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Spin blockade in hole quantum dots: Tuning exchange electrically and probing Zeeman interactions
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Spin-orbit coupling is key to all-electrical control of quantum-dot spin qubits, and is often much stronger for
holes than for electrons. The recent development of high-quality hole nanostructures has generated considerable
interest in hole-spin qubit architectures [C. Kloeffel and D. Loss, Annu. Rev. Condens. Matter Phys. 4, 51 (2013)].
Yet hole-spin quantum computing hinges on the ability to discriminate between competing Zeeman terms and on
the understanding of the complex interplay between the Zeeman and spin-orbit interactions, which are probed
via Pauli spin blockade. Here we investigate spin blockade for two heavy holes in a gated double quantum dot
in an in-plane magnetic field B. We find that the leakage period as a function of the field orientation is critically
dependent on the relative magnitude of Zeeman interaction terms linear and cubic in B, exhibiting a beat pattern
when the two are comparable in magnitude, and providing an effective way to discriminate between the two.
Moreover, in certain materials the singlet-triplet exchange splitting is highly tunable by an appropriate choice of
field direction, yielding a straightforward control variable for quantum information processing. These findings
should stimulate new experiments on hole qubits.
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I. INTRODUCTION

Spin-based quantum computing platforms relying on hole
quantum dots (QDs) have recently attracted considerable
attention [1–15]. They allow long spin coherence times and
fast electrically driven spin resonance thanks to the strong
hole spin-orbit coupling (SOC) [16–25]. Moreover, owing to
their effective spin J = 3

2 , spin dynamics in hole systems often
exhibits physics absent in electron systems [26–31]. The exper-
imental realization of high-quality low-dimensional hole sys-
tems has not only opened the door to hole-qubit architectures
[32–35], but also advanced the studies of such exotic topics as
Majorana fermions [36–38] and artificial graphene [39–41].

Probing the SOC is necessary to achieve fast, low-power
single-qubit operations, while probing the hole-hole interac-
tion is important for scaling up quantum computing platforms.
Pauli spin blockade (PSB) [42] has been an effective probe for
both of these in electron systems [43–45] as well as a mech-
anism for spin-qubit readout [46,47]. Yet in low-dimensional
hole systems the complexity and strong anisotropy of the
Zeeman interaction causes significant difficulties [48]. The
linear Zeeman coupling to an in-plane magnetic field B

vanishes to a first approximation [27]. In practice it is
nonvanishing but typically small, and is strongly affected
by SOC [5,9,13,49–54]. An additional Zeeman interaction
exists cubic in B [48,55]. The relative strength of these two
is not known a priori for individual structures [13,54–59].
The development of hole-spin quantum computing requires a
general understanding of the effect of the Zeeman interaction
on PSB and a practical method to discriminate between linear
and cubic Zeeman terms.

Here we investigate PSB in a gate-defined hole double QD
in an in-plane magnetic field. We show that the PSB is periodic
in the angle characterizing the field orientation and its periodic-
ity depends strongly on the dominant Zeeman interaction. The
PSB can thus serve as a probe of the form and magnitude of
the in-plane Zeeman coupling (see Fig. 1). Furthermore, when
the SOC is strong, the exchange splitting, a crucial component

of all spin-qubit architectures [60–65], depends sensitively on
the magnetic field orientation [see Fig. 2(a)]. We expect these
important findings to stimulate and aid the interpretation of
state-of-the-art experiments on hole qubits.

In this article we introduce the model Hamiltonian and the
effective Hamiltonian for heavy-hole PSB in Sec. II, where
the SO-induced tunneling field direction and the exchange
splitting are also discussed. In Sec. III we solve the SO-
induced leakage current based on the effective Hamiltonian,
and present our results in terms of relevant experimental
parameters. Section IV discusses experimental applicability
and the limitation of our current model. In Sec. V we conclude
this work and leave further details in the Appendix.

II. THEORETICAL FRAMEWORK

The J = 3
2 spin, comprising a heavy hole (HH, | 3

2 , ± 3
2 〉)

and a light hole (LH, | 3
2 , ± 1

2 〉), has a fourfold degeneracy at
the band edge k = 0. In two-dimensional (2D) hole systems,
confinement in the growth direction lifts this degeneracy and
cause a splitting between the HH and LH, which is often
the largest energy scale (>10 meV in GaAs inversion layers),
whereupon the lowest energy (HH) subband may be described
by a pseudospin, a picture we adopt in this work.

We consider a gated HH double dot grown along ẑ ‖ [001]
and positioned at (xj ,yj ) = (∓d,0), where j = L,R label the
left and right dot, respectively. An in-plane magnetic field
B = B(cos θ, sin θ ) is applied, with θ defined from x̂. The
strong SOC is expected to lift the PSB [7,9,12,13], due to the
suppressed contact hyperfine interaction [19,21]. We describe
the PSB by deriving an effective SO tunneling Hamiltonian
between (1,1) and (0,2), with (NL,NR) being the charge state
of the L and R dots.

The Hamiltonian is Ĥ = ∑
j=L,R Ĥ

(j )
d + Ĥ

(j )
Z + Ĥ

(j )
SO .

Ĥ
(j )
d = (pj −eA)2

2m∗ + m∗
2 [ω2

x(x − xj )2 + ω2
yy

2] contains the ki-
netic energy and parabolic confinement, with m∗ the effective
HH mass, pj the canonical momentum, A = zB(sin θ,− cos θ )
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FIG. 1. Contributions to the Zeeman energy of a GaAs hole
double QD when B ‖ x̂, as a function of the dot radius R0: the bulk
Zeeman term, and the indirect B-linear and B3 couplings. We have
included the first ẑ subband with the HH-LH splitting 10 meV. Inset:
The contributions for R0 = 80 nm, with varying B.

the gauge potential, and h̄ωx/y the confinement energy quan-
tum. The j dot orbitals are the normalized wave functions of
the two harmonic oscillators |nx,n

(j )
y 〉 along x̂ and ŷ, with nx

and ny the respective quantum numbers. The radii R0,x/y ≡
[h̄/(m∗ωx/y)]1/2, and for a circular QD, R0,x = R0,y = R0.

The Zeeman Hamiltonian Ĥ
(j )
Z includes both B-linear and

B3 terms [66]:

Ĥ
(j )
Z = −3

2
qμBB(eiθσj+ + e−iθ σj−)

−μBB
f

h̄2

(
e−iθ σj+p2

j− + eiθσj−p2
j+

)

+ (μBB)3F (e−3iθ σj+ + e3iθ σj−), (1)

with σ j the Pauli matrices of the j pseudospin, σj± ≡
1
2 (σjx ± iσjy), and pj± is the raising (lowering) operators in
the momentum. The first term in Eq. (1) is the zeroth-order
bulk Zeeman splitting between the mJ = ± 3

2 states, with the
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FIG. 2. In a GaAs double QD where EZ ∝ B, R0 = 30 nm and
t0 = 200 μeV. (a) Jex(ε = 0)/t0 as a function of θ based on Eq. (5), for
various values of tR/t0. (b) I (θ ) at B = 1 T. The tR = 0.5 and tR = t0
curves are overlapping. �11 ≡ �0 = 3 MHz, i.e., e�0 ≈ 0.48 pA.
Inset: I (B) at θ = 0 for the same dot geometry.

bulk Luttinger Zeeman parameter q (e.g., q = 0.01 for GaAs
[66]). The second term is an indirect B-linear coupling allowed
by the symmetry [67], and the third being the indirect B3

couplings via mJ = ± 1
2 states [66]. The parameters f and F

are both inversely proportional to the HH-LH splitting (see
Appendix A.) These individual contributions to the Zeeman
energy are shown in Fig. 1 for a GaAs double QD. As R0

increases, the indirect B-linear (B3) term will be reduced
(enhanced), and the B3 term may dominate at large B.

The single-spin basis is comprised of |↑〉θZ
= 1√

2
[1,e−iθZ ]T

and |↓〉θZ
= 1√

2
[1,−e−iθZ ]T , with θZ subject to the dom-

inating Zeeman term and [· · · ]T the transpose of a row
vector. Focusing on the case where the bulk B-linear term
dominates, we have θZ = θ [otherwise, θZ = −θ (−3θ )
when the indirect B-linear (B3) term dominates]. We ex-
pand the two-spin Hilbert space into the singlet |S〉 =

1√
2
(|↑↓〉θ − |↓↑〉θ ), and the unpolarized and two polarized

triplet states, |T0〉 = 1√
2
(|↑↓〉θ + |↓↑〉θ ), |T+〉 = |↑↑〉θ , and

|T−〉 = |↓↓〉θ . Accordingly, the double-dot Zeeman split-

ting takes the form EZ = μBB[−3q −
√

2f χ2

R2
0

cos (2θ )] +√
2Fμ3

BB3 cos (2θ ). Depending on the values of q and f

(subject to device details), the two B-linear terms could be
canceled up at certain field orientation; the Zeeman splitting
will become cubic in B, even when we include the next-order
bulk Luttinger contribution ∝ q(μBB)3.

The SOC is given by Ĥ
(j )
SO = Ĥ

(j )
R + Ĥ

(j )
D , with [18]

Ĥ
(j )
R = iα

(
σj+p3

j− − σj−p3
j+

)
, (2)

Ĥ
(j )
D = −β3(σj+pj−pj+pj− + σj−pj+pj−pj+)

−β1(σj+pj− + σj−pj+). (3)

Here α (β1,3) is the Rashba (linear and cubic Dresselhaus)
coupling strength.

A. Spin-orbit tunneling direction

Tunneling may arise from spin-preserving and spin-flip
processes. The former corresponds to the interdot tunneling
strength tnm

0 ≡ 〈Lnx,ny |Ĥ (L)
d |mx,m

R
y 〉. Similarly, we have

for the SOC 〈Lnx,ny |Ĥ (L)
SO |mx,m

R
y 〉, causing a preferential

direction in the spin Hilbert space, which we shall refer to
as the tunneling field direction [47,69]. When B points along
the tunneling field direction, there is no SO tunneling. For the
double dot aligned along x̂, if ny = my , the Rashba tunneling
field is along ŷ, and linear and cubic Dresselhaus tunneling
fields both point along x̂.

B. Effective tunneling Hamiltonian

The usual PSB involves the (0,2) singlet |S02〉, and
the (1,1) states {|S〉,|T0〉,|T±〉}. The expression of the SO
couplings between |S02〉 and the triplet states can be found
in Appendix B. As B is rotated, the tunneling matrix
elements 
0 = √

2(itR sin θ + itD cos θ − tB cos 2θ ) between
|S02〉 and |T0〉, and 
± = (tR cos θ − tD sin θ − itB sin 2θ )
between |S02〉 and |T±〉 will vary in strength. Here we
have used tR ≡ 〈L0,0|ĤR|0,0R〉, tD ≡ 〈L0,0|ĤD|0,0R〉, tB =
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TABLE I. The values of t0 and tR based on the calculated α

for accumulation (A) and inversion (I) layers [68]. For Si there is
a significant anisotropic Rashba contribution in k‖, and for hole
densities ∼1016 m−2, the ratio of the Rashba spin splitting to the
Fermi energy is roughly 0.1, hence tR ∼ t0/10.

GaAs InAs InSb Si

R0 (nm) 30 38 50 20
t0 (μeV) 230 180 97 530
α (meV m3) 5.4 × 10−25 3.6 × 10−24 1.0 × 10−23 –
tR (μeV) 150(A)/50(I) 390(I) 603(I) –

f μBBχ/R2
0, and the orbital overlap χ ≡ 〈L0,0|0,0R〉 =

e−d2/R2
0 . Because |S〉 and |T0〉 are degenerate, we adopt

their superpositions |M〉 ≡ 1
NM

[
∗
0|S〉 − t0|T0〉] and |M⊥〉 ≡

1
NM

(t0|S〉 + 
0|T0〉), with t0 ≡ t00
0 and NM =

√
|
0|2 + t2

0 .
In the {S02,M,M⊥,T+,T−} basis, the effective tunneling

Hamiltonian is

Ĥeff =

⎛
⎜⎜⎜⎝

−ε 0 NM 
+ 
−
0 0 0 0 0

NM 0 0 0 0

∗

+ 0 0 EZ 0

∗

− 0 0 0 −EZ

⎞
⎟⎟⎟⎠, (4)

with ε the detuning between (0,2) and (1,1). From Eq. (4), if
the two HHs are initialized in |M〉, there will be no leakage
without (1,1) spin relaxation. Experimentally, the initial state
is often unknown, and there may exist the (1,1) relaxation
process.

The effective SO tunneling elements 
0,± and NM contain
terms conditioned by tR , tD , t0, and tB . tB is subject to the
HH-LH splitting, R and B, and its magnitude, typically is on
the order of 0.1−1 μeV at B = 1 T for GaAs (cf. Appendix A.)
We expect tR � tD [68], and thus calculate the values of t0 and
tR for typical semiconductors in Table I. R0 is chosen so that
the HH-LH mixture is a perturbation. We have assumed a
small interdot distance such that χ ≈ e−1, and note that in
GaAs, tR/t0 for holes may be much higher than for electrons
[44]. Based on the above, we can describe the θ influence in
the typical 
0,± and NM mainly by considering tR and t0.

C. The effective singlet-triplet exchange

Equation (4) may provide insight of the effective singlet-
triplet exchange for hole qubits. The basis adopted here can
be rotated to the conventional basis used for the singlet-triplet
qubit [61], where the pseudospin Sz = 0 subspace (comprised
of |S02〉, |M〉, and |M⊥〉) is better described by the two
charge-spin hybridized singlet states [having the energies of
ES± = (−ε ±

√
ε2 + 4t2

0 )/2] and the unpolarized triplet. If
the SOC is strong, almost all the two-(pseudo)spin states
have the characteristics of both the singlet and triplet, and
operating the singlet-triplet qubit requires a fast control to
avoid information leakage to the polarized triplet states via the
spin relaxation (see later discussion for the relaxation.) Con-
sidering the qubit is away from the singlet-triplet anticrossing
(i.e., large |ES− − EZ|), we obtain the effective singlet-triplet
exchange Jex by diagonalizing the subspace comprising |S02〉,

|S11〉, and |T0〉. For a small ε � t0,

Jex ≈
∣∣∣∣−

ε

2
−

√
t2
0 + |
0(θ )|2

∣∣∣∣. (5)

Figure 2(a) shows Jex(ε = 0)/t0 as a function of θ with various
Rashba strengths. Given a large tR/t0 (see Table I), the change
in Jex by tuning θ can be appreciable, cf. the tR = 3t0 and
tR = 6t0 curves in Fig. 2(a), although the latter two would
require rather large Zeeman energies. Experimentally, Jex is
tuned electrically by ε or t0 [70], while the cubic Rashba SOC
of hole systems may respond to the gate voltage in an opposite
fashion to the linear electron SOC [71]. Here we note that
adjusting 
0(θ ) can be achieved without changing the Rashba
strength tR .

III. SPIN-ORBIT INDUCED LEAKAGE

The leakage is determined by a final readout of the tunneling
from (0,2) → (0,1). Charge flow from (1,1) → (0,2) → (0,1)
is balanced by the transition rates between the seven states,
including the (1,1) relaxation rate �11. We compute the
leakage by solving a set of steady-state kinetic equations
dP/dt = −WoutP + WinP = 0, where P = [{Pk},P↑,P↓]T

is a vector consisting of the probabilities Pk of being in
the eigenstates {|k〉} of the Hamiltonian (4) and Pσ in (0,1)
with the spin σ (see Appendix C for more details.) The
transition rates into and out of each state are contracted in
the respective matrices Win and Wout. We obtain the leakage
current I = e�DLP02, with �DL the dot-lead transition rate
and P02 the final probability to end in (0,2). The following
results are shown for ε=0 and tR � tD,tB . �11 = �0 is first
set constant to focus on the SO-induced leakage.

Figure 2(b) shows the leakage I (θ ) and I (B) in GaAs,
when only the two B-linear Zeeman couplings are included.
The PSB is lifted at B �= 0 by the Rashba SOC, and |dI/dB|
grows when tR is increased. While we have solved for I numer-
ically, if tR,EZ < t0 and �11 = �0, I (EZ) ∼ e�DLPMγ 2[1 −
�2/(E2

Z + �2)], with � ≡ γ t2
0 /|
+(θ )|, γ 2 = �11/�DL, and

PM is the probability of being in |M〉. In this approximation,
I (B) is a Lorentzian (see Appendix D). In Fig. 2(b), the
maximal (minimal) I (θ ) is found when |
+| ≈ (t2

R cos2 θ +
t2
B sin2 2θ )1/2 reaches its maximum (minimum). In Figs. 3(a)

and 3(b), when only the B3 term contributes to EZ , the lifting
is insignificant at low B, and the period of I (θ ) is 1/3 of that
in the B-linear case. In Fig. 3(c), competition of the B-linear
and B3 couplings yields a beat pattern in I (θ ) for large B.
Figure 3(d) shows the beat pattern present when a relatively
strong B-linear splitting exists in the left dot and the spin
splitting in the right dot is ∝ B3. This may correspond to the
case where the two dots are very different in size.

Now we discuss spin-selective �11, applying to most situa-
tions where the (1,1) states are well split. For III-V QDs with a
large HH-LH splitting, the major cause of spin relaxation is the
SO assisted phonon relaxation [16,17,20,25]. Indeed, the SO
effect varies in strength as B rotated, however, when Ĥ

(j )
SO yields

multiple sources of SO tunneling, spin mixing is present at all
B. There are two-spin and single-spin relaxation channels. For
QDs with a small SO mixture, including two-spin relaxation is
sufficient because the current dot orbital is well decoupled from
the others. Such two-spin relaxation requires nonvanishing
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FIG. 3. GaAs double QD with R0 = 80 nm, tR = 0.5t0, and �11 =
�0 =3 MHz. (a) I (B) with θ = 0. The dot-dashed (solid) line is with
EZ including the only B3 (B-linear) term. (b) I (θ ) at B = 1 T with
only the B3 term (dot-dashed line), and only the B-linear terms (solid
line). (c) The beat pattern in I (θ ), when both the B3 and B-linear
terms included. (d) I (θ ) at B = 1 T, when the spin splitting in the L

and R dot is linear and cubic in B, respectively.


±(θ ). Otherwise, corrections from single-spin relaxation
should be included.

We adopt the S−T± relaxation rate �ST± and single-spin
one �⇑⇓. To compare with the results with �11 = �0, we set
�ST± ≈ �0| cos θ |2 (�0| cos 3θ |2 in the B3 case). Assuming
the single-spin relaxation assisted by the Dresselhaus SOC,
we set �⇑⇓(B) ∝ B2 (cf. Appendix E) with �⇑⇓(B) = �0 at
B = 1 T ŷ and vanishes when B ‖ x̂. In Figs. 4(a) and 4(c),
the I (B) profile shrinks, due to the reduced number of the
relaxation channels, while I (θ ) in Figs. 4(b) and 4(d) have a
larger amplitude, from the anisotropic �11.

IV. EXPERIMENTAL APPLICABILITY

While a recent LH experiment has observed no clear PSB
anisotropy in the in-plane field orientation, our results have
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FIG. 4. The leakage I (B,θ ) with tR = 0.5t0 with spin-selective
�11 (solid line) in GaAs. The dashed lines are obtained with a constant
�11 = �0 = 3 MHz. (a) and (b) At R0 = 30 nm, I (B) with θ = 0 and
I (θ ) at B = 1 T, by the B-linear terms only. (c) and (d) At R0 =
80 nm, I (B) with θ = 0 and I (θ ) at B = 1 T, by the B3 term only.

shown heavy-hole PSB leakage has a dependence of the field
orientation and are in agreement with recent experiments
[12,13]. We have assumed tR � tD , however, if tD ∼ tR , their
relative strength may be determined by the minimum positions
of I (θ ). We have focused on the one-hole limit, whereas the
existing experiments are often performed with higher charge
filling [9,13,14] and the SO tunneling direction is sensitive to
the dot shape and the symmetry of involved dot orbitals [13].

The anisotropic I (θ ) can be manipulated by varying θ and
employed in probing the power of B in the Zeeman interaction
via the signal period. Because 
± may be determined from
the singlet-triplet anticrossing (with t0 extracted from the
ε = 0 anticrossing), |EZ| can be estimated via I (B). Desired
I (θ ) can be engineered for further applications, while we
should note that varying the magnetic field orientation can
be experimentally challenging in the current state of art.

The other (implicit) contribution to the leakage is from
�11. We have considered �11 on the order of MHz, making the
calculated I of several pA [12,13]. Lastly, Ref. [68] shows that
the perturbative approach may break down if the hole density
reaches a critical value. The current model then requires a
lower bound for the dot radius R0. Their results of GaAs
accumulation (inversion) layers therein suggest R0 � 13 nm
(� 5.6 nm).

V. CONCLUSIONS

We have studied the SO-induced PSB leakage in a two-HH
double QD in an in-plane magnetic field. We have shown
that the anisotropic leakage signal may be employed as a
probe of the Zeeman coupling in hole QDs, and this signal
and the singlet-triplet exchange splitting may be controlled by
varying the field orientation. We will extend our work with the
full J = 3

2 Hamiltonian to acquire more complete behavior of
confined holes.
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APPENDIX A: THE INDIRECT MAGNETIC COUPLINGS

According to Ref. [66], the parameter f = f1 + f2 from
the indirect B-linear coupling has two contributions. The
contribution f1 concerns the HH-LH mixing at the same
subband along the ẑ direction, whereas f2 involves the HH-LH
mixing between different ẑ subbands. The overall contribution
f is strongly affected by the confinement asymmetry in 2D
hole systems.

Below we consider a quasitriangular well and focus on
the first subband a = 1 only (f2 < f1 in our case). We
estimate f1 using the Fang-Howard trial wave function Fi (z) =
2λ

3/2
i ze−λiz with λi = λh for HHs and λi = λl for LHs [72].

We obtain

f1 ≈ −3

2
κγ̄

h̄2

m0
(
Eh

1 − El
1

) 128λ3
hλ

3
l

(λh + λl)6
, (A1)
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with m0 the free-electron mass and Eh(l)
a the energy of the 2D

HH (LH) state |ha(la)〉 at the subband a. We have assumed the
axial approximation γ̄ = 1

2 (γ2 + γ3) with γ1,2,3 the Luttinger
parameters. For typical hole densities ∼ 1015 m−2, the indirect
B-linear effect corresponding to f1 is on the order of μeV at
B = 1 T in GaAs.

The other indirect coupling cubic in B is significant for
large QDs and at high fields, and we refer to Eq. (7.19) of Ref.
[66] (and its errata) for the expression of F .

APPENDIX B: THE SO COUPLING FORM

Here we give the Rashba and cubic Dresselhaus couplings
for the two HHs occupying on the ground orbital |0,0(j )〉 =
(πR2

0)−1e−[(x−xj )2+y2]/2R2
0 . The spin basis is given the bulk-q

Zeeman term

〈S02|
∑

j

Ĥ
(j )
R |T±〉=±αh̄3

R3
0

cos θ e−ζ 2
ζ 3, (B1)

〈S02|
∑

j

Ĥ
(j )
R |T0〉= i

√
2αh̄3

R3
0

sin θ e−ζ 2
ζ 3, (B2)

〈S02|
∑

j

Ĥ
(j )
D |T±〉=∓β3h̄

3

R3
0

sin θ e−ζ 2
ξ (2 − ζ 2), (B3)

〈S02|
∑

j

Ĥ
(j )
D |T0〉= i

√
2β3h̄

3

R3
0

cos θ e−ζ 2
ζ (2 − ζ 2), (B4)

where ζ ≡ d/R0 and χ = e−ζ 2
is the orbital overlap.

APPENDIX C: THE STEADY-STATE KINETIC EQUATIONS

The kinetic equations used in the main text are given by

dPk

dt
=

∑
σ

(Uσk Pσ − WkσPk)+
∑
k′ �=k

(�k′Pk′ − �kPk) = 0,

dPσ

dt
=

∑
k

(WkσPk − Uσk Pσ ) = 0, (C1)

where �k is the (1,1) relaxation rate out of |k〉. Wkσ and Uσk ,
given as follows, correspond to the escape rates from |k〉 to
(0,1)σ and the refilling rate from (0,1)σ to |k〉:

Wkσ = �R

∑
σ ′

∣∣〈(0,1)σ |dRσ ′ |k〉∣∣2
, (C2)

Uσk = �L

∑
σ ′

∣∣〈k|d+
Lσ ′ |(0,1)σ 〉∣∣2

, (C3)

with �R(L) the tunneling rate between the right (left) dot and
lead, and dj (d+

j ) the HH annihilation (creation) operator on
the j dot.

APPENDIX D: SIMPLIFIED EXPRESSIONS OF
THE LEAKAGE CURRENT

The leakage current is given by I = e�RP02 =
e
∑

σ,k WkσPk .
When B → 0, only one state |u〉 is unblocked, making

Wkσ = 0 for k �= u. We have P (0,1)σ = ∑
k(WkσPk/Uσk)

from Eq. (C1), and write the probability in |u〉 by Pu =

1
3�u

∑
k �=u �kPk . The resulting current becomes I (B → 0) =∑

σ,k �=u
eWuσ

3�u
�kPk . We note that I (B → 0) is only nonzero due

to a finite (1,1) relaxation rate �k . For a rough estimate, we
assume that |u〉 contains the amplitude Au,02 of |S02〉 so that

Wuσ = �R

2 |Au,02|2, and obtain I0 ∼ e�DL
|Au,02|2

3

∑
k �=u Pk , with

�DL ∼ �L(R) and �u,k ∼ �11.
For B �= 0, the probability in an unblocked state |u〉 is

Pu = PM

∑
σ [�MUσu(�uUσu + 2WσMWuσ )−1]. This leads to

a leakage current

I = ePM

∑
u,σ

Wuσ

∑
σ ′

�MUσ ′u

�uUσ ′u + 2UσMWuσ ′
.

For a rough estimate, we find

I ∼ e�DLPM

∑
u

|Au,02|2|Au,11|2γ 2

|Au,11|2γ 2 + |Au,02|2 , (D1)

where γ 2 ≡ �11/�DL and Uσu ≡ �L

2 |Au,11|2 with Au,11 the
amplitude of the (1,1) charge configuration in |u〉. At ε = 0,
when the SO coupling is a perturbation to a large t0 > EZ , we
have AT±,02 ∝ |
±|EZ(E2

Z − t2
0 )−1 and AT±,11 barely depends

on EZ . As such, the leakage current I ∼ e�DLPME2
Zγ 2(E2

Z +
t4
0

|
+|2 γ
2)−1 when |EZ|/t0 is small. This approximated I (B) has

a Lorentzian shape [43].

APPENDIX E: THE PHONON INDUCED RELAXATION

The hole-phonon interaction is [17,20,25,73]

Ĥph =
∑
qλ

F (qz)eiq‖·(r1+r2)

√
2ρcωqλ/h̄

2
[P (q) − iD(q)](b+

−qλ + bqλ),

(E1)

where P (q) = eβqλ and D(q) = (D0q · ξ qλ − Dzqzξ
z
qλ) result

from the piezoelectric field βqλ and deformation D0/z. We have
denoted by ξqλ at the wave number q and the vibration mode
λ, by b+

qλ (bqλ) phonon creation (annihilation) operator, and by
ρc the crystal mass density. The factor F (qz) is a unity within
the dot height, otherwise it is vanishing.

The hole-phonon interaction couples the double-dot orbitals
through the phase factor eiq‖·(r1+r2). For QD qubits, the dipole
approximation eiq‖·(r1+r2) ≈ 1 + iq‖ · (r1 + r2) is reasonable
[74] and yields analytic results. Within the approximation,
the piezoelectric coupling (∝ 1/

√
q) is the dominant phonon

relaxation mechanism.
For the singlet-triplet relaxation, the effective S11 and T−

are given by |S ′
11〉 = a|S11〉 + c+|T+〉 + c−|T−〉 and |T ′

−〉 =
b|S11〉 + d−|T−〉 with appropriate state coefficients a, b, c±,
and d−. The effective S11−T− relaxation rate due to the piezo-
electric coupling is given by �ST− = (|a∗b|2 + |c∗

−d−|2)�PE,ST
λ ,

where the base rate

�
PE,ST
λ ≈ ηPE

λ

2(eh14)2

h̄ρcε2
r v

3
λ

ωST [1 + n(ωST )], (E2)

with eh14 = 1.2 × 109 V/m, εr is the relative permittivity,
h̄ωST is the singlet-triplet energy separation, and vλ = vl(t) is
the longitudinal (transverse) acoustic speed. The dimension-
less parameters {ηPE

l ,ηPE
t1 ,ηPE

t2 } = { 12
5 , 4

21 , 1
15 } are obtained for

the longitudinal and two transverse phonons, respectively. For
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FIG. 5. (a) The Rashba-assisted singlet-triplet relaxation rate due
to piezoelectric phonons as a function of B. (b) The Dresselhaus-
assisted single-spin relaxation rate as a function of B, when the
first three excited orbitals are included. t0 = 200 μeV. The 2D
confinement given by R0 = 30 nm is about 190 μeV. The curves in (b)
meet when B � 3 T as |EZ| → t0 (i.e., the singlet-triplet crossing).

completeness, the singlet-triplet base rate due to deformation
phonons is given by

�
DP,ST
λ ≈ ηDP

λ

ω3
Z

π2h̄ρcv
5
λ

[1 + n(ωZ)], (E3)

where {ηDP
l ,ηDP

t1 ,ηDP
t2 } = { (2D2

a+D2
b )

4 ,
D2

b

140 ,0} with Da = 1.16 eV
and Db = −2.0 eV for GaAs [25].

When the SO mixture is large enough, corrections from
single-spin relaxation channels should be included. The
Rashba interaction Ĥ

(j )
R ∝ p3

j couples the ground orbital
to the third excited orbital and so on, whereas the Dres-
selhaus interaction couples the ground orbital to all the
others directly or indirectly. For example, the effective left
spin states |⇑〉 and |⇓〉 due to the Dresselhaus interaction
are given by |⇑〉 = ∑

σ aσ,0|σ 〉|0,0〉 + ∑
n′,σ aσ,n′ |σ 〉|n′

x,n
′
y〉

and |⇓〉 = ∑
σ bσ,0|σ 〉|0,0〉 + ∑

n′,σ bσ,n′ |σ 〉|n′
x,n

′
y〉, where

n′ = {n′
x,n

′
y} �= {0,0} includes all the excited orbitals, and

aσ,n and bσ,n are the coefficients of the |⇑〉 and |⇓〉,
with the corresponding spin σ and orbital indices n.
In this case, the piezoelectric-phonon relaxation rate is
given by �⇑⇓ = ∑

n′(|a∗
↑,0b↓,n′ |2 + |b↓,0a

∗
↑,n′ |2)�PE

λ , where the
base rate

�
PE,⇑⇓
λ ≈ γ PE

λ

(eh14)2R2
0

h̄ρcε2
r v

5
λ

ω3
Z[1 + n(ωZ)], (E4)

with {γ PE
l ,γ PE

t1 ,γ PE
t2 } = { 4

35 , 8
105 , 32

1155 } and ωZ = EZ/h̄.
In Fig. 5 we plot �PE,ST and �PE,⇑⇓ to show the field

dependence in the relaxation rate. For the �PE,⇑⇓ plot, we
include only the first three excited orbitals and the actual rate
may be more enhanced. The base rate due to deformation is
given by

�
DP,⇑⇓
λ ≈ γ DP

λ

R2
0ω

5
Z

π2h̄ρcv
7
λ

[1 + n(ωZ)], (E5)

where {γ DP
l ,γ DP

t1 ,γ DP
t2 } = { (7D2

a+D2
b )

84 ,
D2

b

105 ,0}.
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