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The helical edge states in a quantum spin Hall insulator are presumably protected by time-reversal symmetry.
However, even in the presence of magnetic field which breaks time-reversal symmetry, the helical edge conduction
can still exist, dubbed as pseudo quantum spin Hall effect. In this paper, the effects of the magnetic fields on the
pseudo quantum spin Hall effect and the phase transitions are studied. We show that an in-plane magnetic field
drives a pseudo quantum spin Hall state to a metallic state at a high field. Moreover, at a fixed in-plane magnetic
field, an increasing out-of-plane magnetic field leads to a reentrance of pseudo quantum spin Hall state in an
inverted InAs/GaSb quantum well. The edge state probability distribution and Chern numbers are calculated to
verify that the reentrant states are topologically nontrivial. The origin of the reentrant behavior is attributed to
the nonmonotonic bending of Landau levels and the Landau level mixing caused by the orbital effect induced by
the in-plane magnetic field. The robustness to disorder is demonstrated by the numerically calculated quantized
conductance for disordered nanowires within Landauer-Büttiker formalism.
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I. INTRODUCTION

One of the important breakthroughs in condensed matter
physics in recent years is the topological classification of
the states of matter [1]. A bulk insulator can be classified
by the topological properties of its band structure [2,3]. One
prominent distinction of a topologically nontrivial and trivial
insulator is that the former possesses gapless states that appear
at the interface with vacuum. The first discovered topological
state of matter is the quantum Hall (QH) insulator [4] in
which the Hall conductance is quantized in units of e2

h
as a

consequence of the formation of Landau levels (LLs) under a
magnetic field. The quantization integer has been revealed to be
a topological invariant that describes the topological properties
of the energy bands [5] and has been called Chern number. At
the interface between a QH insulator and a vacuum, the edge
states flow unidirectionally and thus are dissipationless.

For a QH insulator, time-reversal (TR) symmetry is obvi-
ously broken in the presence of magnetic fields. Nonetheless,
a few decades later, a TR symmetry preserved topological
state has been discovered, the quantum spin Hall (QSH)
insulator [6–8] originating from spin-orbit coupling and band
inversion. In a QSH insulator, each spin sector possesses a
quantized Hall conductance opposite to each other leading
to a vanishing Hall conductance, which is the sum of that
of both spin sectors. As expected in any TR symmetric
system, the Hall conductance must be zero. Therefore, Chern
number is not a useful topological characterization of a QSH
insulator. Instead, it has been shown that the topological
properties of a QSH insulator can be described by the Z2

invariant [9] or the spin Chern number [10], which gives the
equivalent topological description under TR symmetry despite
the different formulation [11].

Along the sample boundary of a QSH insulator, there
exhibits a pair of spin-polarized counterpropagating (helical)
currents, for which the backscattering is expected to be
prevented by TR symmetry. However, as pointed out in

several theoretical works [12–20], the QSH effect is not
destroyed immediately by the application of TR symmetry
breaking terms. A few theoretical studies have been devoted
to understanding the robustness of the QSH effect under broken
TR symmetry. In a Kane-Mele model with magnetization, the
QSH effect and edge states survive till the bulk gap closes
and reopens [13]. For a QSH insulator in the presence of an
out-of-plane magnetic field, the spin Chern number is shown
to remain unchanged up to the magnetic field when the Landau
levels cross [15,17,21]. While for an inverted InAs/GaSb
quantum well in the presence of an in-plane magnetic field,
the edge states and the quantized conductance are shown to be
robust until a strong magnetic field of 20 T [20]. In a recent
experiment, it was shown that the helical edge conduction
survives up to an in-plane magnetic field of 12 T [22]. Several
names have been coined to name this effect, for which the spin
Chern numbers are integers in the presence of TR symmetry
breaking, such as weak QSH effect [23], TR-symmetry-broken
QSH effect [13]. Here, we follow [24] and use the pseudo QSH
effect to refer to this phenomenon.

In this paper, we study the robustness of the pseudo QSH
effect and the helical edge conduction in the presence of
magnetic fields and disorder. In particular, we investigate
the magnetic field-driven topological phase transitions. The
widely-used Bernevig-Hughes-Zhang (BHZ) model is adapted
to describe the QSH insulator with experimentally accessible
parameters for an inverted InAs/GaSb quantum well. By virtue
of the electron and hole layer separation in an InAs/GaSb
quantum well, an in-plane magnetic field gives rise to the
orbital effect. We show that an in-plane magnetic field can
drive the inverted quantum well from pseudo QSH to metallic
state. Moreover, as the out-of-plane magnetic field increases
at a fixed in-plane magnetic field, at a certain Fermi energy
regime, a reentrant pseudo QSH is uncovered which exists even
in the presence of disorder. We attribute the reentrant pseudo
QSH effect to the nonmonotonic behavior of Landau levels
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FIG. 1. Geometry of the setup.

(LLs) due to weak electron-hole coupling and LL mixing by
the in-plane magnetic field. By tuning the Fermi energy to
other regimes, the pseudo QSH to QH phase transition can
also be observed.

The rest of the paper is organized as follows. In Sec. II,
the model and the formalism are given. In Sec. III, we
present our results along with discussion, particularly the
magnetic field-driven topological phase transitions and the
effect of disorder and Zeeman field. Spin Chern number, band
structures, and wave function distribution are presented for the
characterization of the topological phases. Finally, conclusions
drawn from this paper are given in Sec. IV.

II. MODEL HAMILTONIAN

To describe a QSH insulator, we apply the effective BHZ
model, in the basis |E+〉,|H+〉,|E−〉,|H−〉,

Ho =
(

h+(k) 0
0 h−(k)

)
, (1)

where h±(k) = −Dk2I + (M − Bk2)σz ± Akxσx − Akyσy

with σx,y,z the Pauli matrices and I the 2 × 2 identity matrix,
± denotes pseudo spin states, and E (H ) denotes electron
(hole) states. The parameters are chosen to describe an inverted
InAs/GaSb quantum well: B = −400 meV nm2, D = −300
meV nm2, A = 23 meV nm, M = −8 meV, and the lattice
constant (a) is 5 nm [17].

The quantum well lies on the xy plane with its growth
direction along the z axis, as depicted in Fig. 1. A tilted
magnetic field in the yz plane �B = (0,By,Bz) is applied.
In the presence of a magnetic field, the orbital motion of
the carriers can be considered in the Hamiltonian by Peierls
substitution �k → �k − e �A, where �A is the vector potential and
e is the elementary charge [25,26]. There is a freedom to
choose the vector potential, and here we use the Landau
gauge �A = (−Bzy + Byz,0,0). To model the spatial separation
of the electron and hole for the bilayer system, we set the
electron layer on the z = zo/2 plane, while the hole layer
is on the z = −zo/2 plane, where zo is the thickness of
the quantum well and taken to be one lattice constant [20].
Thus, the vector potential for the electron(hole) layer is

�A = (−Bzy + (−)By
zo

2 ,0,0). When Bz is nonzero, transla-
tional invariance along the y direction is no longer preserved
and ky is no longer a quantized number. We discretize the
Hamiltonian along the y direction and rewrite the Hamiltonian
as a one-dimensional (1D) tight-binding model depending on
kx [27]. The magnetic field is introduced as a phase factor
2π

Bzya

φo
felt by an electron when moving along the x direction,

where φo = h/e is the magnetic flux quantum. To keep the
periodicity along the y direction, the magnetic flux is chosen
to be a rational number and commensurate with the width Ny

[28,29].
To determine the topological phases, we calculated the

Hall conductance (σH ). For an insulating phase, the Hall
conductance is associated with the Chern number (n) as σH =
ne2

h
, where n characterizes the topological phase. The two

pseudo spin components of the Hamiltonian are independent.
Consequently, the energy bands and the Hall conductance σ±

H

of each block Hamiltonian h± can be evaluated independently
by the Kubo formula [7,17,24]

σα
H = −e2

πh

∑
m�=m′

∫
dkx

Im
〈
�α

m

∣∣vα
x

∣∣�α
m′

〉〈
�α

m′
∣∣vα

y

∣∣�α
m

〉
(
Eα

m − Eα
m′

)2 , (2)

where α = ± denotes the pseodospin up and down block,
�α

m,m′ are the Bloch wave functions, Eα
m(m′) are the occupied

(unoccupied) energy bands, and vα
x(y) = −i[rx(y),H ] is the

velocity operator with r the displacement operator. The Bloch
wave function and the eigenenergies are obtained by direct
diagonalization of the 1D tight-binding Hamiltonian. The
total Hall conductance of the full Hamiltonian is given by
σ tot

H = σ+
H + σ−

H , while the spin Hall conductance is given by
σs = h

4πe
(σ+

H − σ−
H ) [21]. In insulating phases, the Hall con-

ductances are proportional to the Chern number. Thus, the total
Chern number is ntot = n+ + n−, while the spin Chern number
is given by ns = n+ − n− [10,21]. In this study, we calculate
the energy levels, the Hall conductance, and the associated
Chern number in the presence of a titled magnetic field.

III. RESULTS AND DISCUSSION

A. The pseudo QSH to metallic phase transition

First, we study the phase transition in the presence of an
in-plane magnetic field but without applying out-of-plane mag-
netic field. In the gauge chosen, after the Peierls substitution,
the block Hamiltonian becomes

hα =
(

M − (B + D)k2
e A(αkx + iky)

A(αkx − iky) −M + (D − B)k2
h

)
, (3)

where k2
e(h) = (kx + (−)πeByzo/h)2 + k2

y . An explicit form
of the Hamiltonian after the Peierls substitution can be found
in the appendix. We diagonalize the Hamiltonian and obtain
the eigenenergies as a function of By , as shown in Fig. 2(a).
The energy spectrum remains gapped till Byc = 11.5 T,
above which the system becomes a metallic state. The Hall
conductance (σ+

H ,σ−
H ) at Ef = 6 meV, as shown in Fig. 2(b),

is constant and equals to e2

h
(−1,1) until Byc, indicating a

pseudo QSH phase. The integer −1,1 are Chern numbers
that characterize the topological property of the system. Our
results agree well with Ref. [20], which shows that the helical
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FIG. 2. (a) Energy spectrum as a function of By . The horizontal
dashed line denotes the Fermi energy Ef for (b). (b) The corre-
sponding Hall conductance for Fermi energy at 6 meV. (c) The
corresponding spin Hall conductance for Fermi energy at 6 meV.
The vertical dashed line denotes the transition point from pseudo
QSH to metallic state.

edge states exist even in the presence of By . In addition, the
spin Hall conductance is shown in Fig. 2(c) and quantized for
magnetic field up to Byc. When By becomes larger than Byc,
the system becomes metallic and the Hall conductance is no
longer quantized. Similarly, as shown in Fig. 2(c), the spin
Hall conductance gradually decreases.

B. The reentrant pseudo QSH phase

Next, we study the effect of tilted magnetic fields on the
energy levels and the associated quantum phases. Figure 3

FIG. 3. (a) Landau levels at By = 10 T. Regions V and VI are
quantum Hall phases with Chern number ntot = −1 and ntot = 1,
respectively, as explained in the text. The horizontal dashed line
denotes the Fermi energy Ef for (b). (b) Chern number for each spin
component for Ef = 6 meV.

shows the energy spectrum and the associated Chern numbers
for By = 10 T. In Fig. 3(a), we identify three quantum phase
transitions by band crossing because two distinct topological
phases cannot adiabatically connect to each other without
closing the bulk band gap. The topological nature of each phase
is determined by the Chern number, as shown in Fig. 3(b).
Thus, each region in Fig. 3(b) can be labeled by Chern numbers
of each block Hamiltonian (n+,n−): I (−1,1), II (0,0), III
(−1,1), IV (0,0). By fixing the Fermi energy near 6 meV and
increasing Bz, the system undergoes transitions from a pseudo
QSH state (I), a normal insulating state (II), the pseudo QSH
state (III), and the trivial state (IV). The total Chern number
(ntot), which is the sum of both, remains zero. On the contrary,
the spin Chern number, which is the difference between n+
and n−, goes from −2 to 0, reenters −2, and 0 again.

In order to gain more insight into each pseudo QSH phase,
we analyze the edge states in a ribbon geometry by imposing
an open boundary condition along the y direction. We study
the energy dispersion and the edge state wave function in these
two regions. Figure 4 gives the energy dispersion, probability

195408-3



HSU, JHANG, CHEN, AND GUO PHYSICAL REVIEW B 95, 195408 (2017)

FIG. 4. Energy band structure (left panel), edge state probability (middle panel) and current distribution (right panel) of a pseudo QSH
nanoribbon at (a) Bz = 5 T in region I and (b) at Bz = 11 T in region III.

distribution, and current flow in each region. Figures 4(a) and
4(b) correspond to regions I and III, respectively. The energy
dispersions, as shown in the left panel in Fig. 4, show that
there are gapless spectrum inside the gap of the Landau levels.
The corresponding probability distribution of the gapless states
A,B,C,D, as denoted in the energy dispersions, show that the
gapless states are indeed edge states. Given that the electron
velocity is given by ∂E

h̄∂kx
and current by I = −|e|vx , we obtain

the edge current distribution in the right panel in Fig. 4. For
the spin down states, state A has a negative velocity and lives
on the right edge, while state D has a positive velocity and
lives on the left edge. For the spin up states, state C has a
negative velocity and lives on the left edge, while state B has
a positive velocity and lives on the right edge. In regions I and
III, the direction of the spin current flow does not change. In
the presence of magnetic field, the helical edge states are not
destroyed immediately. Moreover, it is even possible to turn
on and off the helical edge states by applying a tilted magnetic
field without changing the direction of spin current.

To understand the theoretical reason of the reentrant
behavior in the presence of tilted magnetic fields, we turn
to the analytical formulation of the LLs. First, we review the
solution of LLs in the presence of out-of-plane magnetic field
only. The Hamiltonian can be simplified by defining ladder
operators a† and a, which raises and lowers the LL index by

1, respectively. The details of the solution are presented in the
Appendix. The solution of the LLs is [17,27]

En,s
α = nωD + αωB

2
+ s

√(
M + nωB + αωD

2

)2

+ 2nA2

l2
B

,

(4)

where α = ± denotes the pseodospin up and down block,
n is the LL index, s = ± denotes the eigenstate of each
pseudospin block, ωB(D) = −2B(D)/l2

B , and lB = √
h̄/eBz.

Since each block Hamiltonian is a 2 × 2 matrix, every nonzero
nth LL has two solutions with s = ± and each eigenstate
is a two-component vector. For example, the eigenstate of
the h+(a†,a) is (fnl1|n〉,fnl2|n − 1〉), where fnl1(2) is the
normalization constant and |n〉 is the eigenstate of the number
operator a†a. However, for the 0th LL, the eigenvector has
only one nonzero component (|0〉,0) because |0〉 is already the
lowest eigenstate of a†a. Thus, the solution of the 0th LL is

E0
α = αM + αωB + ωD

2
. (5)

Figure 5(a) is the Landau level fan chart without in-plane
magnetic field. There is a pair of linear LL which are the
0th LL. The linear LL with positive slope is a pure |E+〉 state,
while the one with negative slope is a pure |H−〉 state. The two
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FIG. 5. Energy levels for bulk using continuum model for By = 0
(a) and By = 10T (b). (c) Energy levels using the first three lowest
LLs for spin up block Hamiltonian at By = 10 T (magenta) and at
By = 0 T (black).

0th LLs cross at Bzc = 13 T beyond which the band sequence
becomes normal. This implies that when Bz > Bzc, the pseudo
QSH no longer exists, as verified with Chern number in the
previous study [17].

When both in-plane and out-of-plane magnetic fields are
present, we treat the orbital effect from the in-plane magnetic
field as an additional term and write the Hamiltonian with
respect to the basis of the LLs at By = 0. After basis
transformation, it is found that the in-plane magnetic field
terms mix adjacent LLs and the Hamiltonian becomes tri-block
diagonal. We then obtain the energy levels in the presence of
the nonzero By by direct diagonalization. The details of the
method can be found in the Appendix. Figure 5(b) is the energy

spectrum for By = 10 T. There is no linear solution as the zero
modes in LLs due to the LL mixing by By .

The origin of reentrant behavior is twofold. First, before
turning on By , the LLs except zero modes are nonmonotonic.
This is because of the spatial separation; the electron and hole
layers are weakly coupled. The nonmonotonic relation withBz

is more obvious when the spin orbit coupling is vanishingly
small. The eigenenergy can be written as nωD + αωB

2 +
s|(M + nωB + αωD

2 )| in this limit. The last term in this expres-
sion is nonmonotonic because of the absolute value. This term
leads to the band bending when the term in the absolute bracket
equals to zero. In contrast, when the spin-orbit coupling term is
large, the LL change monotonically and cause no band bend-
ing. Thus, we do not expect such reentrance helical edge states
to appear in HgTe quantum well which has stronger spin-orbit
coupling. Second, after turning on By , the orbital effect mixes
adjacent LLs and causes band splitting at the LL crossings.
As shown in Fig. 5(c), the energy spectrum (magenta) of three
LLs (n = 0,1,2) for spin up block shows that the zero modes
already open up a gap at LL crossings (black).

We have focused on the regime where the Fermi energy
is inside the bulk gap. Nonetheless, once the Fermi energy
is tuned away from 6 meV, quantum Hall phases occur. In
Fig. 3(a), two quantum Hall phases are shown: V with ntot =
−1 and VI with ntot = 1. Figures 6(a) and 6(b) show the Chern
number as a function of Bz at Ef = 5.8 meV and 6.2 meV,
respectively. The system undergoes from pseudo QSH state
to QH to trivial state as Bz increases. At the transitions
involving QH, only one pseudospin species changes the phase,
while the other remains the same, giving rise to a change
of total Chern number by 1. On the contrary, at the pseudo
QSH to normal insulator transition, both pseudospin species
undergo the transition from topologically nontrivial to trivial
insulator.

C. Effects of disorder and Zeeman field

Disorder is an unavoidable ingredient in realistic devices.
In order to give a more complete picture of the quantum
phase transition for experimentalist’s interests, we study the
robustness of the edge states in the presence of the on-site dis-
order. We rewrite the Hamiltonian Eq. (1) in two-dimensional
tight-binding representation and introduce the on-site disorder
as

Hdis =
(

hdis 0
0 hdis

)

hdis =
∑

i

(
εei 0
0 εhi

)
, (6)

where εe(h)i = [−W/2,W/2] is the random onsite potential
and i is the site index. The two-terminal conductance for a
ribbon is calculated within Landauer-Büttiker formula with
the recursive Green’s function method. In the calculation, the
width and the length of the nanoribbon is set to be 119 a
and 200 a, respectively. The leads are modeled as normal
metal without magnetic field penetrations. We first study the
robustness of the helical edge states in the presence of in-plane
magnetic field only. Figure 7(a) shows the disorder averaged
mean conductance and its standard deviation at By = 0,6, and
10 T. The critical disorder Wc at which the conductance is
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FIG. 6. Chern number of each block Hamiltonian as a function
of Bz at By = 10 T for Ef = 5.8 meV (a) and Ef = 6.2 meV (b).

no longer quantized decreases as By increases. This can be
understood as the decrease of the energy gap as the in-plane
magnetic field becomes stronger [Fig. 2(a)]. When W < Wc,
the standard deviations are negligible, indicating that the
helical edge states are perfect conducting.

When By is fixed at 10 T, as shown in the inset of Fig. 7(b),
at Ef = 6 meV, the conductance in clean limit starts at 2e2/h,
drops to zero, then re-enters to 2e2/h as Bz increases. The
conductance suggests that in the ribbon structure, there are
two conducting modes in regions I and III. The conductance
as a function of disorder strength is calculated for Bz = 3.3 T
in region I and Bz = 11 T in region III. The main figure of
Fig. 7(b) shows the mean conductance and the error bars over
500 disorder configurations. The quantized conductance at
Bz = 3.3 T in region I andBz = 11 T in region III remain up to
a critical disorder strength Wc = 3 and 1.2 meV, respectively.
In this regime, where the conductance is quantized, the error
bars are negligible, indicating the robustness of the conducting
channels. For an approximately quantitative description of the
robustness, we compare the critical disorder strength with the
band gap. From Fig. 3(a), the band gap at these two magnetic
fields are 0.37 and 0.15 meV, respectively. Consequently, the
ratio of Wc to the band gap is about 8, indicating the robustness
of the edge states in both regimes.

FIG. 7. Two-terminal conductance for a nanoribbon of width
119a and length 200a at Ef = 6 meV. The conductance is over 500
configurations. The standard deviation is plotted as error bars. (a)
Conductance as a function of disorder strength for zero magnetic
field (magenta), �B = (0,6,0)T (blue) and �B = (0,10,0)T (green). (b)
Conductance for Bz = 3.3 T and 11 T as By is fixed at 10 T. The inset
is conductance as a function of Bz in clean limit. The black (green)
dot denotes Bz = 3.3 (11) T. The red vertical lines denote where the
energy levels cross at Bz = 5.5,9,12.1 T in Fig. 3(a).

An applied magnetic field would give rise to a vector
potential which affects the orbital motion of the carriers and
also a Zeeman field which may split or shift energy bands.
While the former effect has been taken into account, the
latter effect has so far been neglected. Nevertheless, recent
experiments [22,30] on the inverted InAs/GaSb quantum well
bilayers have indicated that Zeeman effects are negligible and
the helical edge states persist even in the presence of a strong
magnetic field. In particular, Ref. [22] shows that the quantized
plateau of conductance persists for By up to 12 T and Bz up to
8 T. There is no evidence that the Zeeman field opens a gap in
the edge spectrum. In Ref. [30], the authors demonstrate that
the topological gaps persist as magnetic field strength increases
up to 11 T. Both facts suggest that the energy spectrum
presented in Fig. 2(a) and the phase diagram displayed in
Fig. 3(a) remain more or less valid even if the Zeeman effects
would have been taken into account. Therefore, we conclude
that in the considered InAs/GaSb quantum well bilayer, the
Zeeman effects can be neglected.
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IV. CONCLUSIONS

In summary, we investigated the in-plane magnetic field
effect on the LL spectrum and topological phase transitions in
an inverted InAs/GaSb quantum well. When driven only by an
in-plane magnetic field, we found a pseudo QSH to metallic
state transition at Byc = 11.5 T. More interestingly, at By fixed
at 10 T, the quantum well exhibits a reentrance pseudo QSH
effect as the out-of-plane magnetic field increases. The origin
of the reentrant behavior is the nonmonotonic bending of LLs
due to the weak electron-hole coupling and the LL mixing.
Therefore, the reentrant pseudo QSH effect is not expected in
HgTe quantum wells which has strong electron-hole coupling
and no electron-hole layer separation. We also examined the
robustness of the pseudo QSH effect against disorder for a
nanoribbon structure. The critical disorder strength, at which
the quantized conduction breaks down, is eight times of
the bulk gap, indicating the robustness of the helical edge
conduction in the presence of magnetic fields.
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APPENDIX A: PEIERLS SUBSTITUTION

In the presence of a vector potential, the momentum
operator −ih̄∇ is replaced by −ih̄∇ − q �A in the continuum
limit, where q is the carrier charge [25,26]. In the BHZ model,

the Hamiltonian is based on electron picture. Thus, q is taken
to be electronic charge for both electron and hole layers.

In the tight-binding framework, the carriers feel the vector
potential in terms of the additional phase added to the hopping
terms t → teiθ , where θ = e

h̄

∫ �A · dl along the hopping path.
In the current model, for the hopping along the electron layer,
the phase gained by the carrier is e

h̄

∫
By

zo

2 · dx. While for the
hopping along the hole layer, the phase gained by the carrier is
e
h̄

∫
By

−zo

2 · dx. On the contrary, for the off-diagonal terms in
h± in Eq. (1) which correspond to the electron-hole coupling,
the phase is zero because the origin of z coordinate is set to be
at the middle of the electron hole separation [20]. Consider the
hopping from lattice point (m,n) on the hole layer to (m + 1,n)
on the electron layer, the phase due to By is

θ =
∫ (m+1,n,zo/2)

(m,n,−zo/2)

�A · dl

=
∫ (m+1,n,zo/2)

(m,n,−zo/2)
(Byz)dx

=
∫ (m+1,n,zo/2,x+a)

(m,n,−zo/2)
(Byz)

dx

dz
dz

= 0. (A1)

From the second to the third line, we employed the chain rule.
dx
dz

is a constant and can be pulled out from the integral. Since
the vector potential is an odd function along the z direction,
the phase is zero.

For completeness, the Hamiltonian in the presence of a
tilted magnetic field after the Peierls substitution is

H =
(

h+ 0
0 h−

)
,

where hα=± =
(

M − (B + D)
((

kx + πeByzo

h
− eBzy

h̄

)2 + k2
y

)
A

(
α
(
kx − eBzy

h̄

) + iky

)
A

(
α
(
kx − eBzy

h̄

) − iky

) −M + (D − B)
((

kx − πeByzo

h
− eBzy

h̄

) + k2
y

)
)

. (A2)

APPENDIX B: ENERGY LEVEL CALCULATION

In the presence of an out-of-plane magnetic fieldBz, carriers
follow cyclotron motion, leading to Landau levels. LLs can be
calculated by Peierls substitution. Here we take Landau gauge
�A = (−Bzy,0,0) which preserves the translation invariance

along the x direction. We define ladder operators

a† = lB√
2

(−iky − (kx − eBzy)) (B1)

a = lB√
2

(iky − (kx − eBzy)), (B2)

which obey the commutation relation [a,a†] = 1. The Hamil-
tonian Ho can be rewritten in terms of the ladder operators
as

Ho(a†,a) =
(

h+(a†,a) 0
0 h−(a†,a)

)
, (B3)

where

h±(a†,a) = −2D

l2
B

(
a†a + 1

2

)
I +

(
M − 2B

l2
B

)(
a†a + 1

2

)
σz

∓
√

2A

lB
(a†σ+ + aσ−) (B4)

with σ± = (σx ± iσy)/2.
As the magnetic field is tilted parallel to the plane,

the magnetic field has a y component. We use the gauge
�A = (−Bzy + Byz,0,0). In terms of the ladder operators as

defined in Eq. (B2), the full Hamiltonian becomes Ho(a†,a) +
H ′(a†,a), where

H ′(a†,a) =
(

h′(a†,a) 0
0 h′(a†,a)

)

h′(a†,a) = eByzo√
2lB

(BI + Dσz)(a
† + a)

−
(

eByzo

2h̄

)2

(Bσz + DI ). (B5)
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To calculate its influence, we project H ′(a†,a) onto the
LLs of the Ho(a†,a). The first term in Eq. (B5) mixes the
adjacent LLs, while the second term affects within each

LL. After the projection to the desired number of LLs,
we direct diagonalize the full Hamiltonian to obtain the
eigenenergies.
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