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Spin-orbit signatures in the dynamics of singlet-triplet qubits in double quantum dots
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We characterize numerically and analytically the signatures of the spin-orbit interaction in a two-electron GaAs
double quantum dot in the presence of an external magnetic field. In particular, we obtain the return probability
of the singlet state by simulating Landau-Zener voltage detuning sweeps which traverse the singlet-triplet (S-T+)
resonance. Our results indicate that non-spin-conserving interdot tunneling processes arising from the spin-orbit
interaction have well defined signatures. These allow direct access to the spin-orbit interaction scales and are
characterized by a frequency shift and Fourier amplitude modulation of the Rabi flopping dynamics of the
singlet-triplet qubits S-T0 and S-T+. By applying the Bloch-Feshbach projection formalism, we demonstrate
analytically that the aforementioned effects originate from the interplay between spin-orbit interaction and
processes driven by the hyperfine interaction between the electron spins and those of the GaAs nuclei.
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I. INTRODUCTION

Electron spins in double quantum dots (DQDs) in the
spin-blockade regime, with one or two electrons confined in
each dot, have been proposed as qubits for quantum computing
implementations at the nanoscale [1]. From both theoretical
and experimental points of view, the coherent control of
these spin qubits has become a subject of great interest in
the condensed matter and quantum information communities.
In particular, there is considerable emphasis on the study of
their coherent dynamics and the limiting mechanisms of spin
coherence in the presence of hyperfine interactions with the
ensemble of nuclear spins of the DQD host material [2–6].

Singlet-triplet qubits have been implemented in DQDs built
in either GaAs or Si/Ge hosts. They are formed by the singlet
state S(1,1)—with one electron in each dot—and either of the
triplet states T0 (m = 0) or T+ (m = 1). Universal control has
been demonstrated using quantum state tomography obtained
by control pulses (or sweeps) of the voltage difference
(detuning) between the QDs [7–10]. Indeed, such detuning
sweeps allow the implementation of qubit rotations around
a single axis of the Bloch sphere (S-T0 qubit exchange
gates) resulting from the dynamic variation of the two-
electron exchange interaction. Furthermore, in combination
with dynamic nuclear polarization (DNP) techniques, which
rely on traversing the S-T+ qubit resonance via Landau-Zener
(LZ) detuning sweeps, a sustained magnetic hyperfine field
gradient between the QDs can be created for times longer than
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30 min, thus allowing coherent rotations around two axes of
the Bloch sphere, an essential requisite for the implementation
of universal quantum gates [11,12].

An important question concerning the limiting factors
to DNP efficiency when traversing the S-T+ resonance is
whether the spin-orbit interaction (SOI) could influence
DNP transfer from the electron to the nuclear spins and
consequently affect the fidelity of the singlet-triplet qubits
[13,14]. In particular, a quenching of DNP has been observed
when SOI exceeds the hyperfine interaction, preventing an
increase in the spin decoherence time in GaAs quantum dots
[15]. Recently, interferometry experiments have been able to
probe the fast dynamics associated with S-T+ transitions by
correlating the outcomes of an ensemble of individual single
shot measurements of the qubit state after LZ transitions [16].

In this paper, we provide further insights into SOI signa-
tures that could be probed by one-shot readout experiments
measuring the singlet state return probability following a
rapid LZ detuning sweep traversing the S-T+ resonance. We
perform both numerical and analytical calculations based on a
realistic model, accounting for the dynamics of the lifting of
the spin-blockade regime via SOI. We show that the signatures
of SOI are manifested in a frequency shift near the vicinity of
the S-T+ resonance and detuning-dependent modulation of the
Fourier amplitudes corresponding to transitions between the
singlet state S(1,1) and the triplets T0 and T+. The present
analysis could become useful to experimentalists in search of
direct measurements of SOI in a given system without the need
for correlation measurements [16].

This paper is organized as follows. Section II introduces a
realistic Hamiltonian model of the DQD subjected to a voltage
detuning and an external magnetic field and takes into account
interdot spin conserving and non-spin-conserving tunneling
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processes originating from the interplay between SOI and
the nuclear hyperfine interaction. Section III discusses the
level anticrossings in the spectrum of the system and the
state mixing effects resulting from voltage detuning, Zeeman
splitting, SOI, and the hyperfine magnetic field. In Sec. IV,
we discuss how SOI signatures can be detected via singlet
return probability maps derived from LZ sweeps across the
S-T+ resonance. In Sec. V we present numerical and analytical
results for potential SOI signatures in the Fourier amplitudes
and frequency shifts associated with S-T0 and S-T+ transitions.
Section VI discusses the effects of electrical noise and nuclear
hyperfine field fluctuations. Finally, we present a summary and
discussion of our results in Sec. VII.

II. MODEL

The system under consideration consists of a gate-defined
GaAs DQD having a total occupation of two electrons. The
charge state of the DQD and the spatial separation of the
electrons is determined by a detuning parameter ε, which
controls the relative electrostatic potential of the quantum dot
pair. In the limit of a small perpendicular applied magnetic
field, the relevant occupied states are singlets, |S(0,2)〉 =
(|↑R↓R〉 − |↓R↑R〉)/√2 for ε � 0 and |S(1,1)〉 = (|↑L↓R〉 −
|↓L↑R〉)/√2 for ε � 0, where (nL,nR) denotes the occupation
of the left (L) and right (R) QDs, respectively. The Hamiltonian
that describes the coupling between the two singlets is given
by

Ht0 = −ε|S(0,2)〉〈S(0,2)| + t0|S(1,1)〉〈S(0,2)| + H.c., (1)

where t0 is the interdot spin-conserving tunneling strength.
In the far negative detuning regime, ε � 0, the ground
state of the system becomes the |S(2,0)〉 singlet; this is a
far off-resonant state which has a negligible effect on the
system dynamics and is henceforth ignored in the model.
The separation of the electronic wave functions causes S(1,1)
(henceforth denoted by S) to be nearly degenerate with the
triplet states Tm (m = 1,0,−1), i.e., |T+〉 = |↑L↑R〉, |T0〉 =
(|↑L↓R〉 + |↓L↑R〉)/√2, and |T−〉 = |↓L↓R〉. The states S and
T0 have zero spin angular momentum component along the z

axis and can be used as a suitable computational basis for spin
qubits in DQDs [11], whereas the degeneracy with the triplet
states T+ and T− is lifted by the application of an external
magnetic field 	Bext, which allows the qubit to be controllable by
the triplet states and the outgoing singlet S(0,2). Furthermore,
the interaction of the electron spins with the nuclear magnetic
field of the host material can be harnessed to control the
S-T0 qubit dynamics by the internally created magnetic field
gradient across the DQD structure, d 	B = ( 	Bnuc,L − 	Bnuc,R)/2.
The hyperfine interaction with d 	B couples the singlet S

to the triplet states via non-spin-conserving transitions. The
Hamiltonian which describes the interaction between electron
spins and their interaction with the hyperfine and external
magnetic fields is given by [17]

Hhf = 	B · (	SL + 	SR) + d 	B · (	SL − 	SR), (2)

where 	B = 	Bext + 	Bnuc is the total magnetic field, 	Bnuc =
( 	Bnuc,L + 	Bnuc,R)/2, the mean nuclear magnetic field, and 	SL,
	SR the spins in the left and right dots, respectively. We assume

g∗μB = 1, where g∗ is the electron g factor in GaAs, and μB

is the Bohr magneton; we write all magnetic and hyperfine
couplings using units of energy.

In this system, SOI induces non-spin-conserving tunneling
processes for electrons that couple the singlet S(0,2) to the
triplet states. This interaction, arising from intrinsic electric
fields induced by structural asymmetries [18–21], can lift the
spin-blockade regime and provide a competing mechanism
to the hyperfine-mediated electron spin flips involved in DNP.
The HamiltonianHtSO

associated with SOI tunneling processes
can be written in the basis of orthonormal unpolarized states
| 	T 〉 = {|Tx〉,|Ty〉,|Tz〉} given by [18]

|Tx〉 = 1√
2

(|T+〉 − |T−〉)

|Ty〉 = i√
2

(|T+〉 + |T−〉) (3)

|Tz〉 = |T0〉,

such that

HtSO
= i	t · | 	T 〉〈S(0,2)| + H.c., (4)

where 	t = {tx,ty,tz} is a real vector that defines the degree
of spin state mixing due to SOI. Accordingly, the total
Hamiltonian, H = Ht0 + HtSO

+ Hhf describes charge tun-
neling transitions in the DQD and the interplay between
hyperfine and spin-orbit interactions. Thus, in the singlet-
triplet basis {|S〉,|T+〉,|T0〉,|T−〉,|S(0,2)〉} one obtains (with
|S〉 = |S(1,1)〉),

H =

⎛
⎜⎜⎜⎝

0 dB+ −dBz −dB− t0
dB− Bz 0 0 −it−
−dBz 0 0 0 itz
−dB+ 0 0 −Bz it+

t0 it+ −itz −it− −ε

⎞
⎟⎟⎟⎠, (5)

where dB± = (dBx ± idBy)/
√

2 and t± = (tx ± ity)/
√

2 rep-
resent the couplings that induce spin-flip processes via the hy-
perfine field gradient and SOI non-spin-conserving tunneling,
respectively; Fig. 1 illustrates the different processes.

The contribution of both singlet states to the electron ex-
change energy, and their interplay with the spin-flip dynamics,
is better evidenced after introducing the following change of
basis [17],

( |S̃〉
|G̃〉

)
=

(
cos θ sin θ

− sin θ cos θ

)( |S〉
|S(0,2)〉

)
, (6)

where θ = arctan ( −J (ε)
t0

) and the coherent exchange energy

of the electrons is given by J (ε) = 1
2 (ε +

√
ε2 + 4t2

0 ) and
amounts to the energy gap between the singlet S and the
triplet state T0 in the absence of any other perturbations but
charge tunneling. As such, for ε � 0, S̃ → S, G̃ → S(0,2)
and for ε � 0, S̃ → S(0,2), G̃ → S, where states S̃ and G̃ are
often referred to as the hybridized singlet states [14,15]. The
Hamiltonian in the adiabatic basis {|S̃〉,|T+〉,|T0〉,|T−〉|G̃〉}
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FIG. 1. Energy level diagram corresponding to the Hamiltonian
in Eq. (5). Green arrows indicate spin-preserving charge tunneling-
mediated transitions, while blue and red arrows indicate hyperfine
and spin-orbit spin-flip transitions, respectively. The bottom diagram
illustrates the DQD system and the vector nature of the competing
nuclear magnetic field gradient d 	B and SOI non-spin-conserving
interdot tunneling coupling 	t .

transforms to

H̃ =

⎛
⎜⎜⎜⎝

−J (ε) �+ �z �− 0
�∗

+ Bz 0 0 �−
�∗

z 0 0 0 �z

�∗
− 0 0 −Bz �+

0 �∗
− �∗

z �∗
+ J (ε) − ε

⎞
⎟⎟⎟⎠, (7)

where

�± = ∓dB± cos θ ± it± sin θ (8)

�± = ±dB± sin θ ± it± cos θ (9)

�z = dBz cos θ + itz sin θ (10)

�z = dBz sin θ − itz cos θ. (11)

The Hamiltonian off-diagonal matrix elements in Eqs. (8)–(11)
characterize the coupling of both hybridized singlets to the
triplet states and the competition of spin flips induced by the
hyperfine field gradient and SOI assisted tunneling transitions.

The population dynamics of the singlet and triplet states is
obtained by solving the master equation, ρ̇ = (−i/h̄)[H̃,ρ],
within the scope of the quasistatic approximation: We assume
that the dephasing by hyperfine interactions with the nuclear
spin bath and associated spin relaxation takes place in a
timescale (∼μs) much longer than the time span (∼tens
of ns) of the detuning sweeps, ε(t), which are typically
implemented in experiments. This allows us to consider
essentially a static nuclear magnetic field over the time span
of the detuning sweeps. We discuss later, in Sec. VI, the
effects of hyperfine field fluctuations and electrical noise over
the course of collecting data over typical detuning sweep
repetitions. For simplicity, and without loss of insight, the
results presented here assume isotropic components of both
the nuclear magnetic field gradient and the spin-orbit tunneling
vector, i.e., |d 	B| = √

3dB and |	t | = √
3tSO .

FIG. 2. (a) Characteristic eigenvalue spectrum {λi(ε)} corre-
sponding to the Hamiltonian in Eq. (7). The yellow dot indicates the
initialization stage in the eigenstate |X〉 ≡ |λ2〉 � (|S̃〉 + |T0〉)/

√
2

for a detuning εI . The red dot indicates the detuning value, εR < 0,
at which the system is allowed to evolve during a residence time
τR . The green dot indicates the detuning, εM > 0, at which the
singlet return probability PS̃ is measured. J (ε) is the exchange energy
splitting. After initialization at εI � 0 and residence at εR , τI and τE

represent sudden detuning pulses of ∼1 ns duration, respectively. The
inset shows the singlet-triplet anticrossing splitting, 	ST+ , mediated
by the hyperfine and spin-orbit coupling. (b) Sequence of detuning
sweeps used to control the DQD state dynamics. The vertex (τI ,εI )
corresponds to initialization, while (τR,εR) and (τM,εM ) correspond
to residence and measurement control stages, respectively. (c) State
dynamics according to the detuning control scheme in (b).

III. LEVEL ANTICROSSING SPECTRUM
AND SINGLET-TRIPLET DYNAMICS

Figure 2(a) shows the level spectrum corresponding to the
Hamiltonian in Eq. (7), indicating the behavior of the different
state mixing resonances and their dependence on the interdot
coupling parameters and applied energy detuning ε. The
eigenvalues λi exhibit a series of avoided crossings dominated
here by spin conserving tunneling t0, which produces the
hybridized singlets S̃ and G̃; this anticrossing is set to occur
at ε = 0. Two singlet-triplet anticrossings appear, S̃ − T+ at
ε < 0 and G̃ − T− at ε > 0, respectively. Notice that t0 >

	S̃T0
∼ dB,tSO in this diagram, which is typical in real DQD

systems. For ε � 0, the triplet T+ becomes the ground state
while T0 and S̃ approach a degeneracy point. In this regime, the
first excited eigenstate of the system is approximately |X〉 ∼
(|S̃〉 + |T0〉)/

√
2. Similarly, for ε � 0 the excited eigenstate

of the system approximates |X′〉 ∼ (|G̃〉 + |T0〉)/
√

2. In the
presence of spin-mixing terms, the energy gap between the
triplet state T0 and the hybridized singlet states S̃ and G̃ is
given by −J (ε) and J (ε) − ε, respectively. The regimes of
interest in this work correspond to the qubit subspaces defined
in the vicinity of the S̃-T0 degeneracy point and the S̃-T+
resonance, where SOI signatures are more important and can
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be probed through an analysis of the Fourier amplitudes and
frequency shifts of the (Rabi oscillations) populations of the
different DQD states, as we will see.

The dynamics of the singlet state S̃ and triplet states, T0 and
T+, is controlled through the sequence of LZ detuning sweeps
shown in Fig. 2(b), which are similar to those implemented in
experiments [7,11]. The system is initialized in the eigenstate
|X〉 at ε � 0, where S̃-T0 transitions are mainly driven by
the axial component of the nuclear magnetic field gradient
dBz. The detuning is then subjected to a rapid sweep of
duration τI ∼ 1ns, which drives the system near both the
S̃-T+ and S̃-G̃ avoided crossings [this point in red is labeled
by εR in Fig. 2(a)]. Notice that the exchange energy J (ε)
changes rapidly during this stage. The system is allowed now
to evolve during a residence time τR ∼ 1–60 ns. Figure 2(c)
shows the DQD state dynamics when the system evolves
during one of these detuning sweep sequences. The fast
Rabi oscillations between states S̃ and T0 occur with a
frequency, (λ3 − λ2)/h̄ � fS̃-T0

� J (ε)/h̄. The amplitude of
these oscillations follows an envelope that oscillates in phase
with the amplitude of the triplet T+; as the system is near
the S̃-T+ resonance, the corresponding frequency is given
by (λ2 − λ1)/h̄ � 	S̃-T+/h̄ < fS̃-T0

. As shown in Sec. V and
Appendix, the Rabi frequencies and oscillation amplitudes are
strongly modified by the interplay of exchange and non-spin-
conserving processes due to SOI and the hyperfine interaction.
In this regime, the hybridized singlets, S̃ and G̃, couple to all
triplet states Tm, and a competition between the components
of the hyperfine field gradient (dBx,dBy) and SOI (tx,ty) has
a strong effect on the system dynamics.

In order to probe the corresponding signatures, an additional
rapid detuning pulse of duration τE ∼ 1 ns traverses the S̃-T+
resonance and drives the system beyond the charge transition
anticrossing until reaching the detuning value εM . Here,
the hybridized singlet S̃ has a significant component along
the outgoing singlet S(0,2), whose charge state is typically
measured using a quantum point contact. The probability PS̃

of recovering the singlet state S is obtained by computing the
average population ρS̃ over the measuring time interval tf −
ti = τM ∼ 1 ns, while the system evolves at fixed detuning εM ,

PS̃ = 1

τM

∫ tf

ti

ρS̃(t)dt. (12)

As shown below, the signatures resulting from the interplay
of SOI and the hyperfine interaction emerge clearly in the
behavior of PS̃ , as the residence time τR is varied.

IV. SOI SIGNATURES ON THE SINGLET
RETURN PROBABILITY

The signatures of SOI in PS̃ resulting from the detuning
sweeps described above are illustrated in Fig. 3, which
shows a pair of maps of the singlet return probability PS̃

as a function of the residence time τR , non-spin-conserving
tunneling strength tSO , and different εR values. Each point in
the map corresponds to a single shot realization of the pulse
sequence described in Fig. 2(b). The following parameters
(typical of experimental DQD systems) were used in our
simulations: spin-conserving tunneling coupling t0 = 5 μeV,
Zeeman splitting EZ = gμBB = 2.5 μeV, nuclear magnetic

field gradient dB = 0.125 μeV, see Refs. [11,18]. In both
maps, initialization occurs at εI = −2000 μeV and measure-
ment at εM = +90 μeV. Figure 3(a) shows the behavior for
εR = −20 μeV, where PS̃ exhibits oscillations with a charac-
teristic period of 3.4 ns � h̄/1.2 μeV, over the entire range of
tSO . As tSO increases, however, the periodic oscillations occur
accompanied with an envelope modulation due to the presence
of an additional frequency. The modulation is perhaps more
evident in Fig. 3(b) and the corresponding cross section of the
map in Fig. 3(a), especially for tSO � 0.8 μeV.

Figure 3(c) shows the PS̃ map for a residence detuning
εR = −10 μeV, i.e., much closer to the S̃-T+ resonance.
Here, as spin-flip processes are more pronounced, the behavior
changes dramatically. We notice that the oscillations exhibit
more pronounced minima (darker colors) towards the right-
hand side of the map, while a strong frequency shift and
differentiated pattern is evident in the increasing number of
alternating dark and bright contour regions towards higher
tSO values. Interestingly, somewhat sudden phase shifts of
the PS̃ oscillations are observed for increasing tSO . The map
cross section in Fig. 3(d) corroborates the aforementioned
behavior, clearly exhibiting additional frequency components
in the signal envelope, which appear better resolved as tSO is
increased.

V. BLOCH-FESHBACH PROJECTION AND SOI
SIGNATURES ON THE FOURIER AMPLITUDES

OF PS̃ OSCILLATIONS

The behavior of the amplitudes and frequency shifts
associated with the oscillatory behavior of PS̃ as a function
of τR can be explained analytically using the Bloch-Feshbach
projection method (see Appendix). By projecting out the
hybridized singlet G̃ and triplet state T−, we obtain an effective
Hamiltonian HS̃T , which describes the system dynamics
within the subspace spanned by the basis {|S̃〉,|T+〉,|T0〉}.
These states are the ones relevant in the dynamical processes
involving the interplay of the hyperfine field and SOI near the
S̃-T+ resonance.

Let Amn denote the transition amplitude from the state m

into n and 	mn the energy splitting between the instantaneous
eigenstates λm and λn, respectively. As shown in Fig. 2, we
have labeled the detuning dependent eigenvalues in order of
increasing energy, i.e., λ3(ε) > λ2(ε) > λ1(ε). It is clear that
for ε � εS̃T+ , the eigenstates approach the limits |λ1〉 → |T+〉,
|λ2〉 → |S̃〉 and |λ3〉 → |T0〉, while for ε � εS̃T+ , the limits are
|λ1〉 → |S̃〉, |λ2〉 → |T+〉 and |λ3〉 → |T0〉. Figure 4 shows the
dependence on detuning and spin-orbit tunneling strength of
the different Amn amplitudes normalized to the zero-frequency
amplitude, amn(ε) = Amn(ε)/A0(ε); panels (b) and (d) also
show the corresponding energy splitting with respect to
the exchange energy, J (ε) − 	mn(ε). The Bloch-Feshbach
projection allows us to obtain analytical expressions for the
corresponding amplitudes and frequencies, as described in
detail by Eqs. (A4) and (A5) in Appendix. In the following
we describe their behavior as a function of tSO .

Figure 4(a) shows the transition amplitude a21(ε) for
different values of tSO . Notice that A21 = AS̃T+ for all ε, so that
it becomes maximal at the avoided crossing for εS̃T+ , where the
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FIG. 3. SOI signatures associated with the singlet return probability PS̃ . (a) and (c) Singlet return probability map as a function of spin-orbit
coupling tSO and residence time τR for residence detuning values of εR = −20 μeV and εR = −10 μeV, respectively. (b) and (d) Singlet return
probability as a function of τR for tSO = 0.2,0.5,0.8 μeV, corresponding to cuts along the vertical axis in panels (a) and (c), respectively.

maximum rate of spin-flip assisted tunneling occurs. Naturally,
the width of the line shape increases with increasing tSO ,
enhancing the detuning range over which a significant amount
of mixing between the singlet S̃ and the triplet T+ state occurs.
The line shape has a slight asymmetry with respect to the
position of the resonance. For ε < εS̃T+ , both the amplitude and
splitting change slowly and the mixing with the singlet S(1,1)
persists for a wide range of detunings. In contrast, for ε > εS̃T+ ,
SOI assisted transitions occur via singlet-triplet coupling along
the S(0,2) component of the hybridized singlet S̃, such that
the amplitude decays faster as this component gets rapidly
out of resonance with the triplet state T+. Figure 4(b) shows
the detuning dependence of the splitting, 	21(ε) = 	S̃T+ ,
characterizing the frequency of the PS̃ oscillations associated
with the S̃-T+ transition for different tSO values (	21 increases
with larger tSO , as intuitively expected). General analytical
expressions for the energy splittings in terms of tSO powers,
are given in Appendix, Eqs. (A9)–(A12). In addition, a full
derivation of the frequency shifts associated to 	S̃T + and
	S̃T0

is given in Eqs. (A13)–(A17) and Eqs. (A18)–(A22),

respectively. The largest increase in each case (∼0.7 μeV)
for tSO � 1 μeV is observed near the vicinity of εS̃T+ �
−7.0 μeV. Beyond the crossover region, SOI continues to
play a significant role in the state dynamics as the energy
shifts continue to be appreciable, a behavior that is consistent
with that of a21(ε).

Figure 4(c) shows the detuning dependence and SOI effects
on the amplitudes a32(ε) and a31(ε), which contain information
relevant to the exchange driven singlet-triplet transitions, as
well as the much weaker triplet-triplet transitions. Notice that
λ1 and λ2 switch character at εS̃T+ , as reflected in the a32 and
a31 amplitudes. For ε < εS̃T+ , a32 → aS̃T0

and the amplitude
increases as the system enters the qubit subspace S-T0, where
exchange mediated processes dominate; the amplitude is
larger as tSO increases. As the detuning approaches εS̃T+ , the
amplitude decays with a slight revival just before reaching the
point of closest approach at the avoided crossing. Beyond this
point, for ε > εS̃T+ , the system leaves the exchange-driven
qubit subspace. Here, a32 → aT0T+ becomes the amplitude
corresponding to triple-triplet transitions and decays much
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FIG. 4. Normalized Fourier amplitudes, aij (ε) = Aij (ε)/A0 [as given by Eqs. (A4) and (A5)], and energy splittings, J (ε) − 	ij (ε) (relative
to the exchange interaction), associated with the transitions |λi〉 → |λj 〉 for different values of SOI non-spin-conserving tunneling strength tSO ,
indicated in the top legend (in μeV). (a) Normalized amplitude a21 = aS̃T+ . (b) Energy splitting 	21 = 	S̃T+ relative to J . Here, the scatter plot
points (in blue) correspond to the mean value of energy splitting for tSO = 0.5 μeV, considering a normal distribution of fluctuating hyperfine
fields. Notice no difference with fixed hyperfine field (solid blue curve) results. (c) Normalized amplitudes a32 and a31. (d) Energy splittings
J − 	32 and J − 	31. In all graphs, the S̃-T+ avoided crossing resonance is indicated by a red dot marked on the x axis at εS̃T+ = −7.52 μeV.

faster beyond the crossover region. On the other hand, it is
clear that a31(→ aS̃T0

) decays at a much slower rate with
increasing detuning. This represents aS̃T0

having a larger S(0,2)
component in S̃. The singlet-triplet coupling enabling this
transition is SOI, via non-spin-conserving tunneling which
couples all triplets to the outgoing singlet.

Correspondingly, Fig. 4(d) shows the energy splittings
	31(ε) and 	32(ε), again relative to the exchange interaction
term J . For ε < εS̃T+ , it is clear that 	32 → 	S̃T0

� J (ε) and
SOI-induced frequency shifts are hard to resolve in this limit.
For 	31 → 	T0T+ , SOI effects are slightly more evident in the
energy splittings as tSO increases, even at detuning values far
from the S̃-T+ resonance. Yet, the corresponding transitions
have a very low amplitude, a31, as shown in Fig. 4(c). For
ε > εS̃T+ , however, the component 	31 → 	S̃T0

is the one
that better resolves the frequency shifts accompanied with
a significative increase in the corresponding amplitude a31.
It is evident in all the figures that SOI effects are amplified
near the vicinity of εS̃T+ . In this crossover region, the S̃-T0

component of both splittings, 	31 and 	32, shows the largest
effects with increasing tSO values, although both splittings
and amplitudes are typically much smaller than those shown
in the S̃-T+ component of a21 and 	21, see Figs. 4(a)
and 4(b).

VI. HYPERFINE FIELD FLUCTUATIONS
AND ELECTRICAL NOISE EFFECTS

In contrast to SOI, which is essentially static in a given
structure, the hyperfine interaction has a dynamic and random
character, as the nuclear magnetic field changes in time.
Therefore, in-between consecutive detuning sweeps, required
to enhance the signal to noise ratio, fluctuations in the hyperfine
field (even as they may occur over a ms scale or longer)
are expected to result in a slightly different frequency of
Rabi oscillations involving S̃, T0, and T+. Consequently, there
is an associated experimental uncertainty in the estimation
of the frequency shifts shown in Fig. 4(b). To estimate the
error associated with variations in the nuclear magnetic field
gradient dB, we have calculated the mean value of the energy
splitting 	21, as shown by the scatter plot symbols in Fig. 4(b).
The mean splitting averaged over a distribution of nuclear
hyperfine fields ghyp is given by

〈J − 	21〉hf =
∫

(J − 	21) ghf(dB) d(dB), (13)

which averages over the variation of the nuclear magnetic
field gradients, assumed to be given by a Gaussian distribution
of width σhf . Here, ghf(x) = (1/σhf

√
2π ) exp(−x2/2σ 2

hf). One
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would have expected that the mean values near the vicinity
of the S̃-T+ avoided crossing would exhibit the largest
deviation. Yet we see that |	21 − 〈	21〉hf| � 0 over the entire
ε range shown for tSO = 0.5 μeV, when the value of σhf =
0.125 μeV, typical in experiments, is used [15,22]. These
results suggest that the value of tSO obtained from the PS̃

frequency analysis would be only minimally affected by the
hyperfine field fluctuation values. Clearly, larger σhf values
would produce a larger error in the measured tSO .

On the other hand, recent experiments have shown that
electrical noise effects should be taken into account when the
dynamics involves a voltage difference (detuning) between left
and right quantum dots, as in our case [22]. Such noise in the
detuning voltages results in noise in the coherent exchange
J which affects the robustness of the system oscillations. To
estimate the role of electrical noise effects, we calculate the
singlet return probability as

〈PS̃〉el =
∫

PS̃(ε,τR) g(ε − εR) dε, (14)

where g(ε − εR) is a Gaussian distribution of width σ centered
on εR given by

g(ε − εR) = 1√
2πσ

exp

(
− (ε − εR)2

2σ 2

)
. (15)

Note that integration interval in Eq. (14) is over the entire
range, but a number (>6) of σ values results in fully converged
results.

A realistic width of the distribution is obtained from
recent experiments [22]. Martins et al. report an effective
electrical gate noise of σel = 0.18 mV and induced exchange
oscillations 	J = 116 MHz (0.48 μeV) corresponding to

FIG. 5. Singlet return probability 〈PS̃〉el (PS̃) in the presence
(absence) of electrical noise effects as a function of τR for tSO =
0.8 μeV. Noise effects in red solid curves are described by a Gaussian
distribution with σ = 0.36 μeV as described in Eqs. (14) and (15).
Top panel: Return probability for εR = −20 μeV. Bottom panel:
Return probability for εR = −10 μeV. The green solid curves in top
(bottom) panels are the same curves shown at the bottom panels of
Figs. 3(b) and 3(d), respectively, and serve as comparison.

a detuning voltage change of 2.5 mV. Using the relation

J = 1
2 (ε +

√
ε2 + 4t2

0 ), we obtain 	J = 0.96 μeV for a
detuning change 	ε = 10 μeV, which yields a scaling factor
of 0.5 mV/μeV. This translates σel into our corresponding
width of the electrical noise distribution as σ = 0.36 μeV.
It is clear that σ may be different in other experiments, but
this value provides us with a realistic estimate to evaluate
the effect of electrical noise on the SOI signatures we study.
To illustrate the role of electrical noise, we focus on the
singlet return probability PS̃ shown in Figs. 3(b) and 3(d). The
corresponding results for 〈PS̃〉el are shown in Fig. 5, for the
two values of detuning εR = −20 μeV and εR = −10 μeV;
it is evident that electrical noise dampens the amplitude of
the oscillations of PS̃ as expected, but not the frequency. As
long as the amplitude remains sufficiently large (measurable)
throughout the time interval shown, it should then be possible
to carry out the frequency analysis we propose in order to
extract quantitative values of the spin-orbit interaction. It is
also clear that larger noise fluctuations would strongly suppress
the coherence oscillations and make this (or any) analysis
difficult.

VII. SUMMARY AND CONCLUSIONS

We have studied the signatures of spin-orbit interaction on
the spectrum and dynamics of singlet-triplet qubits defined in
two-electron GaAs double quantum dots. By reconstructing
the level-anticrossing spectrum of the system as a function
of the interdot voltage detuning, we characterized the Rabi
flopping dynamics originating from singlet-triplet transitions
within the S̃-T0 and S̃-T+ qubit subspaces. This character-
ization allowed us to obtain the return probability of the
singlet state as one applies voltage detuning sweeps traversing
the S̃-T+ anticrossing resonance. The return probability ex-
hibits an oscillatory behavior with frequencies and Fourier
amplitudes that are strongly modulated by the spin-orbit
non-spin-conserving tunneling strength and are more visible
for residence detunings εR at which the system is allowed to
evolve near the S̃-T+ resonance. Furthermore, when taking
into account the effects of electrical noise during the sequence
of detuning sweeps, the oscillations of the singlet return
probability persist, although with an overall dampening of their
amplitude over the time intervals considered. However, as long
as the noise is not too strong, the analysis of the oscillations
would still yield estimates of the spin-orbit coupling in the
system.

By projecting the Hamiltonian of the system onto a
subspace spanned by the states relevant to the crossover region
of the S̃-T0 and S̃-T+ qubits, we obtained comprehensive
analytical expressions that yield the dependence of the cor-
responding transition amplitudes and Rabi frequency shifts as
a function of all coupling parameters. The obtained signatures
are the result of the interplay between exchange interaction
and non-spin-conserving processes originating from SOI and
the hyperfine interaction between electron spins and those of
the GaAs host nuclei. Our findings provide further insights
into SOI signatures that could be probed by one-shot readout
experiments measuring the singlet state return probability fol-
lowing a rapid detuning sweep traversing the S̃-T+ resonance.
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An interesting avenue for further research, in the context of the
present work, is the design of coherent control pulses aimed
at reducing noise effects in the symmetric configuration (zero
detuning), where variations in the exchange interaction are
completely determined by charge tunneling [22,23].
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APPENDIX: ANALYTICAL ESTIMATION OF
AMPLITUDES AND FREQUENCY SHIFTS

1. The Bloch-Feshbach projection method

The level anticrossing signature between the hybridized
singlet S̃ and the triplet T+ points to the onset of a non-
trivial quantum coherent interaction mediated by the nuclear
hyperfine interaction and spin-orbit coupling. In particular, the
dependence of this interaction on the couplings strengths |	t |
and |d 	B| cannot be directly obtained from the off-diagonal
matrix elements of the Hamiltonian in Eq. (7), nor from
the level diagram shown in Fig. 1. However, the physics
can be revealed by an effective Hamiltonian Heff, resulting
from the projection of the full Hamiltonian onto a reduced
sector of the Hilbert space containing eigenvectors relevant
to the anticrossing region, with eigenvalues matching exactly
those of the full Hamiltonian. To this end, we employ
a nonperturbative procedure based on the Bloch-Feshbach
projection operator formalism [24–26].

Let us consider a closed quantum system with the Hamil-
tonian given by Eq. (7). The Hamiltonian can be separated
into two parts, H̃ = H̃0 + V , where H̃0 is the diagonal part,
and V is the part that contains the interactions that dress the
bare spectrum of H̃0. Let P be the relevant subspace spanned
by the states that give rise to an avoided crossing resonance.
Similarly, let P and Q = 1 − P be projector operators onto
and outside of P , respectively. The effective Hamiltonian is
given by

H̃eff(z) = P H̃0P + PR(z)P, (A1)

with z = E ± iε, where E and ε are the real and imaginary
parts of the complex energy eigenvalue z. The first term of
H̃ is the leading part of the Hamiltonian inside P , with the
second term containing the level shift operator,

R(z) = V + V Q[z − QH0Q − QV Q]−1V, (A2)

which is projected onto P . The latter term can be seen as
a Hamiltonian that permits the calculation of the energy
level shifts with respect to the unperturbed levels. Allowing
the Hamiltonian to depend on its eigenvalues z, makes the
eigenvalue equation nonlinear. Additionally, analytic con-
tinuation of the eigenvalues into the complex plane allows
the definition of a non-Hermitian Hamiltonian that could
incorporate dissipation processes taking place outside the

relevant subspace P . Self-consistent solutions to the nonlinear
eigenvalue equation are used to obtain the eigenvalue spectrum
in the vicinity of a level crossing and anticrossing. Near a level
anticrossing (and in the absence of accidental degeneracies)
there is a unique self-consistent solution of z(ε) for each value
of the applied bias detuning ε.

2. Singlet-triplet transition amplitudes

To qualitatively evaluate the behavior of both the Fourier
amplitudes and frequency shifts associated with PS̃ as a func-
tion of tSO , starting from Eq. (7) we apply the Bloch-Feshbach
projection method to obtain an effective Hamiltonian HS̃T ,
which describes the system dynamics within the subspace
spanned by the states {|S̃〉,|T+〉,|T0〉}, which are the relevant
states to the dynamical processes taking place near the S̃-T+
resonance. We can construct the time evolution of the initial
state of the system, |X(0)〉 = (|S̃〉 + |T0〉)/

√
2, such that the

time evolution of the singlet recovery is given by

PS̃(t) = |〈S̃|X(t)〉|2

= A0 + 2Re

(
A32e

−i
h̄

	32t +
3∑

m=2

A1me
−i
h̄

	1mt

)
. (A3)

Here, 	mn are the transition frequencies between instanta-
neous eigenstates |λm〉 and |λn〉 of HS̃T , with corresponding
amplitudes given by

Amn = 1
2 (|G1m|2 + G1mG∗

3m)(|G1n|2 + G∗
1nG3n), (A4)

where Gmn are the matrix elements of the unitary operator G
having columns formed by the eigenvectors |λm〉 represented
in the basis {|S̃〉,|T+〉,|T0〉}. Likewise, the zero-frequency
amplitude is given by

A0 =
3∑

m=1

1

2
|G1m|2(|G1m|2 + |G3m|2 + 2ReG∗

1mG3m).

(A5)

Equations (A4) and (A5) allow us to calculate the dependence
on detuning and spin-orbit tunneling strength of the different
Amn amplitudes normalized to the zero-frequency amplitude,
amn(ε) = Amn(ε)/A0(ε), as discussed in the text and in Fig. 4.

3. Frequency shifts associated with the singlet-triplet transitions

To obtain analytical estimates of the frequency shifts
associated with transitions having predominantly S̃-T+ and
S̃-T0 character, we adiabatically eliminate in each case the
hybridized singlet G̃ and triplet state T−, while retaining their
dynamical effects by including (to all orders) the resulting
perturbative corrections to the matrix elements of the projected
two-level Hamiltonian. In the relevant subspace P spanned
by either {|S̃〉,|T+〉} or {|S̃〉,|T0〉} the effective Hamiltonian is
given by

H̃eff =
(

E1 UR + iUI

UR + iUI E2

)
, (A6)
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with eigenvalues given by

λ1 = � −
√

δ2 + 4|W |2
2

(A7)

λ2 = � +
√

δ2 + 4|W |2
2

, (A8)

where � = E2 + E1, δ = E2 − E1 and W = UR + iUI . Cor-
respondingly, the frequency shift associated with a singlet-
triplet transition is given by

λ2 − λ1

h̄
= 1

h̄

√
δ2 + 4|W |2. (A9)

In order to characterize the frequency dependence of the
SOI tunneling strengths, we expand both δ and |W | in
power series of tSO , i.e., δ = A0(dB,..) + A1(dB,..)tSO +
A2(dB,..)t2

SO + .... The coefficients An(dB,..) are functions of
the remaining Hamiltonian parameters, in particular dB, which
competes with tSO . Therefore, we also expand An in powers of
dB up to second order, An = αn

0 + αn
1dB + αn

2dB2 + .... For
our two-level system projection, the coefficients multiplying
odd powers of dB and tSO vanish, i.e., A1 = A3 = .. = 0,
αn

1 = αn
3 = .. = 0. Therefore

δ = α0
0 + α0

2dB2 + (
α2

0 + α2
2dB2)t2

SO. (A10)

The complex off-diagonal coupling, U = UR + iUI , is
expressed in polar form, i.e., U = |W |eiφ , where

φ = arctan
UI

UR

, (A11)

such that

|W | = UR sec φ. (A12)

4. S̃-T+ frequency shifts

After projecting out the states G̃, T− and T0, the coefficients
in Eq. (A10) are given by

α0
0 = J + Bz, (A13)

α0
2 = − 1

J 2 + t2
0

(
J 2

J − ε − z
+ t2

0 (Bz + 2z)

z(Bz + z)

)
, (A14)

α2
0 = − 1

J 2 + t2
0

(
t2
0

J − ε − z
+ J 2(Bz + 2z)

z(Bz + z)

)
. (A15)

For the range of parameters considered here, |α2
2(ε)| �

|α2
0(ε)|, so this latter coefficient can be neglected in the

calculations.
Now, the phase associated with the off-diagonal coupling

in Eq. (A11) is given by

φ = arctan

(
dBt0 + J tSO

dBt0 − J tSO

)
, (A16)

while the power series expansion of UR in terms of tSO up to
second order is given by

UR = − 1√
2

(dBt0 − J tSO)√
J 2 + t2

0

+ 1√
2

(Bz+2z)dBt3
0

(J−ε−z)(Bz+z)z(
J 2 + t2

0

) 3
2

t2
SO.

(A17)

Substitution of these expressions in Eqs. (A10), (A11), and
(A12) allows the explicit evaluation of the frequency shift,
	21 = 	S̃T+ in Fig. 4(b), as a function of both tSO , dB, and
the remaining coupling parameters.

5. S̃-T0 frequency shifts

For the most part, the shift of the splitting 	32 → 	S̃T0
with

tSO corresponds essentially to SOI corrections to the exchange
energy J , which are in general much smaller in comparison to
that of 	S̃T+ . Following the procedure outlined in the previous
subsection, here we project out the states G̃, T−, and T+. In
this case, the coefficients in Eq. (A10) are given by

α0
0 = J, (A18)

α0
2 = − 1

J 2 + t2
0

(
J 2

J − ε − z
− 2t2

0 z(
B2

z − z2
)
)

, (A19)

α2
0 = − 1

J 2 + t2
0

(
t2
0

J − ε − z
− 2J 2z(

B2
z − z2

)
)

. (A20)

As before, |α2
2(ε)| � |α2

0(ε)|, so that coefficient can also be
neglected. The phase associated with the off-diagonal coupling
in Eq. (A11) is given by

φ = arctan

(
J tSO

dBt0

)
, (A21)

while the power series expansion of UR in terms of tSO up to
second order yields

UR = dBt0√
J 2 + t2

0

+
(2z)dBt3

0
(J−ε−z)(B2

z −z2)(
J 2 + t2

0

) 3
2

t2
SO. (A22)

Finally, by substituting these expressions in Eqs. (A10), (A11),
and (A12), one can explicitly evaluate the exchange driven
frequency shift 	32 shown in Fig. 4(d), as a function of both
tSO , dB, and the remaining coupling parameters.

[1] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[2] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B.

Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven,
Nature (London) 430, 431 (2004).

[3] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D.
Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Nature
(London) 435, 925 (2005).

[4] B. Trauzettel, D. V. Bulaev, D. Loss, and G. Burkard, Nat. Phys.
3, 192 (2007).

[5] K. C. Nowack, M. Shafiei, M. Laforest, G. E. D. K. Prawiroat-
modjo, L. R. Schreiber, C. Reichl, W. Wegscheider, and
L. M. K. Vandersypen, Science 333, 1269 (2011).

[6] H. Bluhm, S. Foletti, I. Neder, M. Rudner, D. Mahalu, V.
Umansky, and A. Yacoby, Nat. Phys. 7, 109 (2010).

195407-9

https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nature03815
https://doi.org/10.1038/nature03815
https://doi.org/10.1038/nature03815
https://doi.org/10.1038/nature03815
https://doi.org/10.1038/nphys544
https://doi.org/10.1038/nphys544
https://doi.org/10.1038/nphys544
https://doi.org/10.1038/nphys544
https://doi.org/10.1126/science.1209524
https://doi.org/10.1126/science.1209524
https://doi.org/10.1126/science.1209524
https://doi.org/10.1126/science.1209524
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nphys1856


JUAN E. ROLON, ERNESTO COTA, AND SERGIO E. ULLOA PHYSICAL REVIEW B 95, 195407 (2017)

[7] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby,
M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard,
Science 309, 2180 (2005).

[8] J. R. Prance, Z. Shi, C. B. Simmons, D. E. Savage, M. G. Lagally,
L. R. Schreiber, L. M. K. Vandersypen, M. Friesen, R. Joynt,
S. N. Coppersmith, and M. A. Eriksson, Phys. Rev. Lett. 108,
046808 (2012).

[9] B. M. Maune, M. G. Borselli, B. Huang, T. D. Ladd, P. W.
Deelman, K. S. Holabird, A. A. Kiselev, I. Alvarado-Rodriguez,
R. S. Ross, A. E. Schmitz, M. Sokolich, C. A. Watson, M. F.
Gyure, and A. T. Hunter, Nature (London) 481, 344 (2012).

[10] M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P.
Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson,
K. M. Itoh, A. Morello, and A. S. Dzurak, Nature (London) 526,
410 (2015).

[11] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby,
Nat. Phys. 5, 903 (2009).

[12] W. A. Coish and D. Loss, Phys. Rev. B 75, 161302 (2007).
[13] D. Stepanenko, M. Rudner, B. I. Halperin, and D. Loss, Phys.

Rev. B 85, 075416 (2012).
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