (dashed curve) display
also a narrow feature at the central line but of opposite sign
relative to the previously mentioned term. Finally, the term
involving the coherence of the upper states (dashed-dotted
curve), whose ultimate origin relies upon the existence of
quantum interference, has a negative sign and, as such, it is
responsible for the existence of net gain.

C. Pumping and probing both transitions

In the last case we assume that the pump fields are
applied along both transitions, field ωa along the |0〉 ↔ |2〉
transition and field ωb along the |0〉 ↔ |3〉 transition, with
Rabi frequencies �a = �b, on resonance δ = 0. In addition,
we assume that the weak probe field is linearly polarized along
the z axis, so that it can probe both transitions |0〉 ↔ |2〉
and |0〉 ↔ |3〉. In this case we expect the phase difference
φ between the two pump laser fields to play an important
role. As in the previous configurations, we first analyze how
the population is distributed among states at steady state by
solving Eq. (A11). The results for the upper-state populations
are displayed in Fig. 6 for several distances between the
quantum system and the nanostructure and different values
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FIG. 6. Steady-state population of the state |2〉 versus the Rabi
frequency �a for different values of the phase difference: φ = 0 (solid
curve), φ = π/4 (dashed curve), φ = π/2 (dashed-dotted curve), and
φ = π (dotted curve). The selected distances are (a) d = 0.1c/ωp ,
(b) d = 0.4c/ωp , and (c) d = 0.8c/ωp . We take �b = �a , while the
rest of parameters are as in Fig. 3.

of φ. Note that due to the symmetry of the driven system,
the upper levels are equally populated at steady state, i.e.,
ρ22(∞) = ρ33(∞). From Fig. 6 we obtain that when both
pump laser fields are in phase the population achieved at
the upper levels is extremely small, whereas for values such
as φ = π/4 or φ = π/2, an optimum Rabi frequency exists
which maximizes the population of the upper levels. For
φ = π , the population transferred to the upper levels assumes
its maximum values. The same holds for all distances, and the
population asymptotically reaches a constant value for � > γ .

We have found that the distribution of populations among
the states of the system is highly sensitive to the phase
difference φ and the Rabi frequency of the pump fields. This
is also manifested in the absorption spectrum of the weak
probe field. We note that recently, Pirruccio et al. observed
a phase-dependent optical absorption for molecules near a
metallic nanostructure [57]. The strong phase dependence
in the probe absorption spectrum in our case is clearly
shown in Figs. 7(a) and 7(b), for two Rabi frequencies and
different values of φ, for the shortest distance of the quantum
system from the nanostructure (d = 0.1c/ωp). We also plot the
spectrum obtained for an isolated quantum system (thin solid
curve). For �a = 0.64�0, i.e., the Rabi frequency maximizing
the population in the upper states [see Fig. 6(a)], we can see
that the dip at the central line is highly narrowed. At the same
time the peak value at the central line is either enhanced by a
factor of 61 (φ = 0) or reduced by a factor of 10 (φ = π ) in
comparison with the isolated quantum system. For the case of
�a = 2�0, shown in Fig. 7(b), the situation is dramatically
modified since absorption can be either enhanced up to a
factor of 62 (thick solid curve) or it is reversed into gain
at the sidebands. This strong dependence of the shape of
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FIG. 7. Steady-state absorption spectrum A(ω) for the degenerate
system (ω32 = 0) driven on resonance δ = 0 along transitions |0〉 ↔
|2〉 and |0〉 ↔ |3〉. The distance is d = 0.1c/ωp . A weak probe field is
applied along the two transitions. The phase difference of the driving
field is set to φ = 0 (thick solid curve), φ = π/4 (dashed curve),
φ = π/2 (dashed-dotted curve), and φ = π (dotted curve). The thin
solid curve corresponds to the spectrum of the isolated quantum
system. The rest of the parameters are as in Figs. 4(a) and 4(b).
Lower panel: Enhancement factor of absorption at the central line Fa

versus the distance for φ = 0 (+) and φ = π (◦). Rabi frequencies
are �a = 0.64�0 [(a) and (c)] and �a = 2�0 [(b) and (d)].

the absorption spectrum on the phase φ is also evident for
all distances between the quantum system and the plasmonic
nanostructure (not shown here).

We define the enhancement factor of the absorption at the
central line as Fa = A(ω = 0)/Aisol(ω = 0), with Aisol(ω = 0)
being the value of the absorption at ω = 0 for the isolated
quantum system. In order to investigate more thoroughly
the strong dependence of absorption on φ and �a , we have
calculated Fa [in Figs. 7(c) and 7(d)] for all the distances
considered so far and for the two previously considered Rabi
frequencies. For φ = 0 we obtain a monotonic decrease of
Fa as the distance increases, for the two Rabi frequencies
considered. For φ = π the maximum value of Fa is obtained
for d = 0.9c/ωp, wherein a hundredfold enhancement is
achieved.

In summary, the level of absorption or gain of the hybrid
nanostructure can be tailored by a proper choice of the distance
of the quantum system from the nanostructure, the Rabi
frequencies of the pump fields, and their relative phase.

IV. CONCLUSIONS

In this work we have presented a theoretical analysis of the
absorption spectrum of a four-level double-V-type quantum
system in close proximity to a plasmonic nanostructure in
the weak-coupling regime. One of the V-type subsystems
is strongly influenced by the localized surface plasmons of
the nanostructure while the other one interacts with ordinary

vacuum. The plasmonic nanostructure considered is a two-
dimensional array of metal-coated dielectric nanospheres. We
consider different coupling configurations of the quantum
system by the pump and probe laser fields. The nanostructure
introduces a strongly anisotropic coupling among the decay
rates of the optical transitions which modifies dramatically the
absorption of a weak probe in every coupling scenario. In the
case of pumping one optical transition and applying the probe
field to the adjacent transition, we predict a huge enhancement
of the absorption at the central line. When the probe field is
applied along the same channel as the pump field it is shown
that gain without inversion can be obtained. Finally, when
both transitions are pumped and probed we show that a huge
enhancement of absorption can be obtained compared to the
free-space case. Finally, we have shown that the enhancement
of absorption or gain can be controlled through different
external parameters: the distance of the quantum system from
the plasmonic nanostructure, the intensity of the pump field(s)
and, when applicable, their relative phase.
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APPENDIX: ABSORPTION SPECTRUM
OF A WEAK PROBE FIELD

Projecting Eq. (14) on both sides along the different states
allows one to derive the time evolution of the density matrix
elements, which reads

ρ̇00(t) = 2γ ′[ρ22(t) + ρ33(t)] + 2γ ′′ρ11(t)

− i
�a

2
[ρ02(t)e−iφ − ρ20(t)eiφ]

− i
�b

2
[ρ03(t) − ρ30(t)] , (A1)

ρ̇22(t) = −2(γ + γ ′)ρ22(t) + i
�a

2
[ρ02(t)e−iφ − ρ20(t)eiφ]

− κ[ρ23(t) + ρ32(t)] , (A2)

ρ̇33(t) = −2(γ + γ ′)ρ33(t) + i
�b

2
[ρ03(t) − ρ30(t)]

− κ[ρ23(t) + ρ32(t)] , (A3)

ρ̇01(t) = −γ ′′ρ01(t) + i
�a

2
eiφρ21(t) + i

�b

2
ρ31(t) , (A4)

ρ̇21(t) = (iδ − γ − γ ′ − γ ′′)ρ21(t) − κρ31(t)

+ i
�a

2
e−iφρ01(t) , (A5)

ρ̇31(t) = (iδ − γ − γ ′ − γ ′′)ρ31(t) − κρ21(t) + i
�b

2
ρ01(t) ,

(A6)
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ρ̇20(t) = (iδ − γ − γ ′)ρ20(t) + i
�a

2
e−iφ[ρ00(t) − ρ22(t)]

− i
�b

2
ρ23(t) − κρ30(t) , (A7)

ρ̇30(t) = (iδ − γ − γ ′)ρ30(t) + i
�b

2
[ρ00(t) − ρ33(t)]

− i
�a

2
e−iφρ32(t) − κρ20(t) , (A8)

ρ̇23(t) = (−2γ − 2γ ′)ρ23(t) + i
�a

2
e−iφρ03(t) − i

�b

2
ρ20(t)

− κ[ρ22(t) + ρ33(t)] , (A9)

where ρ00(t) + ρ11(t) + ρ22(t) + ρ33(t) = 1 has been as-
sumed, and ρnm(t) = ρ∗

mn(t).
We now proceed to the calculation of the probe absorption

spectrum for our system. We define the following vector,

U (t) = [ρ11(t),ρ22(t),ρ33(t),ρ30(t),ρ03(t),ρ20(t),ρ02(t),

ρ32(t),ρ23(t)]T , (A10)

where T stands for transpose, and write the equations of the
density matrix in a matrix form as

d

d t
U (t) = MU (t) + B , (A11)

where M is a (9×9) matrix and B is a column vector
whose coefficients can be determined from the density matrix
equations. Steady-state values for populations and coherences
are derived through U (∞) = M−1(−B).

To determine the absorption spectrum in the bare-state
basis we make use of vector U (t) defined in Eq. (A10). The
evaluation of the two-time correlation functions that appear in
Eq. (24) can be recast to

A(ω) ∝ |μ′|2 Re

[∫ ∞

0
{[〈σ03(τ )σ30(0)〉 − 〈σ30(0)σ03(τ )〉]

+ [〈σ02(τ )σ20(0)〉 − 〈σ20(0)σ02(τ )〉] }e−iωτ dτ

]
.

(A12)

Equation (A12) can be written as A(ω) = A03(ω) + A02(ω):

A03(ω) ∝ |μ′|2 Re

[∫ ∞

0
[〈σ03(τ )σ30(0)〉

− 〈σ30(0)σ03(τ )〉]e−iωτ dτ

]
,

A02(ω) ∝ |μ′|2Re

[∫ ∞

0
[〈σ02(τ )σ20(0)〉

−〈σ20(0)σ02(τ )〉] e−iωτ dτ

]
. (A13)

A03(ω)[A02(ω)] is the absorption produced along the transition
|0〉 ↔ |3〉[|0〉 ↔ |2〉]. In writing Eq. (A13) we assumed that

the photons produced along the two transitions do not interfere
since these channels interact with a vacuum reservoir and have
orthogonal dipole matrix elements.

The two-time correlation functions which appear in
Eq. (A13) can be determined using the quantum regression
theorem [53,54] and Eq. (A11). To this end we define the
column vectors

Û0j (τ ) = [〈σ11(τ )σ0j (0)〉, 〈σ22(τ )σ0j (0)〉,
〈σ33(τ )σ0j (0)〉, 〈σ03(τ )σ0j (0)〉,
〈σ30(τ )σ0j (0)〉, 〈σ02(τ )σ0j (0)〉,
〈σ20(τ )σ0j (0)〉, 〈σ23(τ )σ0j (0)〉,
〈σ32(τ )σ0j (0)〉]T , (j = 3,2) , (A14)

Ûj0(τ ) = [〈σ0j (0)σ11(τ )〉, 〈σ0j (0)σ22(τ )〉,
〈σ0j (0)σ33(τ )〉, 〈σ0j (0)σ03(τ )〉,
〈σ0j (0)σ30(τ )〉, 〈σ0j (0)σ02(τ )〉,
〈σ0j (0)σ20(τ )〉, 〈σ0j (0)σ23(τ )〉,
〈σ0j (0)σ32(τ )〉]T , (j = 3,2) , (A15)

where the superindex T stands for transpose. According to the
quantum regression theorem, for τ > 0 the vectors Û0j and
Ûj0 satisfy

d Û0j (τ )

dτ
= MÛ0j (τ ) + B〈σ0j (∞)〉 ,

d Ûj0(τ )

dτ
= MÛj0(τ ) + B〈σ0j (∞)〉 , (A16)

with M being the 9×9 matrix of the coefficients of Eq. (A11)
and B the corresponding column vector.

By working in the Laplace space we obtain the steady-state
absorption spectrum. Specifically, we have

A(ω) ∝ �0Re

{
l=9∑
l=1

R4,l(iz)
(
Û

(l)
03 (0) − Û

(l)
30 (0)

)

+
l=9∑
l=1

R6,l(iz)
(
Û

(l)
02 (0) − Û

(l)
20 (0)

)}
, (A17)

where Û
(l)
0j (0)[Û (l)

j0 (0)] is the value of the lth component of the

vector Û0j (τ )[Ûj0(τ )] evaluated at τ = 0. Rjk(iz) is the (j,k)
element of the matrix R(iz), defined as

R(iz) = (izÎ − M)−1, (A18)

with Î being the identity matrix with size 9×9, and z =
(ωp − ωL)/�0.
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