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We develop a theory that describes the response of nonreciprocal devices employing two-dimensional materials
in the quantum Hall regime capacitively coupled to external electrodes. As the conduction in these devices is
understood to be associated to the edge magnetoplasmons (EMPs), we first investigate the EMP problem by using
the linear response theory in the random phase approximation. Our model can incorporate several cases that were
often treated on different grounds in literature. In particular, we analyze plasmonic excitations supported by a
smooth and sharp confining potential in a two-dimensional electron gas, and in monolayer graphene, and we point
out the similarities and differences in these materials. We also account for a general time-dependent external drive
applied to the system. Finally, we describe the behavior of a nonreciprocal quantum Hall device: the response
contains additional resonant features, which were not foreseen from previous models.
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I. INTRODUCTION

Nonreciprocal devices, such as gyrators and circulators, are
the key components for modern microwave engineering. They
allow a variety of operations required for several applications,
including qubit control and thermal noise reduction.

An ideal gyrator induces a π shift between signals moving
in opposite directions: this behavior is captured by the
scattering (S) matrix [1]

S = eiθ

(
0 −1
1 0

)
. (1)

An implementation for these devices that guarantees good
miniaturization was recently proposed by Viola and DiVin-
cenzo (VD) [2]. The main idea is to use a two-dimensional
conductor in the quantum Hall (QH) regime [3] capacitively
coupled to external metal electrodes. The voltage applied to
the electrodes excites the magnetoplasmons at the edge of
the conductor (EMP): as they move chirally, with a direction
dependent on the sign of the applied magnetic field, they are
responsible for the nonreciprocal behavior of the device.

Further developments both on the theoretical [2,4,5] and
on the experimental side [6], showed that the VD model is
very useful to understand the main behavior of these devices,
but some questions were left unanswered. For example,
it is well-known [7–10] that the edge of two-dimensional
conductors supports several plasmonic modes, with different
charge distribution extending inside the material. The VD
model, however, assumes a single excitation localized in an
infinitesimally narrow region near the edge, with a propagation
velocity that has to be extracted from experiments; the effect of
the additional modes and of their specific charge distribution
remains unspecified.

Also, mesosopic structures have a finite density of states,
which is expected to renormalize the capacitive coupling
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between the electrodes and the Hall bar. This is the basic idea
behind the introduction of the well-known concept of quantum
capacitance [11–13]; how this additional capacitance modifies
the performance of the gyrator was not quantitatively analyzed.

A deeper knowledge of the physics of the EMP is then
required to gain additional insight on the response of these
devices. A lot of research has been done in the field of
EMP in the QH regime. From literature, one can distinguish
two categories of EMPs depending on the smoothness of the
confinement potential at the edges.

On one side, EMPs can be supported by boundaries defined
by a very smooth confining potential, e.g., electrostatically
defined edges. This problem is typically treated with classical
hydrodynamics, neglecting corrections on the scale of the
magnetic length lB ≡ √

e|B|/h̄ [7–9]. Interestingly, in the
same framework one can prove that edge plasmons propagate
chirally without applied magnetic field in conductors with a
nonzero Berry flux [14], e.g., anomalous Hall materials or two-
dimensional gapped Dirac materials with light-induced valley
polarization. This suggests that nonreciprocal devices could
be obtained with non magnetic materials without external
magnetic field; we do not analyze this case here.

On the other side, EMPs can propagate also at boundaries
defined on atomic lengthscales, where corrections of the
order lB are not negligible. A classical approach for this
situation was introduced in [15], where the EMP problem,
formulated in terms of combined Poisson and linearized
continuity equations, was solved in a variety of situations
with a Wiener-Hopf calculation. This approach, although very
general, does not capture the physics at the QH plateus,
where the transverse conductivity vanishes, i.e., σxx = 0. A
quantum generalization of the sharp edge model was proposed
in Ref. [10] by linearizing the Heisenberg equation of motion
of a single particle charge density operator.

Inspired by the latter research, we develop a general
model based on the linear response theory in the random
phase approximation (RPA), capable to describe (by taking
appropriate limits) the EMP supported by both type of edges
in the QH regime. To describe the behavior of the device,
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we include also an applied time-dependent voltage drive.
First, we point out the similarities and differences in the two
cases for two-dimensional electron gas (2DEG). Then, we find
that our model is, with few modifications, applicable also to
describe EMPs in monolayer graphene, and we investigate the
differences with 2DEGs. We then use our driven EMP model
to describe a specific QH device, namely the three-terminal
gyrator introduced in Ref. [4]; we compare our results with
the ones predicted with the VD model.

This paper is structured as follows. In Sec. II, we introduce
the EMP model. First, we review the eigensystem of the
static Hamiltonian of independent electrons in a magnetic
field, including a confinement and a mean-field (Hartree-Fock)
interaction potential; we remark on the differences due to the
characteristic length scale w at which the confining potential
varies. We then focus on the effect of a time-dependent voltage
drive, and by using linear response theory in RPA, we find a
general equation defining the EMP charge. At this point, we
take the limits of smooth and sharp edges, and analyze the two
situations. We also modify our theory to describe EMPs in a
monolayer graphene. In Sec. III, we employ the EMP model to
describe the behavior of a three-terminal gyrator, underlining
similarities and differences with VD.

II. EMP MODEL

A. Static Hamiltonian

The starting point to describe the (integer) QH effect is the
conventional single-particle mean-field Hamiltonian [3,16]

Ĥ0 = ĤB + Uw(r̂) + Ûi(r̂), (2)

where ĤB is the Hamiltonian of a free electron in a per-
pendicular magnetic field B, and the two scalar potentials
Uw and Ui account, respectively, for the confinement at the
edge of the material and for the mean-field interactions. In
particular, the interaction potential Ûi(r̂) is an integral operator
given by the sum of a Hartree and a Fock term, that depend
respectively on the density ρ(r) and on the density matrix
ρ(r,r1) [13]; here, r = (x,y)T .

For 2DEGs, the magnetic field-dependent Hamiltonian ĤB

is [17]

ĤB = h̄ωc

(
â†â + 1

2

)
, (3)

where ωc ≡ eB/m is the cyclotron frequency, and the creation
and annihilation operators, â† and â, defined by

â† ≡ lB√
2h̄

(π̂x + iπ̂y), (4a)

â ≡ lB√
2h̄

(π̂x − iπ̂y), (4b)

satisfy the canonical commutation relation [â,â†] = 1. Here,
lB ≡ √

h̄/(e|B|) ≈ 26 nm/
√|B|/Tesla is the magnetic length

and π̂ is the dynamical momentum

π̂ ≡ p̂ + eA(r̂), (5)

where p̂ is the crystal momentum and A is the vector
potential satisfying B = ∇ × A. The energy eigenvalues of

FIG. 1. Geometry of the EMP model. A two-dimensional mate-
rial (orange) subjected to a perpendicular magnetic field is situated
in the z = 0 plane; it extends infinitely in the y direction, and it
terminates at x = 0. The material is capacitively coupled with an
external electrode at z = d . To simplify the calculations, we will
assume that the top gate is translational invariant in the y direction,
except that the drive changes the potential of a part of the gate only
(dark grey region). For example, in the figure, we show a voltage
drive of the form Ve(t)�(−y)�(Lx − |x|).

the Hamiltonian in Eq. (3) are simply

εn = h̄ωc

(
n + 1

2

)
, (6)

with n ∈ N being the Landau level (LL) index. Although our
model can be straightforwardly generalized to account for an
additional Zeeman splitting term, for simplicity, we neglect its
effect [16], and we consider degenerate spins.

To proceed further and account for the confinement poten-
tial Uw, we need to fix the gauge of the vector potential A.
In particular, since we aim to describe the EMPs propagating
along a straight line, as shown in Fig. 1, we choose the Landau
gauge A(r) = (0,Bx,0), which preserves the translational
invariance in the y direction. Then, the eigenvalues py ≡ h̄ky

of the crystal momentum in the y direction, p̂y , are good
quantum numbers and the eigenfunctions of the Hamiltonian
in Eq. (3) are simply

	(x,y) = eikyy√
Ly

ψn

(
x + kyl

2
B

)
, (7)

with

ψn(x) = e−x2/(2l2
B )

(lB
√

π2nn!)1/2
Hn(x/lB), (8)

and Hn being the nth Hermite polynomials. Here, the nor-
malization factor 1/

√
Ly (Ly is the length of the device in

the y direction) results from applying the periodic boundary
conditions, hence the momenta ky are quantized with steps of
size 2π/Ly .
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Note that the wave functions are centered at position x =
−kyl

2
B ; this implies that electrons with different y momenta

h̄ky are shifted in the x direction. So far, translations in the
x direction do not change the energy of the system and thus
the energy eigenvalues in Eq. (6) are infinitely degenerate in
ky . The confinement potential Uw lifts this degeneracy [18].
Let us assume that the confinement potential preserves the
translational invariance in the y direction, i.e., Uw(r) = Uw(x),
and it has the form

Uw(x) =

⎧⎪⎨
⎪⎩

U0 x < 0,

u(x) 0 � x < w,

0 x � w,

(9)

with u being a monotonically decreasing function interpolating
continuously between the two extremes of the potential on a
length scale w. Qualitatively, the lifting of degeneracy in ky

is easily explained: the wave functions centered at −kyl
2
B �

w experience a lower potential than the wave functions at
−kyl

2
B ≈ 0 and, consequently, they have lower total energy.

The detailed band structure depends on the precise form of
the confining potential and typically it requires a numerical
analysis. However, an analytical approximation for the energy
eigenvalues and eigenfunctions can be found in the limits of
sharp (w/lB � 1), and smooth (w/lB � 1) confinement.

If the edge potential is very sharp compared to lB , one
can approximate Uw with a Heaviside function, Uw(x) ≈
U0�(−x). Also, we consider the limit of electrons strongly
confined in the material, U0 � h̄ωc(ν0 + 1/2), where the
filling factor ν0 is the highest occupied bulk LL. Then, the
effect of Uw can be modeled by requiring the wave function to
vanish at x = 0. This case has been extensively studied with
different approaches [18–22]. Although an exact analytical
solution for this problem can be found in terms of the Hermite
functions, as derived in Appendix A, in this work, we use
the semiclassical WKB method proposed in [21,22], which
gives a simple yet very good approximation for the energy
eigenfunctions and eigenvalues. A comparison between the
WKB and the exact band structure of a 2DEG in magnetic
field is shown in Fig. 2.

�4 �3 �2 �1 0 1 2
0

1

2

3

4

5

kylB

/(
c)

FIG. 2. Landau levels of a 2DEG terminated by a sharp edge
potential as a function of the momentum ky (in units 1/lB ). The
energy levels are computed within the WKB approximation (solid
lines) and exactly, with the dispersion relation in Eq. (A4) (dashed
lines). Static interactions have been neglected.

In contrast, when the edge potential is smooth compared to
lB , the wave functions are barely perturbed by Uw and they
can be approximated, to the lowest order in lB/w, by the ones
in Eq. (7), leading to the energy eigenvalues

εn(ky) ≈ h̄ωc

(
n + 1

2

) + Uw

( − kyl
2
B

)
. (10)

The last ingredient missing to describe the static Hamilto-
nian is the mean-field interaction potential Ui . Qualitatively,
there are two interactions of opposite signs that govern the
edge structure in the two regimes: the long-range repulsive
Coulomb (Hartree) interactions and the short-range attractive
exchange (Fock) interactions [23].

When the confinement potential is sharp enough, the
exchange interaction dominates and the electrons simply fill
the one-particle energy bands in Fig. 2 up to the Fermi energy
εF . In this case, there are exactly ν0 states at the Fermi energy;
each of these states has a well-defined Fermi momentum
kn
F (n labels the LLs), and corresponds to a current-carrying

channel in Landauer language. How this picture is modified
for fractional filling factors is described in Refs. [24,25].

In contrast, it is well-known that for very smooth confine-
ment potentials, e.g., electrostatic confinement, the long-range
Coulomb repulsive force dominates and the edge undergoes
reconstruction. The structure of the edge in this case has
been extensively studied focusing on the electronic density
and neglecting all the details at length scales of the order
of the magnetic length. From a semiclassical electrostatic
approach [26,27], the electron density at the edge shows an
alternating pattern of compressible and incompressible strips.
In particular, Coulomb interactions flatten the energy bands
and instead of having single current-carrying states with a
unique Fermi momentum kn

F , at the Fermi energy there is a set
of quasi-degenerate energy eigenstates for each LL. These sets
correspond to the compressible current-carrying strips and they
are spatially separated by narrow incompressible insulating
strips that appear at integer local filling factor ν(x). This picture
was confirmed to hold also at fractional filling factors both
by DFT calculations, including exchange interactions at low
temperature [28], and by composite fermions approach [29].

The transition between the two limits has been studied
in detail for the integer QH effect within an Hartree-Fock
mean-field theory [23] and for the fractional QH case with a
composite fermions approach [29]. The crossover between the
two limits is estimated to occur when w is of the order of the
magnetic length lB .

B. Driven Hamiltonian

Imagine now to perturb the system (a 2DEG in the plane
z = 0) described by the Hamiltonian Ĥ0 by a time-dependent
voltage drive Ve(t), applied to an electrode in a parallel plane
z = d, as shown in Fig. 1. The drive is assumed to be slow
enough for the retardation effects to be negligible, a condition
typically met in the microwave domain. For simplicity, we
neglect also fringing fields: the voltage applied in position
z = d preserves its spatial distribution at z = 0. The effect
of fringing fields is briefly discussed in Appendix B. The
drive perturbs the electron density from its equilibrium value
ρ0, causing a time-dependent rearrangement of charges; the
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change in density adds a significant Coulomb energy cost Uρ ,
which should be included in the Hamiltonian.

In a time-dependent Hartree-Fock approximation, this
additional energy term is included in the total screened scalar
potential U [13],

U (r,t) ≡ −eVe(r,t) + Uρ(r,t), (11)

with r = (x,y)T . As Uρ readapts self-consistently to the
perturbed charge density, this additional term leads to a
complicated set of nested nonlinear integral equations.

The dynamics of the electron density can be simplified in
the framework of linear response theory by making use of
the random phase approximation (RPA). First, we neglect the
contributions of the exchange interactions in the potential Uρ

(hence we adopt a Hartree approximation), and we model this
term by inverting the electrostatic Poisson equation

Uρ(r,t) = e

∫
R2

dr ′G0(r,r ′)(ρ(r ′,t) − ρ0(r ′)). (12)

Here, ρ is the nonequilibrium expectation value of the charge
density operator, and G0 is the electrostatic Green’s function of
the three-dimensional Poisson operator in Eq. (B2), evaluated
at z = 0.

We work in the frequency domain t → ω, and we assume
that the external voltage is small enough for the induced charge
density to be linear in Ve. This assumption allows one to study
the first-order charge density perturbation,

ρ1(r,ω) ≡ ρ(r,ω) − ρ0(r), (13)

in terms of linear response functions, depending only on
equilibrium averages over the eigenfunctions of Ĥ0.

In particular, we introduce the proper density-density
response function χ̃ρρ [13], defined by

ρ1(r,ω) ≡ e

∫
R2

dr ′χ̃ρρ(r,r ′,ω)U (r ′,ω). (14)

In RPA, χ̃ρρ is given by, in Lehmann representation, [13,30]

χ̃ρρ(r,r ′,ω)

=
∑
α,β

fF (εβ) − fF (εα)

εβ − εα + h̄(ω + iη)
	α(r)	∗

β(r)	β(r ′)	∗
α(r ′).

(15)

Here, fF is the Fermi distribution and the imaginary part of
the frequency η � ω can be interpreted as a phenomenological
decay rate due to the coupling to the environment. The indexes
α,β collect all the quantum numbers associated to Ĥ0, in this
case, the LL number n and the crystal momentum ky ; 	α and
	β are the eigenfunctions of Ĥ0 with eigenvalues εα and εβ ,
respectively.

Introducing the matrix decomposition for the linearized
charge density

ρ1(r,ω) =
∑
α,β

ραβ (ω)	α(r)	∗
β(r), (16)

and substituting Eq. (15) into Eq. (14), one gets

ραβ(ω) = e
fF (εβ) − fF (εα)

εβ − εα + h̄(ω + iη)
Uαβ(ω), (17)

where we have introduced the screened potential matrix
element

Uαβ(ω) =
∫
R2

dr ′	∗
α(r ′)	β(r ′)U (r ′,ω). (18)

In the undriven case, i.e., Ve = 0, U = Uρ , Eq. (17) was
obtained in Ref. [10] by linearizing the Heisenberg equation
of motion of ρ for small density perturbation.

Now, we use the translational invariance in y direction of
Ĥ0, which allows the factorization

	α(r) = eikyy√
Ly

ψα(x). (19)

A few remarks are in order here. First, 	α is the eigen-
function of Ĥ0 and it is different from 	 in Eq. (7), which is
the eigenfunction of the free-electron Hamiltonian in Eq. (3).
In addition, the driving voltage Ve is a function of y, so that,
although the static density is still assumed to be constant in
the y direction, the perturbation ρ1 is not.

To proceed further, we Fourier transform the y coordinate,
y → qy , and, following Ref. [10], we use some physically
reasonable approximations. First, we assume that the temper-
ature is low enough to have fully developed QH plateaus, i.e.,
kBT � h̄ωc, and we consider that the size of the sample is
much greater than all the other length scales, which allows
us to take the thermodynamic limit, Ly → ∞. In this limit,
the momentum quantum number ky becomes a continuous
parameter and, in our notation, we promote it to be an
argument of the functions. Moreover, we focus only on
low-energy excitations, with ω � ωc, whose variations in the
y direction are much smoother than in the x direction, i.e.,
max(w,lB)qy � 1.

With these assumptions, and decoupling the y and x

directions by introducing the quantities pn(ky,qy,ω) and
Vn(ky,qy,ω), respectively, defined by

ρ1 ≡
∑

n

∫
R

dky

∂fF (εn(ky))
∂ky

pn(ky,qy,ω)|ψn(x,ky)|2, (20)

and

Vn(ky,qy,ω) ≡
∫
R

dxVe(x,qy,ω)|ψn(x,ky)|2, (21)

we get the self-consistent equation

−(ω + iη)pn(ky,qy,ω)

= qye
2

2πh̄
Vn(ky,qy,ω)

+ qy

∑
m

∫
R

dk′
yMnm(ky,k

′
y,qy)pm(k′

y,qy,ω). (22)

Here, the quantity

Mnm(ky,k
′
y,qy) ≡ vq

n (k′
y)δ(ky − k′

y)δnm

− vc
nm(ky,k

′
y,qy)

∂fF (εm(k′
y))

∂k′
y

, (23)

includes the two velocities that contribute to the motion of the
excitation: first, the group velocity of a wave packet centered
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at momentum ky (quantum contribution),

vq
n (ky) ≡ ∂εn(ky)

h̄∂ky

, (24)

and second, the electrostatic contribution due to the self-
consistent rearrangement of charges (classical contribution)

vc
nm(ky,k

′
y,qy) ≡ e2

h̄

∫
R2

dxdx ′G0(x,x ′,qy)

× |ψn(x,ky)|2|ψm(x ′,k′
y)|2. (25)

The derivations leading to Eq. (22) are reported in Appendix C.
Note that the sum of two velocity contributions is expected

from the well-known concept of quantum capacitance [11–13].
In fact, if we consider a simple circuit model describing
our system, as in Refs. [2,31], the total velocity of the
collective edge excitations can be related to the inverse
of an effective electrochemical capacitance. In mesoscopic
devices, this quantity is modeled by a geometrical capacitance

dependent on the physical distance of the electrode d, in
series with a quantum capacitance accounting for the density
of states, i.e., ∝(∂ε/∂ky)−1; this agrees with our Eq. (23).
The important connection between plasmon velocities and
capacitances will be developed more in Sec. II F. We will
now examine in detail Eq. (22) in the smooth and in the sharp
edge limit.

C. Smooth edges

We now employ Eq. (22) in the limit of smooth edges,
w/lB � 1. In this case, ψn(x) is proportional to a Gaussian
function centered at position x = −kyl

2
B , with standard devia-

tion approximately lB
√

n, see Eq. (8) and relative discussion;
neglecting all the details at length scales of the order of
the magnetic length, one can thus approximate the absolute
value squared of the wave functions with shifted Dirac delta
functions. In addition, as discussed in Sec. II A, Coulomb
interactions flatten the energy bands εn(ky) at the Fermi energy,
thus we discard the quantum velocities defined by Eq. (24).

With these two assumptions, one obtains the integral
equation

(ω + iη)ρ1(x,qy,ω) = ∂ρ0(x)

∂x

(
−e2qy

mωc

Ve(x,qy,ω) + 2πe2qy

mωc

∫
R

dx ′ρ1(x ′,qy,ω)G0(x,x ′,qy)

)
, (26)

as derived in Appendix D.
Let us first compare this result with literature. The problem

of low-energy, smooth excitations supported by smooth edges
of a QH liquid has often been studied within an hydrodynamic
approach. Aleiner and Glazman (AG) [7,8] combine the
Euler equation for compressible electron liquid, including a
potential term of the same form of Uρ in Eq. (12) with the
linearized continuity equation, and they find a self-consistent
integrodifferential equation for the charge density.

In the high magnetic field limit ω/ωc � 1 and in the
undriven case, i.e., Ve = 0, their Fredholm integral equation
coincides with our Eq. (26) (up to a minus sign due to different
conventions for the Fourier transform in time), when we use
the free-space electrostatic Green’s function

G
f

0 (x,x ′,qy) = K0(|qy ||x − x ′|)
4π2εS

, (27)

where K0 is the modified Bessel function and εS is the
dielectric constant of the medium. Note that this equivalence
is expected as the RPA preserves the continuity equation [32].
Equation (27) can be derived by Fourier transforming the y

coordinate in Eq. (B2) (evaluated at z = 0) and by taking the
limit d → ∞.

AG found that smooth edges support infinitely many
branches of plasmonic excitations, each with a different
number of nodes in the x direction. The number of nodes
is strictly correlated with the velocity of the plasmons:
excitations with fewer nodes, are faster. In particular, the fastest
mode has a logarithmic dispersion relation ω(qy), with velocity
diverging for qy → 0. This logarithmic behavior is well-
known, both theoretically [10,15] and experimentally [33,34],

and it is related to the logarithmic divergence of the free-space
electrostatic Green’s function in Eq. (27) for small qy .

In our geometry, however, the top gate at a distance d �
1/qy , slows the plasmons, and in particular the presence of
a positive image charge at position z = 2d straightforwardly
modifies the Green’s function in Eq. (27) to

G0(x,x ′,qy) = 1

4π2εS

[K0(|qy ||x − x ′|)

−K0(|qy |
√

(x − x ′)2 + 4d2)]. (28)

Expanding Eq. (28) for small qy , consistent with the smooth
excitation approximation, the logarithmic divergences of the
two Bessel functions cancel out and we obtain the finite limit

lim
qy→0

G0 = 1

8π2εS

ln

(
1 +

(
2d

x − x ′

)2
)

, (29)

which presents the typical logarithmic behavior expected from
two-dimensional electrostatics [35].

When no voltage is applied, a solution of Eq. (26) with the
kernel given in Eq. (29) was found by Johnson and Vignale
(JD) [9]. JD used a linear static charge density ρ0, including
both compressible and incompressible strips, and they solved
the problem within a local capacitance approximation (LCA),
valid for d/w � 1. Among other things, they proved that
the presence of incompressible strips gives a negligible
contribution to the EMP velocities, and thus we will neglect
them here.

Although the LCA greatly simplifies the problem, with this
approach much information on the multipole modes is lost.
Instead, we deal with the problem following the strategy of
AG, and we use an orthogonal polynomial decomposition to
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decouple the x and y directions. We introduce their static
charge density [7]

ρ0(x) = �(x)
2n0

π
tan−1

√
x

w
, (30)

with n0 being the bulk density of electrons, and we factorize
the excess charge density as

ρ1(x,qy,ω) =
∑

j

cj (qy,ω)Rj (x), (31)

where we have defined

R0(x) ≡ �(x)

π
√

x/w(x + w)
, (32a)

Rj (x) ≡
√

2�(x)

π
√

x/w(x + w)
T2j

(
1√

1 + x/w

)
, (32b)

with Tj being the j th Chebyshev polynomial of the first
kind [36]. Combining now Eqs. (26), (29), and (31), and
using the orthogonality of the Chebyshev polynomials, one
gets the equation for the vector of coefficients c(qy,ω) ≡
[c0(qy,ω),c1(qy,ω),...]T :

(ω + iη)c(qy,ω) = qyμ̂c(qy,ω) + qyV (qy,ω). (33)

Here, μ̂ is a symmetric real matrix with units of velocity and
with elements

μij ≡ γij

2n0e
2

π3mωcεS

∫ 1

0
ds

T2i(s)√
1 − s2

∫ 1

0
ds ′ T2j (s ′)√

1 − s ′2

× ln

(
1 +

(
2d

w

s2s ′2

s2 − s ′2

)2
)

, (34)

with

γij ≡

⎧⎪⎨
⎪⎩

1/2 i = j = 0,

1/
√

2 i = 0,j > 0 or i > 0,j = 0,

1 otherwise,

(35)

and V is a vector with elements

V0 ≡ − 2n0e
2

πmωc

∫ 1

0

ds√
1 − s2

Ve

(w

s2
− w,qy,ω

)
, (36a)

Vj ≡ −2
√

2n0e
2

πmωc

∫ 1

0
ds

T2j (s)√
1 − s2

Ve

(w

s2
− w,qy,ω

)
.

(36b)

Note that Eq. (33) corresponds to the linear system of
coupled partial differential equations

∂c(y,t)

∂t
+ ηc(y,t) = μ̂

∂c(y,t)

∂y
+ ∂V (y,t)

∂y
, (37)

which can always be decoupled by the unitary transformation
M̂ that diagonalizes μ̂. Conventionally, M̂ is chosen to
be the matrix containing the column eigenvectors, properly
normalized to satisfy μ̂ = M̂v̂M̂T , with v̂ being the matrix of
eigenvalues.

We are now able to define the j th plasmon velocity vj

and its wave function in the y-direction uj (y,t), as the j th

0 1 2 3 4 5
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0.5
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1.5
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d w

v
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FIG. 3. Velocity of EMPs supported by smooth edges in 2DEG
as a function of the distance d of the top gate. The velocities are
expressed in units of vp ≡ σxy/(2πεS), while d is in units of the
smoothness parameter w, defined in Eq. (30). In this calculation,
we are neglecting the effects of the incompressible strips and of
backscattering.

eigenvalue of μ̂ and the linear combination of coefficients ci

given by

uj (y,t) ≡
∑

i

Mij ci(y,t). (38)

Hence we reduce the system in Eq. (37) to

∂uj (y,t)

∂t
+ ηuj (y,t) = vj

∂uj (y,t)

∂y
+ M̂T ∂V (y,t)

∂y
. (39)

Combining Eqs. (31) and (38), the linearized charge
density can be written as a sum of independent plasmonic
contributions,

ρ1(x,y,t) =
∑

j

gj (x)uj (y,t), (40)

with uj (y,t) satisfying the equation of motion (39) and

gj (x) ≡
∑

i

MijRi(x). (41)

It is now clear that both the static and dynamic components
of the plasmons g(x) and u(y,t) are strictly related to
the eigenvalues and eigenvectors of the velocity matrix μ̂.
In the following, we sort the eigenvalues vj from the highest
to the lowest.

Note that the plasmon velocities vj have a natural scale
vp ≡ σxy/(2πεS), where σxy = en0/B is the high magnetic
field conductivity in the Drude model [3]. This velocity
scale also agrees with the well-known classical Wiener-Hopf
calculation of the dispersion of the EMPs in Ref. [15].

Figure 3 shows how the plasmon velocities, normalized
over vp, change as a function of the distance d between the
top gate and the 2DEG normalized over the w, defined in
Eq. (30). When d/w increases, the plasmons become faster
and, in particular, the velocity of the fastest mode diverges
in the free-space limit, d → ∞, while the velocities of the
others saturate to a finite value, consistent with Ref. [7]. In the
approximations used, although the detailed structure of gj (x)
depends on the position of the top gate d and on the length scale
w, the j th plasmon mode has always j nodes, as expected.

We are now able to examine the motion in the y direction,
defined by Eq. (39), which is a linear partial differential
equation with a damping term and an external drive. For

195317-6



NONRECIPROCAL QUANTUM HALL DEVICES WITH . . . PHYSICAL REVIEW B 95, 195317 (2017)

simplicity, we assume that the electrode driving the excitation
extends in the x direction for a length scale much greater than
w, such that we can consider the applied voltage constant in
x, Ve(x,y,t) ≈ Ve(y,t). With this approximation, because of
the orthogonality of the Chebyshev polynomials, only the 0th
component of the voltage vector in Eq. (36) is nonzero, and
Eq. (39) becomes

∂uj (y,t)

∂t
+ ηuj (y,t) = vj

∂uj (y,t)

∂y
+ aj

∂Ve(y,t)

∂y
. (42)

Here, aj is a parameter defined by

aj ≡ −e2n0

mωc

M0j = −σxyM0j , (43)

that quantifies the coupling of the j th plasmon to the applied
potential.

Let us now focus on the simple yet meaningful case of an
external potential of the form

Ve(y,t) = V �(−y)�(t)eiω0t . (44)

Assuming equilibrium at t = 0, one obtains from Eq. (42),

uj (y,t) = V
aj

vj

eηy/vj eiω0(t+y/vj )[�(y) − �(y + vj t)]�(t).

(45)

At t � 0, plasmon waves are launched in the negative y

direction with different amplitudes aj/vj , velocities vj and
decay length vj/η, as shown in Fig. 4.

A few remarks are in order here. Although we are including
a phenomenological damping rate η, we are neglecting the
change in EMP velocity and distribution in the x direction due
to scattering. This approximation is justified, from standard
QH theory [3,13,18], when the Fermi energy is well between
two bulk LLs. In this case, the conducting states are localized at
the edges of the material and back scattering is suppressed (this
holds even in the presence of impurities in the material [37]).
How a magnetic field dependent scattering timescale τ modi-
fies the EMP velocity in the smooth edge case, was examined
with a semiclassical (hydrodynamic) model by JD [9]. When
the Fermi energy meets a bulk-LL, backscattering reduces the
EMP velocity, leading to downward cusps at the corresponding
magnetic fields. This might explain the frequency behavior of
the device in Ref. [6]. The latter effects seem, however, to be
appreciable for rather low scattering time, (ωcτ )min ≈ 1, and
we will neglect them here.

D. Sharp edges, 2DEG

We now examine the dynamics of the edge-magneto
plasmons supported by sharp edges of a 2DEG. As discussed
in Sec. II A, for confining potential varying with a length scale
w � lB , and assuming small thermal energy compared to the
cyclotron energy, kBT � h̄ωc, the electrons fill all the states
up to a Fermi momentum kn

F unique for each of the LLs.
In this case, Eqs. (20) and (22) reduce, respectively, to

ρ1(x,qy,ω) =
ν0−1∑
n=0

pn(qy,ω)|ψn(x)|2 (46)

FIG. 4. Motion of the uj (y,t) component of the EMP charge
under the effect of the drive Ve defined as the real part of Eq. (44).
All the quantities are conveniently normalized to be dimensionless.
In the plot, we are showing only the first two EMP modes. We used
d/w = 0.5 and η/ω0 = 0.1.

and

(ω + iη)pn(qy,ω) = −qy

e2

2πh̄
Vn(qy,ω)

+ qy

ν0−1∑
m=0

μnm(qy)pm(qy,ω), (47)

where, to simplify the notation, we made the Fermi momen-
tum dependence implicit, e.g., pn(qy,ω) ≡ pn(kn

F ,qy,ω). The
matrix element μnm has units velocity and it is defined by

μnm(qy) ≡ vq
nδnm + vc

nm(qy). (48)

This velocity matrix is equivalent to the one obtained in
Ref. [10] in the undriven case. It is worth remarking here that
the structure of the velocity matrix μ̂, involving a sum of an
electrostatic and a quantum contribution, is consistent with the
concept of quantum capacitance, discussed in Sec. II B.
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For a top gate geometry and in the same smooth variations
in y-coordinate approximation discussed in Sec. II C, the
electrostatic velocity matrix elements are independent of qy

and given by

vc
nm = vp

∫
R2

dxdx ′|ψn(x)|2|ψm(x ′)|2

× ln

(
1 +

(
2d

x − x ′

)2
)

, (49)

where the characteristic velocity scale vp ≡ cα/(2πε∗
S) de-

pends on the speed of light in vacuum c, the fine structure
constant α and the dimensionless medium permittivity ε∗

S . Note
that vp, if expressed in terms of the quantum Hall conductivity
σxy ≡ e2ν0/h [3], is very similar to the characteristic velocity
for smooth edges, in fact, vp ∝ σxy/(ν0εS).

Comparing Eqs. (37) and (47), one can easily verify that
the motion of the plasmons in y direction is governed in
both sharp and smooth edge case by a very similar system of
linear partial differential equations. Proceeding as before, we
introduce the unitary transformation M̂ that diagonalizes the
symmetric velocity matrix μ̂ and we assume that the external
potential is constant in x. The total excess charge in Eq. (46),
can then be rewritten in terms of plasmons

ρ1(x,y,t) =
ν0−1∑
j=0

gj (x)uj (y,t), (50)

where, here, gj is defined by

gj (x) ≡
ν0−1∑
i=0

Mij |ψi(x)|2, (51)

and uj (y,t) obeys the equation of motion (42), where vj

is identified as the j th eigenvalue of the velocity matrix in
Eq. (48) and

aj ≡ − e2

2πh̄

ν0−1∑
i=0

Mij = −σxy

1

ν0

ν0−1∑
i=0

Mij . (52)

It is now worth remarking on some differences between
smooth and sharp edges. First, sharp edges only support a finite
number ν0 of excitations, while smooth edges have an infinite
spectrum of modes. Moreover, although the spatial distribution
in the x direction changes significantly in the two cases, the
propagation in the y direction is defined by a system of partial
differential equations of the same structure. The velocities vj

and coupling aj are different for sharp and smooth edges,
although the characteristic scale of aj and of the electrostatic
velocities can be expressed in a similar way in terms of the
high-magnetic field Hall conductivity σxy , in its classical and
quantized form, respectively.

To estimate the EMP velocities, we find the band structure
and the eigenfunctions of the static Hamiltonian in the WKB
approximation described in Refs. [21,22]. We assume that the
edge terminates abruptly at x = 0, and neglect the mean-field
interaction potential Ui , and so the eigensystem is obtained by
imposing Dirichlet boundary conditions to Eq. (3). We also
account for an additional factor 2 in the EMP velocity due
to the spin-degeneracy. In fact, including the degenerate spin
degree of freedom, each element of the velocity matrix μnm

FIG. 5. Velocity of the three fastest EMPs supported by a sharp
edge in a 2DEG, sorted from (a) to (c) in decreasing order of
velocity. The plots show the dependence on the magnetic field
(in Tesla) and on the distance d of the top gate, in units l1 ≡
lB (B = 1T) ≈ 26 nm. For the plots, we used typical values of GaAs
parameters, ε∗

S = 8.7, m∗ = 0.063, and n0 = 1011 cm−2. The steps
as a function of B occur when the Fermi energy crosses the bulk
Landau levels: in these regions our model fails to account a finite
real part of diagonal component of the conductivity and it is not
applicable.
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FIG. 6. Velocity of the EMPs supported by sharp edge in a 2DEG,
as a function of magnetic field (in Tesla) for two different values of
d in units l1 ≡ lB (B = 1T) ≈ 26 nm. In (a), we used d/l1 = 1 and
in (b), we used d/l1 = 0.1. For the plots, we used typical values of
GaAs parameters, ε∗

S = 8.7, m∗ = 0.063, and n0 = 1011 cm−2. The
solid lines represent the EMP velocities, while dashed lines represent
the quantum contributions only. The quantum contributions are more
relevant in (b). Our model is not applicable where the Fermi energy
crosses bulk Landau levels, i.e., in the regions near the steep steps of
the fastest EMP velocity in (a).

transforms into a 2 × 2 matrix, with elements all equal to μnm.
Then, half of the eigenvalues of the new velocity matrix is zero
and the other half is twice the eigenvalues computed without
considering spin.

Figure 5 shows the velocity of the first three modes
as a function of magnetic field and distance to the top
gate. Consistent with the free-space calculations in [10], the
velocities increase with d and, while the velocity of the modes
with j � 1 saturates to a finite value in the free-space limit,
d → ∞, the velocity of the fastest mode diverges. When
d is comparable to lB , the quantum contributions have a
considerable impact on all the mode velocities; while, when
the top gate is moved away from the 2DEG, the electrostatic
contribution increases, in particular, in the fastest mode. In fact,
it shows steps at magnetic fields corresponding to integer filling
factor, where the matrix μ̂ changes size, as shown in Fig. 6.

The behavior in the x direction of the EMPs is easily found,
but we do not show it here. As in the smooth edge case,
the fastest mode is always the only monopole, while slower

modes have a richer structure, not necessarily involving only
j nodes, depending on the details of eigenfunctions of Ĥ0 and
the eigenvectors of μ̂.

Our model does not capture the modification in the plasmon
velocities and their x distribution due to scattering, which
are expected to occur when the Fermi energy crosses a
bulk-LL. Qualitatively, we expect an additional velocity term,
dependent on Re(σxx), as in [15], to become relevant at small
scattering timescale (ωCτ )min ≈ 1, but we do not investigate
this component further.

E. Sharp edges, graphene

In graphene, the magnetic field dependent Hamiltonian
ĤB , linearized in the vicinity of the Dirac points, takes the
form [38,39]

ĤB = h̄ωc

((
0 −â

†
1−â1 0

)
⊕

(
0 â2

â
†
2 0

))
, (53)

where ⊕ is the direct sum and ωc ≡ √
2vF /lB ≈

26 meV
√|B|/Tesla is the cyclotron frequency in graphene

(vF ≈ 106 m s−1 is the Fermi velocity). The creation and
annihilation operators labeled by σ = (1,2) act only on the
subspace of the valley near the σ th Dirac point; the 2 × 2
matrices act on the σ th two-dimensional spinor

ψσ ≡
(

φσ
a

φσ
b

)
, (54)

where a,b indicates the sublattice. Here, ψ is intended to be
a smooth envelope function in an effective-mass expansion
for the wave function [40], and it can approximate the crystal
wave function at length scales greater than the Bohr radius
aB ≈ 0.5 Å.

The eigenvalues of the Hamiltonian in Eq. (53) are doubly-
degenerate in the valley index σ and they are

εn = ±h̄ωc

√
n, (55)

with n ∈ N being the LL index. Again, we neglect the Zeeman
splitting correction [38], and consider spin fully degenerate,
leading to a additional factor 2 in the EMP velocity as discussed
in Sec. II D.

Working again in the Landau gauge, the eigenvalues in
Eq. (55) are infinitely degenerate in the momentum quantum
number ky . The termination of the honeycomb lattice breaks
the translational invariance in the x direction and therefore the
degeneracy in ky is lifted. The boundary conditions for low-
energy excitations in graphene have been intensively studied
with [41–45] and without applied magnetic field [45–47].
In particular, there are two fundamental classes of boundary
conditions, zigzag, and armchair. Zigzag edges do not admix
the valleys and the two Dirac cones can be treated separately,
while armchair edges require combinations of two valleys and
the valley degeneracy is lifted.

In the following, we focus only on former case, which is
statistically more likely to occur [46], and we compute the
band structure and the envelope functions ψ with the WKB
approach proposed in [43]. A comparison between exact [44]
and WKB band structure for a monolayer graphene with zigzag
edges is shown in Fig. 7.
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FIG. 7. Landau levels of monolayer graphene terminated by a
zigzag edge. Here, σ is the valley (pseudospin) index. The energy
levels are computed within the WKB approximation (solid line), and
exactly (dashed lines). Static interactions have been neglected.

Since the edges of graphene are terminated on the scale of
the Bohr radius w ≈ aB , the sharp edge model applies well,
and the validity of this approach was experimentally validated
(without a top-gate) in Refs. [31,48,49].

As the valleys are not mixed, the EMPs equations (46)
and (47) are modified simply by including an additional valley
index σ . We then perform the substitutions n → (n,σ ) and
m → (m,σ ′) and use the two-dimensional envelope function
in Eq. (54). The dimension of the matrix μ̂ in Eq. (48) in
graphene becomes then 2ν0 − 1 instead of ν0 (the graphene
filling factor ν0 is defined as the highest occupied bulk LL).
Note that the presence of the dispersionless edge states at zero
energy, a typical feature of the zigzag termination, does not
influence the plasmon velocity in the region of applicability of
our model.

Figure 8 shows the velocities of fastest EMP modes as a
function of the Fermi energy εF (in units of the cyclotron
energy h̄ωc) and the distance of the top electrode d (in units of
the magnetic length lB). The plasmons become faster when the
metal electrode is far away from the graphene sheet, consistent
with the expected logarithmic divergence in wave vector in
the free-space limit. Moreover, the first mode is strongly
influenced by Fermi energy variation and it shows the steplike
behavior due to the QH plateaus. However, as discussed for
2DEGs, our model is not applicable in the vicinity of these
steps as there the diagonal components of the conductivity
assume a finite value and an additional velocity term should
be accounted for.

Note that due to the
√

n dependence of the LL spacing
typical in a Dirac-like material in a magnetic field, the LLs
are more dense at high εF and the plateaus become shorter. To
examine in more detail the εF dependence and investigate the
effect of the quantum velocities, we show in Fig. 9 the mode
velocities for two different d values. As for the 2DEG, quantum
velocities play a fundamental role as the modes become slower;
the fastest mode is dominated by the electrostatic contributions
for d/lB � 1 and εF /(h̄ωc) � 1.

F. Comparison with VD model

A phenomenological approach to model QH devices is pro-
posed by Viola and DiVincenzo (VD) [2]. It is useful to work
out explicitly the connection between our model and VD’s. VD

FIG. 8. Velocity of the three fastest EMPs supported by a zigzag
edge of monolayer graphene, sorted from (a) to (c) in decreasing order
of velocity. The plots show the dependence on the Fermi energy in
units of the cyclotron energy εF /(h̄ωc) and on the distance of the
electrode in units of the magnetic length d/lB . For the plot, we used
the typical value of the dielectric constant of silicon dioxide ε∗

S = 3.9.
When the Fermi energy crosses the bulk Landau levels, the fastest
plasmon velocity has a step: in these regions our model fails to account
for a finite real part of the diagonal component of the conductivity
and it is not applicable.

195317-10



NONRECIPROCAL QUANTUM HALL DEVICES WITH . . . PHYSICAL REVIEW B 95, 195317 (2017)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10

F/( c)

v
j
(
m

/s
)

d/lB=1

j=0

j=1

j=2

j=3

j=4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10

F/( c)

v
j
(
m

/s
)

d/lB=0.1

j=0

j=1

j=2

j=3

j=4

(a)

(b)

FIG. 9. Velocity of the EMPs supported supported by a zigzag
edge of monolayer graphene, as a function of the Fermi energy (in
units of the cyclotron energy) εF /(h̄ωc) for two different values of
d/lB . In (a), we used d/lB = 1 and in (b), we used d/lB = 0.1. For
the plots, we used the typical value of the dielectric constant of silicon
dioxide ε∗

S = 3.9. The solid lines represent the EMP velocities, while
dashed lines represent the quantum contributions only. Our model is
not applicable where the Fermi energy crosses bulk Landau levels,
i.e., in the regions in the vicinity of the steep steps of the fastest
plasmon velocity in (a).

considered a 1-dimensional line of charge ρ(y,t) propagating
at the boundary of the two-dimensional material satisfying the
capacitance and the Hall-effect current-voltage relations:

ρ = c(Ve − V ), (56a)

∂ρ

∂t
= −σxx

∂V

∂x
− σxy

∂V

∂y
. (56b)

Here, c is a phenomenological capacitance (per unit length)
function describing the coupling with the electrodes. In the VD
model, the electric potential V in the two-dimensional material
obeys the Laplace equation [50]

∇2V = 0, (57)

with boundary conditions obtained from Eq. (56).
In the QH regime, i.e., σxx → 0, the line charge obeys the

linear partial differential equation

∂ρ(y,t)

∂t
= σxy

c

∂ρ(y,t)

∂y
− σxy

∂Ve(y,t)

∂y
. (58)

Comparing Eqs. (42) and (58) and identifying σxy/c with the
velocity of the fastest plasmon v0, we can notice that the VD
model neglects all the slow modes and the details of the spatial
distribution of the EMP in the interior of the material. This
approach can be justified when v0 is much greater than all the
other velocities, such that slower modes are less coupled to the
electrode and strongly damped compared to the fastest, which
dominates the response of the device.

Note also that since v0 includes both electrostatic and
quantum contributions in our model, we can now quantita-
tively define the effect of the quantum capacitance. From
Sec. II D, the quantum capacitance plays an important role
for sharp edges, especially when the top gate is very near the
two-dimensional material. In this case, the inverse effective
capacitance is obtained by diagonalizing the matrix μ̂, defined
for 2DEGs in Eq. (48); it reduces simply to the sum of
a quantum and a geometric inverse capacitance only when
ν0 = 1.

III. APPLICATION: THREE-TERMINAL GYRATOR

We now use the EMP model described in the Sec. II to
compute the response of a QH bar of perimeter Ly capacitively
coupled to N electrodes. For simplicity, we only consider
devices with a smooth-shaped boundary, whose local radius
of curvature is much greater than max(lB,w). In this case, the
EMP equations obtained for the straight line geometry still
hold, and y parametrizes the position on the boundary of the
device. This is consistent with the applied periodic boundary
conditions to the wave functions. Note that, in graphene, we
are neglecting the valley mixing phenomenon that inevitably
occurs in closed devices.

At first, we neglect damping and set η = 0. We assume
that the coupling between each of the electrodes and the Hall
bar is constant in space or, in other words, that the velocity
of EMP stays constant around the perimeter of the device.
This approximation holds when the gap between different
electrodes is much shorter than the wavelength of the plasmon.

To model a device, we then consider an external drive

Ve(x,y,t) =
N∑

n=1

Vn(t)(�(y − yn) − �(y − yn − Ln)), (59)

where Vn(t) is the time-dependent drive applied at the
nth electrode, and yn and Ln define respectively its initial
coordinate and its length. Again, we assumed that the top
electrode extends inside the material far further than the EMP,
and so the external drive can be considered constant in x (the
direction normal to the boundary).

The current flowing in the external electrodes depends on
the discontinuity of normal derivative of the displacement field
at position z = d, and it is related to the EMP charge ρ1 by

In(t) = εS

∫
Sn

dr

∫
R2

dr ′ ∂

∂z
G(r,r ′,z → d)

∂ρ1(r ′,t)
∂t

. (60)

Here, Sn is the surface of the nth electrode, and G is the
electrostatic Green’s function of the three-dimensional Poisson
operator. Note that G should account for the geometry of
the device, and in particular for the physical gap between
electrodes. For simplicity, we neglect these gaps in computing
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FIG. 10. Three-terminal gyrator. Three electrodes of length Ln

are capacitively coupled to a Hall bar of perimeter Ly , whose
boundary is parametrized by y. The starting position of the electrodes
in the y direction is labeled by yn and they are separated by gaps of
length l with the nearest ones. These gaps are assumed to be equal
and small compared to Ln. The device behaves as a two-port gyrator
when the voltage of two electrodes is measured with respect to the
last one, which acts as a common ground. The convention of currents
and voltages is shown in the plot.

G, and we use the Green’s function shown in Eq. (B2). This
choice is consistent with considering the velocity of the EMP
constant along the perimeter and it has the same limits of
applicability.

We now focus on the symmetric three-terminal QH gyrator
shown in Fig. 10. In the VD model, this device is predicted to
be a perfect gyrator at frequency

ωn = πσxy

cL3
(2n + 1), n ∈ N, (61)

and to have a very low impedance when L3 = 2L1 [4].
Working in the frequency domain t → ω, the current In

flowing in the external nth electrode can be written in the
matrix form

In(ω) =
3∑

m=1

Ynm(ω)Vm(ω). (62)

The admittance matrix elements are derived in Appendix E
and they are given by

Ynn(ω) = 2i
∑

j

qj csc

(
ωLy

2vj

)

×
(

cos

(
ω(Ly − 2Ln)

2vj

)
− cos

(
ωLy

2vj

))
,

(63a)

Ynm(ω) =
∑

j

qjf
nm
j (ω)eiωLy/vj , n < m, (63b)

Ynm(ω) =
∑

j

qjf
nm
j (ω), n > m, (63c)

with

f nm
j (ω) =

(
1 + i cot

(
ωLy

2vj

))
eiω(yn−ym−Lm)/vj

× (1 − eiωLn/vj )(1 − eiωLm/vj ), (64)

and

qj = −σxy

2

{
M2

0j for smooth edges,
(
∑

i Mij )2/ν0 for sharp edges.
(65)

For smooth and sharp edges, the transformation M̂ diagonal-
izes the velocity matrix μ̂, defined respectively by Eqs. (34)
and (48), and the off-diagonal conductivity σxy is intended to
be respectively the classical and quantum HE conductivity.

From Eq. (63), it appears that the total admittance of
the device is obtained by summing all the contributions of
the single EMPs; this implies that an incoming signal can
propagate through a set of parallel chiral paths, each of which
is associated to a different plasmon mode.

Note that the column elements of the admittance matrix
do not sum to zero, and this leads to a violation of the
Kirchhoff’s current law. This violation can be traced back
to the approximation on the electrostatic Green’s function G:
by neglecting the changes in G due to the gaps l between the
electrodes, additional (unphysical) currents can flow there. If
the gaps are much shorter than the terminals, l � Ln, these
currents are small, but they should be accounted for to recover
current conservation.

One can circumvent this problem in the analysis of the
port response of the device by conveniently choosing an AC
reference potential. In fact, Eq. (42) is invariant under the
transformation Ve(y,t) → Ve(y,t) + Vb(t), and so we set the
potential Vb(t) to be a linear function of the applied voltages
Vn(t) such that the unwanted currents sum to zero. Then,
defining the port voltages and currents

Vp1 = V1 − V3, Ip1 = I1, (66a)

Vp2 = V2 − V3, Ip2 = I2, (66b)

we find the 2 × 2 port admittance matrix Yp and, using the
standard relation [1]

S = −
(

Yp + 1

Z0
I
)−1(

Yp − 1

Z0
I
)

, (67)

we evaluate the S parameters of the device. Here, Z0 is the
characteristic impedance of the external circuit, typically 50�,
and I is the identity matrix.

To quantify the gyrating properties of the device, we
introduce the parameter [2,4]

� ≡ 1
2 |S21 − S12| � 1, (68)

where the equality is attained only for a perfect gyrator, with
the S matrix given in Eq. (1).

Let us first assume that only the fastest plasmon is excited
and it is not damped and define, in analogy with Ref. [4], the
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FIG. 11. Single mode response. We plot the dependence of the
� parameter, defined in Eq. (68), on the dimensionless frequency
�, defined in Eq. (69a). We normalize � over the first gyration
frequency �0 = πL1/L3 and consider different values of the gap l

between electrodes. For the plot, we used α = 0.2 and L3/L1 = 2.

dimensionless frequency and impedance mismatch

� ≡ ωL1

v0
, (69a)

α ≡ −4q0Z0. (69b)

We can now compare our results with the one obtained with
the VD model, after identifying c = σxy/v0. In Fig. 11, we
show how � varies with the dimensionless frequency, normal-
ized over the first gyration frequency �0 = πL1/L3 in the case
L3 = 2L1. Our model, in the one mode approximation, exactly
coincides with VD when there is no gap between electrodes.
This is expected as in the VD model, in the QH regime,
the charge is transmitted instantaneously between different
electrodes, as its velocity in the gaps is ∝1/c → ∞; hence
the gaps do not play any role [2]. In our model, however, the
charge propagates along the perimeter at constant velocity,
and thus finite gaps change the response, both shifting the
gyration frequency and adding new features in �. Note that as
α decreases, the band of good gyration becomes narrower [4].
For this reason, to make the additional features of our model
more visible, we use in all the plots a rather high value of
α = 0.2, i.e., Z0 � 50�, which would require an external
impedance matching circuit.

We now investigate the effect of the slower modes. In
Fig. 12, we show how � is affected by accounting for
additional EMP modes in different situations. The slower
modes add some resonant peaks in the response, whose
position and broadening (in frequency) strongly depends on
the ratio vj/v0 and qj/q0. Note that all these sharp features go
very close to the extremal values (0 or 1), but the resolution
of the plot is not high enough to capture this behavior for the
narrowest ones.

In particular, when the gaps are very close to each others,
l → 0, one can easily distinguish two classes of resonance
features caused by the j th mode. The first class includes all the
asymmetric peaks that reach the limiting value � = 1 and they
are centered at the normalized frequencies �a

j = πvj/v0(n +
1/2), with n ∈ N. The second class includes the remaining

(a)

(b)

(c)

FIG. 12. Response including multiple modes. We plot the depen-
dence of �, defined in Eq. (68), on the dimensionless frequency �,
defined in Eq. (69a). We normalize � over the first gyration frequency
�0 = πL1/L3 and we include up to three modes in the response. For
the plot, we used α = 0.2, L3/L1 = 2 and l/L1 = 0.05. In (a) and
(b), we consider the EMPs in a 2DEG with sharp edges (with the
same parameters used in Fig. 5), at B = 0.5 T and with d/l1 = 1 and
d/l1 = 0.1 respectively. In (c), we consider the EMPs in a 2DEG
with smooth edges, with d/w = 0.1. All the resonant structures go
up to a value very close to 1 (or to 0), but the plots do not have enough
resolution to show this behavior.

downward peaks, that are centered at the frequencies �j =
2�a

j .
The structure of the additional resonances very much

resembles a Fano line shape [51]: electromagnetic waves with
different resonant frequencies are known to interfere, leading
to asymmetric peaks. In our case, the sharp resonances (due to
the slow plasmonic modes) are superimposed upon a smoothly
varying background (due to the fastest mode) in a way that
seems qualitatively to agree with the Fano-resonance model
developed for photonic crystals in [52].

Comparing Figs. 12(a) and 12(b), one sees that when the
fastest mode is strongly dominant, e.g., when the top gate
is far from the 2DEG, the peaks are narrower and closer in
frequency. In graphene, we can observe the same behavior,
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but we do not report it here. For smooth edges, the different
definition of qj leads to some differences in the response, in
particular, one can can observe that the peaks are closer to each
other, but broader.

Let us now include a phenomenological damping rate η:
Eq. (63) then is simply modified by the substitution ω →
ω + iη. As the EMP modes decay with a lengthscale vj/η, the
peaks corresponding to the slower modes will be more affected
by damping and they will be more difficult to observe. We
introduce the parameter �η ≡ ηLy/v0, which characterizes
the inverse of the number of laps around the device that the
fastest EMP can perform before it is damped. In Fig. 13, we
show how three responses are affected by the damping in
the same situations as in Fig. 12. As expected, the damping
decreases the resonance peak heights, especially the ones due
to slower EMPs.

The fact that the fastest mode dominates the response even
for reasonably small damping can be useful in actual devices,
where additional modes can cause distortion in the signal.

IV. CONCLUSIONS AND OUTLOOK

Driven by the recent research in the field of nonreciprocal
devices exploiting the QH effect, we develop here a micro-
scopic theory, based on linear response theory and RPA, to
describe their response.

The device model is based on an analysis of driven, chirally
propagating EMPs supported by smooth and sharp edges.
Although the model offers several new insight into the device
response, it still lacks a quantitative analysis of dissipation,
which is now accounted for only through a phenomenological
timescale. An exhaustive treatment of the EMP decay is
essential to better characterize and engineer QH devices;
to this aim, good starting points would be the qualitative
discussions on the possible loss mechanisms in Ref. [10] and
the hydrodynamic analysis in Refs. [7,9].

Moreover, the chirality of the charge carriers is one of
the main ingredients required to have nonreciprocal devices
and chiral motion can be achieved in several different ways,
through different physical mechanisms. In the present work,
we focused only on the quantum Hall effect, but we believe a
similar device model can be developed also for other kinds of
material, e.g., topological insulators or conductors with finite
Berry flux (anomalous Hall effect) [14]. Further quantitative
studies in these situations are now required to determine the
most efficient way to achieve nonreciprocity and to offer
convenient alternatives for constructing new low-temperature
quantum technologies.
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APPENDIX A: SHARP EDGES, STATIC EIGENSYSTEM

Here, we solve the static, noninteracting Schrödinger’s
equation for 2DEGs terminated by a sharp edge in position

(a)

(b)

(c)

FIG. 13. Effect of a damping rate. We plot the dependence of
�, defined in Eq. (68), on the dimensionless frequency �, defined in
Eq. (69a). We normalize � the first gyration frequency �0 = πL1/L3

and use different damping rates �η ≡ ηLy/v0. Here, the plots are
obtained in the same way as the ones in Fig. 12, and we zoomed in a
narrower frequency range. In (a) and (b), we consider the EMPs in a
2DEG with sharp edges (with the same parameters used in Fig. 5), at
B = 0.5 T and with d/l1 = 1 and d/l1 = 0.1 respectively. In (c), we
consider the EMPs in a 2DEG with smooth edges, with d/w = 0.1.
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x = 0. In the Landau gauge and exploiting the translational
invariance in the y direction, the ladder operators in Eq. (4)
reduce to

â† = 1√
2

(
−lB

∂

∂x
+ x

lB
+ kylB

)
, (A1a)

â = 1√
2

(
lB

∂

∂x
+ x

lB
+ kylB

)
. (A1b)

The 2DEG Hamiltonian in Eq. (3) then becomes

ĤB

h̄ωc

= − l2
B

2

∂2

∂x2
+ 1

2

(
x

lB
+ kylB

)2

, (A2)

and the Schrödinger’s equation has a general set of normaliz-
able solutions for x � 0

ψ(x) = Ce−(x/lB+ky lB )2/2Hε/(h̄ωc)−1/2(x/lB + kylB). (A3)

Here, Hα(z) is the Hermite function, ε/(h̄ωc) − 1/2 is a real
and positive number and C is the normalization constant.
The boundary condition of vanishing wave function at x = 0,
implies the dispersion relation

Hε/(h̄ωc)−1/2(kylB) = 0. (A4)

For an analytic approximation of the zeros of the Hermite
functions, see Ref. [53]. Note that in the limit kylB � −1,
one, as expected, obtains the Landau levels in Eq. (6), and the
corresponding shifted harmonic oscillators eigenfunctions in
Eq. (8).

The Hamiltonian for a monolayer graphene, Eq. (53), can
be diagonalized in a similar way, but carefully accounting for
the additional degrees of freedom. For rather general smooth
boundaries, the problem was solved analytically in terms of
Hermite functions in [41,44].

APPENDIX B: ELECTROSTATIC GREEN’S FUNCTION

Consider a voltage Ve(r,t) applied to a top-gate at distance
d with respect to a two-dimensional material, with a charge
density ρ(r,t). Here, r ≡ (x,y)T . Neglecting retardation, the
problem is purely electrostatic and it can be solved by
introducing the electrostatic Green’s function and inverting the
Poisson equation. In the region between the two-dimensional
material and the electrode, the potential is

φ(r,z,t) = −
∫
R2

dr ′G(r,r ′,z)ρ(r ′,t)

+
∫
R2

dr ′Gf (r,r ′,z)Ve(r ′,t), (B1)

with

G = 1

4πεS

(
1√

(x − x ′)2 + (y − y ′)2 + z2

− 1√
(x − x ′)2 + (y − y ′)2 + (z − 2d)2

)
(B2)

and

Gf (r,r ′,z) = 1

4π2

∫
R2

dqe−iq.r eq(z−d). (B3)

Here, q ≡ (qx,qy)T , q ≡
√

q2
x + q2

y , and Gf is determined

by the two-dimensional inverse Fourier transform of an
exponential.

G in the first term on the right-hand side of Eq. (B1)
represents the Green’s function of a system with a grounded
electrode, described by an image charge in position z =
2d [54]; the second term fixes the potential of the electrode to
Ve(r,t), also including fringing fields.

Focusing on the potential on the plane of the two-
dimensional electron gas, z = 0, one can evaluate Eq. (B3) by
performing an Hankel transform [55], leading to, for d �= 0,

Gf (r,r ′,0) = 1

2π

d

((x − x ′)2 + (y − y ′)2 + d2)3/2 . (B4)

For example, for an applied potential of the form Ve =
�(−y)V (t), the second term in the right-hand side of Eq. (B1)
becomes∫

R2
dr ′Gf (r,r ′,0)Ve(r ′,t) = V (t)

(
1

2
− 1

π
tan−1 y

d

)
. (B5)

If d is sufficiently small (compared to the length of the
electrodes and of the gaps between them), the fringing fields
can be neglected and we approximate∫

R2
dr ′Gf (r,r ′,0)Ve(r ′,t) ≈ Ve(r,t). (B6)

APPENDIX C: GENERAL EQUATION OF MOTION

Here, we derive Eq. (22). First, we consider that for
small energy excitation, ω/ωc � 1, with small momentum
transfer, qymax(lB,w) � 1, and at low enough temperature,
kBT /(h̄ωc) � 1, one can neglect mixing of LLs with different
quantum number. Using Eqs. (16), (17), and (19), and Fourier
transforming the y coordinate, y → qy , we get

ρ1 = e

Ly

∑
n,ky ,k′

y

fF

(
εnk′

y

) − fF

(
εnky

)
εnk′

y
− εnky

+ h̄(ω + iη)

×Unk′
yky

(ω)ψ∗
nk′

y
(x)ψnky

(x)δ(ky + qy − k′
y). (C1)

We now take the thermodynamic limit, Ly → ∞ and
promote the continuous momentum quantum numbers to
arguments of the functions. The two summations over the
momentum become two integrals re-scaled by a factor
Ly/(2π ) each. We assume the excitations to be smooth in the
y-direction, qymax(lB,w) � 1, and we linearize in qy , leading
to

ρ1 = eLy

4π2h̄

∑
n

∫
R

dky

∂fF (εn(ky ))
∂ky

qy

∂εn(ky )
h̄∂ky

qy + ω + iη

×Un(ky,qy,ω)|ψn(x,ky)|2, (C2)

where Un(ky,qy,ω) is given from Eqs. (18) and (19), and in
these limits reduces to

Un(ky,qy,ω) = 2π

Ly

∫
R

dx ′U (x ′,qy,ω)|ψn(x ′,ky)|2. (C3)

Note that the Ly factors in Eqs. (C2) and (C3) cancel out.
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Introducing the quantity p and the quantum velocities vq ,
defined in (20) and (24) respectively, we get from Eq. (C2)

pn(ky,qy,ω) = eLy

4π2h̄

qyUn(ky,qy,ω)

v
q
n (ky)qy + ω + iη

. (C4)

Finally, to get the self-consistent equation of motion (22)
for p, we combine the explicit form of the screened potential,
in Eqs. (11) and (12), with Eqs. (20), (C3), and (C4), and
we introduce the external potential matrix elements and the
electrostatic velocity, defined by (21) and (25), respectively.

APPENDIX D: SMOOTH EDGE LIMIT

Here, we derive the equation of motion (26) in the limit of
smooth edges. We neglect the quantum velocities and all the
details at length scales lB , and we approximate

|ψn(x,ky)|2 ≈ δ(x − X), (D1)

where X ≡ −kyl
2
B is intended to be the center of mass of the

electron’s wave functions.

With these assumptions, the potential matrix elements Vn

and Un, the rescaled charge pn and the electrostatic velocities
vc

nm become independent of the LL quantum numbers and
Eqs. (21), (C3), (C4), and (25) reduce to, respectively,

Vn(ky,qy,ω) ≈ Ve(X,qy,ω), (D2a)

Un(ky,qy,ω) ≈ 2π

Ly

U (X,qy,ω), (D2b)

pn(ky,qy,ω) ≈ p(X,qy,ω) = eqy

2πh̄

U (X,qy,ω)

ω + iη
,

(D2c)

vc
nm(ky,k

′
y,qy) ≈ e2

h̄
G0(X,X′,qy). (D2d)

Substituting Eqs. (D2a), (D2c), and (D2d) into Eq. (22),
one gets

(ω + iη)p(X,qy,ω) = −e2qy

2πh̄
Ve(X,qy,ω) + e2qy

h̄

∫
R

dX′G0(X,X′,qy)p(X′,qy,ω)
∑
m

∂fF (εm(X′))
∂X′ . (D3)

To proceed further and connect to the classical result, we
need to introduce the static charge density. In our model, it is
given by

ρ0(x) = 1

2πl2
B

∑
n

∫
R

dXfF (εn(X))|ψn(x,X)|2

≈ 1

2πl2
B

∑
n

fF (εn(x)),
(D4)

where the prefactor 1/(2πl2
B) coincides with the standard

density of states of a LL [3], and the summation of the
probabilities corresponds to the local filling factor ν(x),
ranging from zero to the bulk filling factor ν0. Note that
ν(x) can have the form described in Ref. [27] because of the
quasidegeneracy in momentum ky at the Fermi energy.

Combining Eqs. (20), (D2c), and (D4), the linearized charge
density can be expressed as

ρ1(x,qy,ω) = 2πl2
Bp(x,qy,ω)

∂ρ0(x)

∂x
. (D5)

Identifying now the position X of the center of mass of
the infinitely narrow wave functions with the x coordinate,
substituting Eq. (D5) into Eq. (D3), and using the definition of
magnetic length lB ≡ √

h̄/(e|B|) and of cyclotron frequency
ωc ≡ eB/m, we obtain Eq. (26).

APPENDIX E: ADMITTANCE

Here, we derive the admittance matrix for the three-terminal
QH gyrator in Eq. (63). When the gaps between electrodes are
small compared to their length, one can neglect the change of
Green’s function in these region and use the Green’s function in
Eq. (B2). Also, we assume that the electrodes are rectangular
and they completely cover the plasmon charge distribution

in the x direction (normal to the boundary). This allows the
decomposition of the surface integral in Eq. (60) into

∫
Sn

dr ≈
∫
R

dx

∫ yn+Ln

yn

dy. (E1)

Combining Eqs. (40), (42), (60), and (B2), one gets, after
some straightforward algebra,

In(t) =
∑

j

∫
R2

dx ′dy ′gj (x ′)(vjuj (y ′,t) + ajVe(y ′,t))

× (L2d (y ′ − yn) − L2d (y ′ − yn − Ln)), (E2)

with Lγ being a normalized Lorentzian distribution with
standard deviation γ . We have neglected the damping rate η

here: it can be easily incorporated at the end of the calculations
by the substitution ω → ω + iη.

To proceed further, we impose the condition 2d/Ln � 1,
such that the two Lorentzian functions are spatially separated,
and we approximate them with Dirac deltas. This approxi-
mation is the same as the one used in Eq. (B6), where we
neglect the fringing fields at the termination of electrodes. In
this approximation, using an external driving voltage of the
form given in Eq. (59), the term proportional to Ve in Eq. (E2)
vanishes and the current is proportional to the difference of the
excess charge at position yn and yn + Ln.

Fourier transforming in time, t → ω, and using Eq. (59),
the solution of the motion equation (42) of the EMP charge
that satisfies periodic boundary conditions in the y direction is

uj (y,ω) =
N∑

m=1

aj

2vj

υm
j (y,ω)Vm(ω), (E3)
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with

υm
j (y,ω) = −

(
1 + i cot

(
ωLy

2vj

))

× (�(y − ym)eiω(y−ym)/vj

−�(y − ym − Lm)eiω(y−ym−Lm)/vj

+�(ym − y)eiω(y+Ly−ym)/vj

−�(ym + Lm − y)eiω(y+Ly−ym−Lm)/vj ). (E4)

Combining Eqs. (E2) and (E4) in the Dirac delta approxi-
mation, and introducing

qj = aj

2

∫
R

dx ′gj (x ′), (E5)

we can decompose the current flowing in each electrode of a
N -terminal device as

In =
N∑

m=1

Ynm(ω)Vm(ω), (E6)

with general admittance matrix element

Ynm(ω) =
∑

j

qj

(
υm

j (yn,ω) − υm
j (yn + Ln,ω)

)
. (E7)

Explicitly calculating qj for smooth and sharp edges and
simplifying Eqs. (E6) and (E7) for the three-terminal device
in Fig. 10, we obtain Eq. (63).
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