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Spin relaxation in corrugated graphene
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In graphene, out-of-plane (flexural) vibrations and static ripples imposed by the substrate relax the electron spin,
intrinsically protected by mirror symmetry. We calculate the relaxation times in different scenarios, accounting
for all the possible spin-phonon couplings allowed by the hexagonal symmetry of the lattice. Scattering by flexural
phonons imposes the ultimate bound to the spin lifetimes, in the ballpark of hundreds of nanoseconds at room
temperature. This estimate and the behavior as a function of the carrier concentration are substantially altered by
the presence of tensions or pinning with the substrate. Static ripples also influence the spin transport in the diffusive
regime, dominated by motional narrowing. We find that the D’yakonov-Perel’ mechanism saturates when the
mean free path is comparable to the correlation length of the height profile. In this regime, the spin-relaxation
times are exclusively determined by the geometry of the corrugations. Simple models for typical corrugations
lead to lifetimes of the order of tens of microseconds.
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I. INTRODUCTION

Since the injection and detection of spin currents was
experimentally demonstrated [1], graphene has been consid-
ered as a very appealing element in spintronics [2] devices.
The spin polarization of the currents is expected to survive
over long distances due to the weakness of the spin-orbit
coupling [3] and the almost complete absence of nuclear
magnetic moments. However, experimental studies yield spin
diffusion lengths several orders of magnitude shorter [4–6]
than early theoretical predictions [7–9]. Recent years have
witnessed a fast development of the field. On the theoretical
side, new models of spin relaxation have been proposed, in-
cluding the exchange interaction with local magnetic moments
[10,11], a fast spin dephasing due to the accumulation of
pseudospin-related geometrical phases [12], or the inclusion
of spin-precession processes during resonant scattering [13].
Experimental efforts have been focused on the efficiency of
spin injection [14,15] and the isolation of the samples from
the environment [16–18].

The spin-relaxation processes in graphene involve inter-
band transitions between states of opposite parity with respect
to mirror (z → −z) reflection, which make them intrinsically
weak. These processes can be assisted by disorder in some
cases; for example, resonant impurities induce a local sp3-like
distortion of the lattice, hybridizing π and σ electronic states
[19]. This is a particular example of the Elliot-Yafet mecha-
nism [20], in which the spin-relaxation times are proportional
to the elastic scattering times, dominating charge transport.
This contrasts with the D’yakonov-Perel’ mechanism [21], in
which this relation is reversed due to a motional narrowing
process. The interplay between charge and spin diffusion in
graphene has been an object of debate since the first studies
on this material [5,6,22].

Corrugations and thermal vibrations in the out-of-plane
direction, on the other hand, break explicitly the mirror
symmetry, mixing electronic states with opposite parity. We
evaluate the spin lifetimes limited by this unavoidable source
of relaxation. Our analysis contains all the possible spin-

lattice couplings allowed by symmetry in weakly corrugated
graphene layers. We find that the scattering with flexural
phonons limits the spin-relaxation times down to τs ∼ 100 ns
in suspended samples. We also discuss the deviation from the
usual D’yakonov-Perel’ mechanism in the diffusive regime, of
relevance in epitaxial graphene.

II. SPIN-LATTICE COUPLING

We consider the low-energy description of graphene π

electrons around the two inequivalent corners of the hexagonal
Brillouin zone K±. The Hamiltonian reads as H = h̄ vF � ·
k + HSO, with vF ≈ 106 m/s. The first term describes the
Dirac bands, where the operators � = (±σx,σy) are Pauli
matrices acting on the sublattice degrees of freedom of the
spinor wave function. The second term accounts for relativistic
(spin-orbit) effects. In corrugated samples, it can be generically
written as HSO = ±�σz sz + Hs-l, where the first term is the
intrinsic Kane-Mele coupling [23], si being Pauli matrices
associated with the spin degree of freedom; the strength of this
coupling is of the order of μeV [3], so it will be neglected from
now on. The second term represents the coupling between the
electron spin and the lattice degrees of freedom due to the
breakdown of the mirror symmetry. These couplings appear as
invariants of the C6v point group symmetry of the lattice; the
most generic Hamiltonian reads [24]

Hs-l = βBR(� × s)z∇2h

+βD

[
(�̄ × s)z

(
∂2
y − ∂2

x

)
h + 2 �̄ · s ∂x∂yh

]
±βλ

[
2 ∂x∂yh sx + (

∂2
y − ∂2

x

)
h sy

]
, (1)

where h(x) is the height profile and the bar stands for complex
conjugation �̄ = (±σx, − σy). The first two terms can be
interpreted as spin-dependent hopping processes resulting
from virtual transitions into the σ bands. The first one
acquires the form of the usual Bychkov-Rashba coupling [25],
whereas the second term resembles the form of a Dresselhaus
coupling [26]. The last term in Eq. (1) can be understood as a
spin-dependent correction to the crystal field. A tight-binding
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calculation [24] gives (in units of h̄ vF ) βBR,λ ∼ 5 × 10−4;
βD is much weaker, and it appears only when considering
hoppings beyond nearest neighbors.

The spin-phonon coupling can be derived from Eq. (1)
by promoting the height profile to a dynamical variable.
Following the standard quantization procedure, we identify the
Fourier components of the out-of-plane displacements with the
flexural phonon operators as

h(q) −→
√

h̄

2ρ ωq
[dq + (d−q)†], (2)

where ρ ≈ 7.6 × 10−7 kg m−2 is the carbon-mass density.
We consider only long-wavelength modes, so we neglect
intervalley scattering and the contribution from the optical
branch. The dispersion relation can be written as [27,28]

ωq =
√

κ

ρ
×

√
|q|4 + ϑij

κ
qiqj + γ 4. (3)

The anharmonic coupling with the in-plane modes linearizes
the dispersion relation at low momenta, introducing a cutoff
[29] in the quadratic dispersion of the bending modes. In
this expression, κ ≈ 0.8 eV represents the bending rigidity
[24] of the graphene membrane. Tensions breaking the full-
rotational symmetry produce the same effect. For simplicity,
we consider the case of an isotropic tension of the form

ϑ = Ku, where K ≈ 21 eV Å
−2

is the two-dimensional (2D)
bulk modulus [30] and u is the strain of the lattice; we define
then qc = √

Ku/κ . In supported samples, the interaction
with the substrate introduces an additional momentum scale
γ ≈ 0.1 Å−1 associated with the pinning lengths [31].

III. SPIN RELAXATION DUE TO FLEXURAL PHONONS

We consider first the spin lifetimes limited by electron-
phonon scattering in the absence of other sources of disorder.
In the spirit of Matthiessen’s rule, the spin lifetimes limited
by each of the couplings separately are combined in a single
relaxation rate. A Fermi’s golden rule calculation gives

1

τs

= 1

πh̄2vF

∫ 2kF

0
dq

∣∣�̂kF ,q

∣∣2√
1 − (

q

2kF

)2
(2nq + 1), (4)

where nq = (eh̄ωq/kBT − 1)
−1

and the squared matrix elements
of the electron-phonon coupling read

∣∣�̂kF ,q

∣∣2 = h̄q4

2ρ ωq

[
β2

BR + β2
D + β2

λ

(
1 − q2

4k2
F

)]
. (5)

In the derivation of Eq. (4) we have employed a quasielastic
approximation, i.e., we have neglected the phonon contribution
in the energy-conservation constraint provided that T �
TF ≡ εF /kB for the usual dopings, where εF = h̄vF kF is the
Fermi energy measured with respect to the Dirac point. This
approximation assumes that the disorder induced by thermal
phonons can be treated as a static perturbation, as the energy
exchanged in an electron-phonon collision is much lower than
the electronic energies themselves. Notice also that the βλ

coupling preserves the chirality of the wave function, so this
channel is absent under the backscattering condition, q = 2kF .
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FIG. 1. Spin relaxation rates due to the scattering by flexural
phonons as a function of (a) carrier concentration (where T = 300 K)
and (b) temperature [where εF = 0.1 eV, corresponding to the vertical
dashed line in (a)].

The spin-relaxation rates evaluated from Eq. (4) are shown
in Fig. 1. In the free-standing case (black continuous curve) the
spin lifetimes are limited to a few hundreds of nanoseconds.
Tensions (green dotted and red dashed curves) and the inter-
action with the substrate (blue dashed-dotted curve) suppress
the contribution from flexural modes at the lowest momenta,
modifying also the dependence on the carrier concentration,
as shown in Fig. 1(a). The two different regimes shown in
Fig. 1(b) are determined by the Bloch-Grüneisen temperature
TBG = h̄ ω2kF

/kB , which is, at most, a few hundreds of mK.
In the experimentally most relevant regime T 	 TBG, the
spin-relaxation rates in suspended samples are given by the
expression

1

τs

≈ β̃2kF

2 h̄2vF

kBT

κ

(
2kF

qc

)2ν

, (6)

where ν = 0,1 corresponds to the free-standing (qc � 2kF )
and strained cases, respectively. The effective spin-phonon
coupling reads β̃2 ≡ β2

BR + β2
D + β2

λ/4. In supported samples,
the pinning effects become relevant at γ > 2kF , for which

1

τs

≈ 2 β̃2 k5
F

h̄2 vF γ 4

kBT

κ
. (7)

At low temperatures, T � TBG, the spin-relaxation rates
behave as τ−1

s ∼ T 3/2 (T 4) in the free-standing (strained) case,
whereas they are exponentially suppressed in pinned samples.

IV. SPIN DIFFUSION LIMITED BY STATIC RIPPLES

We consider now a disordered graphene sample supported
on a substrate, in which spin diffusion is assisted by motional
narrowing. The competition between the two relevant length
scales in the problem, namely, the electrons’ mean free path
� and the height-height correlation length imposed by the
interaction with the substrate L, is illustrated in Fig. 2(a).
The curvature of the sample is approximately uniform within
a region of characteristic size L. The electrons experience
an effective exchange field that makes the spins to precess
with a characteristic Larmor frequency of ωL ∼ �BR/h̄, where
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FIG. 2. (a) Scheme of the motional narrowing in the D’yakonov-
Perel’ (left) and fluctuation-dominated regimes (right). (b) Diagrams
corresponding to the second-order correction to the diffusion pole.
The latin labels specify the spin projection with respect to the z axis.

�BR ∼ βBR

√
〈h2〉/L2. The precession axis depends on the

direction of motion, so momentum scattering randomizes
the process when L > �. In between scattering events, the
electron spin precesses an angle φ ∼ τωL, where τ = �/vF

is the scattering time. After a time t , and assuming that the
process is Markovian, the precession angle is approximately
φ(t) ∼ √

t/τ × τωL. On the contrary, if L � �, then the
precession is randomized by the fluctuations of the spin-orbit
coupling itself. Within a region of size L the spin precesses
an angle φ ∼ LωL/vF , so after a time t we have φ(t) ∼√

tvF /L × LωL/vF . If we define the characteristic time scale
of spin relaxation as φ(t = τs) ∼ 1, then from the previous
arguments we obtain

1

τs

∼
⎧⎨
⎩

τβ2
BR〈h2〉
h̄2L4 if L > �,

β2
BR〈h2〉

h̄2vFL3 otherwise.
(8)

The usual scaling τ−1
s ∝ τ of the D’yakonov-Perel’ mech-

anism saturates for scattering times larger than L/vF , for
which the spin diffusion assisted by motional narrowing
ceases to depend on the elastic scattering characteristics [32].
Next, we derive this qualitative result from a more rigorous
diagrammatic calculation [33].

A. Formalism

In the diffusive regime, the dynamics of the disorder-
averaged spin density along the out-of-plane direction—ρα ≡
1
2 Tr[sαρ̂], where ρ̂ is the density matrix operator—is described
by (

∂t − D∇2 + 1

τα

)
ρα = 0, (9)

where D = v2
F τ/2 is the diffusion constant. We assume that

the dominating disorder potential v(r) determining the elastic
scattering time τ is diagonal in spin and valley/sublattice
degrees of freedom and its tail is much shorter than the typical
distance between scattering centers. Hence, we can consider
a Gaussian distribution for disorder realizations characterized

by correlators of the form

〈v(r1)v(r2)〉 = h̄

2πγF τ
δ(2)(r1 − r2), (10)

where γF = kF /(2πh̄vF ) is the density of states (per spin and
valley) at the Fermi level.

In the ladder approximation [34], the spin-relaxation rate
τ−1
α is given by the correction to the pole of the α-triplet mode

of the two-particle correlation function (diffuson), which can
be evaluated from the zero-frequency, zero-momentum ladder
insertion [35] Pi j i ′j ′ as

τ−1
α ≡ − 1

2τ

∑
k,l,k′,l′=↑,↓

[sα]jiPi j i ′j ′ [sα]i ′j ′ . (11)

In this expression the sum is performed over the projections
of the electron spin with respect to the quantization axis.
This correction arises from the space-dependent spin-lattice
coupling, which is treated in perturbation theory. The diagrams
for Pi j i ′j ′ to the lowest order in βBR are shown in Fig. 2(b).
The dashed lines correspond to the height-height correlation
function 〈h(r1)h(r2)〉, the interaction vertex is the Bychkov-
Rashba coupling, the dotted lines are the disorder correlators in
Eq. (10), and the straight lines are disorder-averaged Green’s
functions within the Born approximation,

ĜR,A(ω,k) =
(

h̄ω ± ih̄

2τ
− h̄vF � · k

)−1

. (12)

The calculation is highly simplified if we neglect interband
transitions leading to Elliot-Yafet-like contributions, which are
expected to be parametrically small for usual dopings [22]. The
final result reads ( 2

τx,y
= 1

τz
≡ 1

τs
)

1

τs

= β2
BRτ

h̄2

∫
d2q

(2π )2

|q|4〈|h(q)|2〉√
1 + τ 2v2

F |q|2
, (13)

where 〈|h(q)|2〉 is the correlation function in momentum space,

〈|h(q)|2〉 = 1

A

∫
d2r〈h(r)h(0)〉e−iq·r, (14)

A being the area of the sample.
The height-height correlations are strongly influenced by

the method of growth. We generalize the expression in Eq. (10)
for the disorder correlator in order to take into account
the existence of correlations below a given length scale L.
The simplest height-height correlation function describing the
presence of ripples can be written as

〈h(r1)h(r2)〉 = h2
0e

− |r1−r2|2
L2 , (15)

where h0 ≈ 0.3 nm corresponds to the characteristic height
of the ripples and the correlation length, L ≈ 25 nm, is a
measure of their typical lateral size [36]. By performing the
Fourier transform and plugging the result into Eq. (13), we get

1

τs

= β2
BRh2

0

2h̄2vFL3

∫ ∞

0
dζ

ζ 5e−ζ 2/4√
ζ 2 + L2/�2

≈
⎧⎨
⎩

32β2
BRh2

0τ

h̄2L4 if L 	 �,

6
√

πβ2
BRh2

0

h̄2vFL3 if L � �.
(16)
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FIG. 3. Spin-relaxation rates as a function of τ−1 = vF /� eval-
uated from Eqs. (10)–(13). The result in the first line of Eq. (16)
corresponds to the continuous black line.

The results in the asymptotic regimes coincide with our
estimates in Eq. (8) up to numerical factors [37]. The
spin lifetimes in the limit L � � are of the order of τs ∼
10 μs. Notice that this estimation only includes the spin-orbit
coupling of carbon atoms. The substrate itself can enhance
substantially the strength of the spin-orbit coupling, leading to
much shorter spin-relaxation times.

B. Discussion

Our formula in Eq. (13) can be applied to the study of
spin relaxation in epitaxial graphene [15,38]. The correla-
tor used in the derivation of Eq. (16) describes a noise-
induced roughening of the epitaxial growth fronts, which
is a scale-invariant (self-affine) random process [39]. In
graphene samples, however, a preferential periodicity has
been systematically observed [36], described by a correlation
function of the form [39]

〈h(r1)h(r2)〉 = h2
0 e

− |r1−r2|2
L2 J0

( |r1 − r2|
λ

)
, (17)

where J0(x) is a Bessel function of the first kind. Figure 3
shows the spin-relaxation rate as a function of the inverse of
the scattering time for different values of λ. There are still

two asymptotic regimes dominated by momentum scattering
(D’yakonov-Perel’ mechanism) and height fluctuations, re-
gardless of the actual value of λ.

Note, finally, that the analysis presented here for static
ripples can be easily generalized to static in-plane strains, as the
same symmetry analysis can be applied, and only the coupling
constants need to be recalculated. In-plane strains are the main
source of scattering in high mobility encapsulated graphene
samples [40], and it can be expected that they will also
provide an upper limit to spin diffusion. The main difference
is that for clean encapsulated samples, in-plane strains show
long-range correlations, which decay as a power law instead of
the behavior considered in Eqs. (15)–(17). A detailed analysis
of this case is beyond the scope of this paper.

V. CONCLUSIONS

In summary, we have analyzed the role of lattice corruga-
tions and thermal out-of-plane vibrations in the spin transport
of graphene. Flexural phonons give rise to a temperature-
dependent contribution to spin relaxation; for the usual carrier
concentrations, the spin lifetimes are of the order of 0.1–
1 μs at room temperature, depending on the amount of strain
in the sample and the interaction with the substrate. Static
ripples also affect the spin transport in the diffusive regime. In
the limit L � �, the spin lifetimes are exclusively determined
by the geometry of the corrugations. The subtraction of the
effect of the contacts in the analysis of the Hanle-precession
curves [41,42] makes it possible to study these relaxation
mechanisms in graphene-based spin valves. It is worth noting
that the intrinsic limits in the spin relaxation time imposed by
corrugations in chemical vapor deposited (CVD) graphene
calculated here are still longer than the relaxation times
observed in the best BN-encapsulated graphene samples [43],
τs ≈ 1 ns.
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