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Nonexponential spin decay in a quantum kinetic description of the D’yakonov-Perel’ mechanism
mediated by impurity scattering
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The electron spin dynamics in an optically excited narrow quantum well is studied, where the electron spins
precess in a k-dependent magnetic field, while the electrons scatter at localized impurities. For the resulting spin
decay, which is commonly known as the D’yakonov-Perel’ mechansim, analytical expressions in the strong- and
weak-scattering limits are available. It is found by the numerical solution of quantum kinetic equations in a broad
range of parameters that, in situations that are typically relevant for ultrafast optical experiments, the dynamics
of the total spin polarization significantly deviates from the pertinent analytical results. This is attributed to
the broad spectral width of the optically excited spin-polarized electron distribution, which gives rise to a spin
dephasing due to inhomogeneous broadening. Furthermore, it is found that the decay of the spin polarization
need not be exponential. The notion of a spin decay time becomes ambiguous and different definitions of spin
decay times can lead to different outcomes. The long-term dynamics of the decay of the spin polarization is even
dominated by an algebraically decaying component. These findings highlight the importance of the effects of the
broad spectral distribution of optically excited carriers in ultrashort magneto-optical experiments.
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I. INTRODUCTION

In the field of spintronics [1–4], the spin dynamics in
semiconductors has attracted a lot of interest in the last decades
since the spin dephasing times in semiconductors can be
orders of magnitude larger than, e.g., in metals [5,6]. There
are two different approaches for studying the spin dynamics
in semiconductors which have to be distinguished: transport
[1,7–14] and optical experiments [15–20]. The former uses the
fact that the injection of carriers into the semiconductor and
the transmission from the semiconductor into another material
can be strongly spin- dependent. Therefore, the resistivity of
devices consisting of a semiconductor material between a spin
injector and a spin filter is strongly affected by the dynamics
of the carrier spins in the semiconductor [1,7], which paves
the way for the development of spin transistors [7,21]. Optical
experiments, on the other hand, allow a very direct control and
readout of the carrier spins in a semiconductor structure via the
spin selection rules and the magneto-optical Faraday and Kerr
effect, e.g., in optical pump-probe measurements [16–20].

The literature on spin dynamics in semiconductors [22]
typically lists the D’yakonov-Perel’ (DP) [23], the Elliot-Yafet
(EY) [24–26], and the Bir-Aronov-Pikus (BAP) [27] mecha-
nisms as the main sources for the decay of a nonequilibrium
carrier spin polarization. The BAP mechanism is due to the
interaction between electron and hole spins and it is therefore
mostly relevant for the electron spin dynamics in p-doped
semiconductors [28]. Both the DP and the EY mechanisms
originate from spin-orbit interaction (SOI) and the mixing
of conduction and valence bands for nonzero wave vectors
k according to k · p theory. The EY mechanism is based
on the fact that, due to the band mixing for finite wave
vectors k, the energy eigenstates of the quasifree carriers are
no longer eigenstates of the spin operator. Thus scattering
of electrons leading to a change of the wave vector k also
leads to a change in the average electron spin. Another effect
resulting from the mixing of valence and conduction bands
is that a block-diagonalization, which eliminates the coupling

of different bands renormalizes the crystal Hamiltonian, so
that the conduction band block after block-diagonalization
acquires an additional term that can be written in the form
of a Zeeman energy with a k-dependent effective magnetic
field. The DP mechanism describes the combined effect of
the dephasing of electron spins caused by the precession in
the strongly anisotropic k-dependent field and momentum
scattering of the electrons at, e.g., impurities, other carriers or
phonons. In the strong-scattering limit, D’yakonov and Perel’
have derived [23] their well-known result that the spin decay
rate is inversely proportional to the momentum scattering
rate. Also in the weak-scattering limit, an analytical relation
between spin decay and momentum scattering can be obtained
[22,29]. However, there, the spin decay rate is proportional to
the momentum scattering rate.

Another mechanism leading to a decay of the total electron
spin polarization has been pointed out by Wu and Ning [30,31]:
the spin precession frequency given by the magnitude of the
effective field depends on the modulus |k| of the wave vector.
Thus, when electrons with different kinetic energies take part
in the spin dynamics, the presence of different precession
frequencies gives rise to a dephasing of spins even in the
absence of momentum scattering, where the conventional DP
mechanism predicts no spin decay. This effect is referred to as
inhomogeneous broadening by Wu et al. in Refs. [30,31] and
is characterized by an algebraic spin decay ∝ 1

t
for long times

[22]. In order to distinguish this mechanism from other effects
typically associated with the term inhomogeneous broadening
in the context of optical experiments on semiconductors, such
as the linewidth broadening of excitons caused by spatial
fluctuations of the environment [32], in the following, we
use the term dispersion-induced isotropic inhomogeneous
broadening (DIIB) for the spin dephasing induced by the |k|
dependence of the effective magnetic field.

Numerous works in the literature have addressed the ques-
tion of how the spin dynamics in semiconductors is affected
by the DP, the EY, and the BAP mechanisms [22,33–41]. In
particular, Wu et al. [22] have reviewed the contribution of
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different spin dephasing and momentum scattering mecha-
nisms to the total spin decay time using kinetic spin Bloch
equations (KSBE). Most works focus on calculating spin
transfer rates and their dependencies on certain parameters
such as carrier concentration, temperature, external magnetic
field, and so on [42,43]. However, rates are only well-defined if
the spin decay is approximately exponential, which is a priori
not clear. If the spin decay is nonexponential, the concept of a
spin decay rate becomes ill-defined.

In this paper, we investigate the time evolution of the
electron spin in an AlxGa1−xAs semiconductor quantum well
(QW) after optical excitation with circularly polarized light.
We consider the precession of electron spins in a k-dependent
Dresselhaus or Rashba field and scattering of electrons at
Al impurities. This is a situation which is conventionally
described by the DP mechanism. Here, however, we use a
microscopic quantum kinetic density matrix theory, which
goes beyond the conventional DP picture in several aspects:
first, by resolving the k space, we explicitly consider an
ensemble of electrons, whereas the standard DP theory [23]
describes a stochastic motion of a single electron. Thus our
theory includes the spin dephasing due to DIIB [30,31].
Second, we do not a priori postulate the existence of a
well-defined spin decay rate, i.e., we calculate the time
evolution of the total electron spin explicitly and do not
assume that it is exponential. This allows us to study the
spin dynamics even when the notion of a spin decay rate is
questionable. Finally, the quantum kinetic description goes
beyond perturbation theory in the carrier-impurity interaction,
the Markov approximation, and the single-particle picture as it
includes explicitly correlations between carriers and impurities
that are built up during the scattering. Our theory is applicable
not only in the limiting cases of weak and strong scattering,
but also in the intermediate regime and, therefore, allows us to
study the range of validity of the results in the limiting cases.

We find that the time evolution of the total spin polarization
after optical excitation can have different shapes, ranging
between an exponentially damped oscillation to a Gaussian-
like monotonic decay. There are also situations where the
spin decays highly nonexponentially, has a minimum, and
shows a slow decay at large times. Furthermore, the long-
term dynamics can be dominated by an algebraic decay.
In particular, we find that the broad width of the optically
induced electron distribution has very important effects on
the spin dynamics, highlighting the importance of DIIB
for ultrafast optical experiments. Furthermore, we find that
because of the nonexponential nature of the spin dynamics
different definitions of a characteristic spin decay time can give
quantitatively and qualitatively different results. This shows
that the concept of a spin decay time has to be treated with
care when discussing results of ultrafast optical experiments.

The paper is structured as follows: first, we set up a quantum
kinetic theory for the dynamics of the electron density matrix
as well as electron-impurity correlations. Subsequently, we
derive the Markov limit of the quantum kinetic equations of
motion and discuss theoretically certain known limiting cases.
Then, we present numerical results of Markovian and quantum
kinetic calculations for an optically excited AlxGa1−xAs
quantum well with Dresselhaus and Rashba spin-orbit fields.
Finally, we summarize the results.

II. THEORY

We study the spin dynamics in a semiconductor quantum
well after optical excitation, which can be experimentally
addressed by optical pump-probe measurements such as in
time-resolved Kerr rotation experiments [20]. More specif-
ically, we consider a D’yakonov-Perel’-type system [23]
where the optically induced electron spins precess in a k-
dependent effective magnetic field like the Dresselhaus [44]
or Rashba [45] field and the carriers are subject to momentum
scattering at localized impurities. Depending on the sample
and the excitation conditions, there are also situations in
which other momentum relaxation mechanisms are domi-
nant, such as phonon scattering or carrier-carrier scattering
[22,28].

Here, however, we consider a narrow AlxGa1−xAs quantum
well with AlyGa1−yAs barriers, where y > x to ensure the
confinement of carriers in the well. We focus on a situation
where the Al concentration x in the quantum well is not too
small, the temperature of the sample is low enough to suppress
phonon scattering and the intrinsic sample is excited with
low or moderate intensity so that carrier-carrier interactions
are of minor importance. Then, the momentum scattering at
the Al impurities dominates and other momentum scattering
mechanisms are negligible. Furthermore, we assume that
the spins of the optically induced holes dephase fast due to
the strong spin-orbit interaction in the valence band and we
are only interested in the dynamics of the conduction band
electron spins. Moreover, the quantum well is assumed to
be narrow enough so that only the lowest confinement state
has to be considered and the relevant electronic states can be
described by plane waves with two-dimensional in-plane wave
vectors k.

A. Hamiltonian

The Hamiltonian for conduction band electrons in a narrow
AlxGa1−xAs quantum well is

Ĥ = Ĥ0 + ĤSO + ĤImp , (1)

where

Ĥ0 =
∑
σk

h̄ωkĉ
†
σkĉσk (2)

describes the spin-independent part of the band structure,
which we assume to be parabolic according to ωk = h̄k2

2m∗
with the two-dimensional in-plane wave vector k and in-plane
effective mass m∗. The symbol σ ∈ {↑ , ↓} denotes the spin
index and distinguishes the two conduction subbands. Finally,
ĉ
†
σk and ĉσk are the electron creation and annihilation operators,

respectively.
The spin-orbit interaction (SOI) is described by the

Hamiltonian

ĤSO =
∑
σσ ′k

h̄�k · sσσ ′ ĉ
†
σkĉσ ′k . (3)

Here, sσσ ′ = 1
2σ σσ ′ , where σ denotes the vector of Pauli matri-

ces and �k is the k-dependent effective magnetic field arising
from bulk (BIA) or structure inversion asymmetries (SIA) that
result in Dresselhaus [44] and Rashba [45] contributions to the
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effective magnetic field of the form [46,47]

�k1 = �Rashba
k1

+ �Dresselhaus
k1

, (4a)

�Rashba
k1

= 2
αR

h̄

(
ky

−kx

)
, (4b)

�Dresselhaus
k1

= 2
βD

h̄

(
ky

kx

)
, (4c)

for a (001)-grown quantum well with zinc-blende crystal
structure. The spin-orbit interaction described by ĤSO is
responsible for a precession of the electron spins in the
effective magnetic field.

The momentum scattering is induced by the interaction be-
tween carriers and localized Al impurities in the AlxGa1−xAs
quantum well. In contrast to the case of charged impurities
as discussed, e.g., in Ref. [30], Al ions are incorporated
isoelectrically in the GaAs matrix. Since the long-range part
of the Coulomb interaction between Al impurities and the
quasi-free carriers is equally screened by the valence electrons
as the long-range contribution of the interaction between
the carriers and the Ga ions that are replaced by Al ions,
the conduction band electrons experience only an effective
short-range potential at unit cells with Al ions, which can be
described by the Hamiltonian [48]

ĤImp = J
∑
I i

δ(ri − RI ). (5a)

The coupling constant is given by J , while ri and RI denote
the electron and impurity positions, respectively. In second
quantization, ĤImp reads

ĤImp = J

V

N∑
I=1

∑
σkk′

e−i(k′−k)·RI ĉ
†
σkĉσk′ (5b)

with the system’s volume V and the number of impurity atoms
N . In the following, we assume that the impurity positions are
determined by a fixed random distribution. This implies that
the impurity system is not changed by ĤImp and the scattering
is elastic. Thus ĤImp does not result in a thermalization as, e.g.,
momentum scattering due to carrier-phonon interactions.

We do not simulate the optical excitation of carriers via
a light-matter interaction Hamiltonian explicitly. Instead, we
assume that an ultrashort circularly polarized Gaussian pump
pulse creates a spin polarized electron distribution at t ≈ 0.
The corresponding optically excited carrier distribution is then
taken as an initial value for the differential equations of motion.
The validity of such a treatment has been previously verified for
similar situations encountered in studies of diluted magnetic
semiconductors [49].

B. Equations of motion

We are interested in the spin dynamics of the conduction
band electrons in an AlxGa1−xAs quantum well, which can
be obtained directly from the reduced electron density matrix
〈ĉ†σ1k1

ĉσ2k1〉. Its time evolution is determined by the Heisenberg

equation of motion for the operator ĉ
†
σ1k1

ĉσ2k1 .
While the effective single-particle Hamiltonians Ĥ0 and

ĤSO alone would yield a closed set of equations of motion for

the reduced single-particle density matrix, the carrier-impurity
interaction ĤImp is responsible for a build-up of correlations
between the electrons and impurities. This can be seen most
clearly by considering the time evolution of the reduced density
matrix due to the carrier-impurity interaction

−ih̄
∂

∂t

∣∣∣∣
ĤImp

〈
ĉ
†
σ1k1

ĉσ2k1

〉 = 〈[
ĤImp,ĉ

†
σ1k1

ĉσ2k1

]〉
. (6)

Calculating the commutator and taking the average over the
result yields terms of the form〈

e−i(k2−k1)·RI ĉ
†
σ1k1

ĉσ2k2

〉
, (7)

which, in general, cannot be expressed in terms of the reduced
density matrix alone since the averaging also involves taking
an average over the random distribution of the positions RI of
the impurities. Only for k2 = k1, where e−i(k2−k1)·RI ≡ 1, the
correlation in Eq. (7) reduces to 〈ĉ†σ1k1

ĉσ2k2〉. In the spirit of
Kubo’s cumulant expansion [50], we subtract the uncorrelated
(mean-field) part of the term in Eq. (7) and define for k2 �= k1

the cumulants or true correlations

δ
〈
e−i(k2−k1)·RI ĉ

†
σ1k1

ĉσ2k2

〉
:=〈

e−i(k2−k1)·RI ĉ
†
σ1k1

ĉσ2k2

〉− 〈
e−i(k2−k1)·RI 〉〈ĉ†σ1k1

ĉσ2k2

〉
. (8)

Thus the reduced electron density matrix is driven by carrier-
impurity correlations. Similarly, the equations of motion for
the carrier-impurity correlations contain terms of the form〈

e−i(k−k2)·RI e−i(k2−k1)·RI ′ ĉ
†
σ1k1

ĉσ2k

〉
. (9)

For I ′ = I, k = k2, or k2 = k1, this expression reduces to the
carrier-impurity correlations defined in Eq. (7) or the carrier
density matrix 〈ĉ†σ1k1

ĉσ2k1〉. In the remaining cases, the cu-
mulant expansion [50] for three commuting random variables
A = e−i(k−k2)·RI , B = e−i(k2−k1)·RI ′ and C = ĉ

†
σ1k1

ĉσ2k can be
applied:

〈ABC〉 = δ〈ABC〉 + 〈A〉δ〈BC〉 + 〈B〉δ〈AC〉
+ 〈C〉δ〈AB〉 + 〈A〉〈B〉〈C〉. (10)

Here, we neglect higher order correlations involving different
impurity positions RI and RI ′ , so that δ〈ABC〉 = δ〈AB〉 = 0.
The remaining terms involve either 〈A〉 or 〈B〉. Assuming
an on average homogeneous impurity distribution [51], one
obtains

〈e−ik·RI 〉 = δk0 (11)

and therefore 〈A〉 = δk,k2 as well as 〈B〉 = δk2,k1 . Thus all
terms in Eq. (10) vanish, except for those with k = k2 or k2 =
k1, which can be expressed by the lowest-order cumulants
defined in Eq. (8) and the carrier density matrix.

This way, a closed set of equations of motion is obtained
for the dynamical variables

C
σ2
σ1k1

:= 〈
ĉ
†
σ1k1

ĉσ2k1

〉
, (12a)

C
σ2k2

σ1k1
:= V δ

〈
e−i(k2−k1)·RI ĉ

†
σ1k1

ĉσ2k2

〉
, (12b)

where C
σ2
σ1k1

is the electron density matrix and C
σ2k2

σ1k1
are the

carrier-impurity correlations, where the latter are only defined
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for k2 �= k1. It is convenient to rescale the correlations by
the factor V so that they remain finite in the limit V → ∞.
Note that a similar correlation expansion has been developed
and applied in Refs. [52–55], e.g., for investigations of the
influence of interface roughness on exciton line shapes.

The quantum kinetic equations of motion for the dynamical
variables are

− ih̄
∂

∂t
C

σ2
σ1k1

= h̄�k1 ·
∑

σ

(
sσσ1C

σ2
σk1

− sσ2σCσ
σ1k1

)

+ JN

V 2

∑
k �=k1

(
C

σ2k1

σ1k − C
σ2k
σ1k1

)
, (13a)

−ih̄
∂

∂t
C

σ2k2

σ1k1
= h̄

(
ωk1 − ωk2

)
C

σ2k2

σ1k1

+
∑

σ

h̄
(
�k1 · sσσ1C

σ2k2

σk1
− �k2 · sσ2σC

σk2

σ1k1

)

+ J

V

⎛
⎝∑

k �=k1

C
σ2k2

σ1k −
∑
k �=k2

C
σ2k
σ1k1

⎞
⎠

+ J
(
C

σ2
σ1k2

− C
σ2
σ1k1

)
. (13b)

The first term on the right-hand side (r.h.s.) of Eq. (13a)
describes the mean field precession of the electron spins in the
effective field while the second term incorporates the changes
of the electron density matrix due to the carrier-impurity
correlations that mediate the impurity scattering. The equation
of motion (13b) for the correlations has the structure of an
oscillator with a frequency corresponding to the difference in
kinetic energies h̄ωk2 − h̄ωk1 (first term on the r.h.s.) driven by
the electron density matrix C

σ2
σ1k1

via the last term on the r.h.s.
of Eq. (13b). The second term describes the precession of the
carrier-impurity correlations around the effective magnetic
field and the third term accounts for changes of the wave
vectors of the correlations caused by the carrier-impurity
interaction.

C. Markov limit

The full quantum kinetic equations of motion (13)
describe a dynamics of the electron density matrix that is
non-Markovian in general, i.e., the correlations induce a finite
memory. It is instructive to consider the Markovian limit of
the quantum kinetic equations because of two reasons: On
the one hand, to investigate the importance of finite-memory
effects, and on the other hand, to derive an analytic expression
for the momentum scattering rate, so that our theory can be
related to more commonly used approximate descriptions of
the DP mechanism.

The Markov limit of the quantum kinetic equations of
motion is obtained by neglecting the second and third terms on
the r.h.s. of Eq. (13b), which allows one to formally integrate
the correlations yielding

C
σ2k2

σ1k1
(t) = ei(ωk1 −ωk2 )t

[
C

σ2k2

σ1k1
(t0) +

∫ t

t0

dt ′i
J

h̄

× (
C

σ2
σ1k2

(t ′) − C
σ2
σ1k1

(t ′)
)
e−i(ωk1 −ωk2 )t ′

]
. (14)

Neglecting the respective terms in the equation for the
correlations can be justified as follows: the third term in
Eq. (13b) is a higher order term with respect to the coupling
constant. Furthermore, it consists of a sum of correlations with
different wave vectors that oscillate with different frequencies
and can therefore be expected to dephase fast. The second
term in Eq. (13b) mainly accounts for the fact that the energy
eigenvalues and eigenstates of the semiconductor crystal,
which define the electronic states between which elastic
momentum scattering events take place, are modified by the
effective magnetic field. Here, however, we mainly consider
situations where the spin-orbit splitting of the conduction
subbands h̄�k is on average smaller than the average kinetic
energy and the modification of the band structure due to the
effective field is of minor importance. Situations where this
modification is important have been discussed in Ref. [56] on
the level of a Markovian theory. Note that it is also possible to
formally integrate Eq. (13b) accounting for the second term on
the r.h.s., but the resulting Markovian equations become more
involved [57]. An a posteriori justification for neglecting the
respective terms in the equations of motion will be given by
comparing numerical calculations of the full quantum kinetic
equations and the Markovian equations.

The Markovian approximation is characterized by the
assumption of a short memory, which implies that the density
matrices C

σ2
σ1k1

(t ′) in Eq. (14) can be evaluated at t ′ = t and the
lower limit of the memory integral can be extended to t0 →
−∞ [58,59]. Finally, using

∫ 0
−∞ dt e−i	ωt = πδ(	ω) + P i

	ω

and assuming that the correlations are initially zero C
σ2k2

σ1k1
(t0 →

−∞) = 0, we obtain

−ih̄
∂

∂t
C

σ2
σ1k1

= h̄�k1 ·
∑

σ

(
sσσ1C

σ2
σk1

− sσ2σCσ
σ1k1

)

+ 2πi
J 2N

V 2

∑
k �=k1

(
C

σ2
σ1k1

− C
σ2
σ1k

)
δ
(
h̄ωk − h̄ωk1

)
.

(15)

The contributions from the principal value cancel exactly.
Equation (15) can be rewritten in the quasi-continuous limit∑

k → ∫
d(h̄ωk)D2D(h̄ωk) with the two-dimensional spectral

density of states D2D(h̄ω) = Am∗
2πh̄2 in terms of the more intuitive

variable 〈sk1〉 = ∑
σσ ′ sσσ ′Cσ ′

σk1
, i.e., the average spin in the

electronic states with wave vector k1. We obtain

∂

∂t

〈
sk1

〉 = �k1 × 〈
sk1

〉 − 1

τp

(〈
sk1

〉 − 〈
sk1

〉)
, (16)

with the momentum scattering rate

1

τp

= 4J 2m∗x
h̄3da3

, (17)

where x denotes the impurity concentration, d the thickness
of the quantum well, and a the lattice constant of the crystal.
The average spin in the shell of states with modulus k1 of the
wave vector k1 is given by

〈
sk1

〉 = 1

2π

∫ 2π

0
dϕ

〈
sk(k1,ϕ)

〉
, (18)
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where

k(k1,ϕ) =
(

k1 cos(ϕ)
k1 sin(ϕ)

)
. (19)

Thus, in the Markov limit, the time evolution of the electron
spins is given by a precession of the spin in the k-dependent
magnetic field and a redistribution of electron spins within
a shell of fixed kinetic energy h̄ωk1 with the momentum
scattering rate τ−1

p . Note that the Markovian equation of
motion (16) can also be derived by other approaches [29]
and they are, in fact, also applicable in settings where
a phenomenological momentum scattering rate is used to
incorporates additional effects due to, e.g., carrier-carrier or
carrier-phonon scattering. Thus the results obtained from the
Markovian equations are valid in more general DP scenarios
where the momentum scattering does not need to be caused by
localized impurities.

D. Limiting cases

Equations (13) and (16) describe the time evolution of
an ensemble of optically induced electron spins. In contrast,
the conventional description of the DP mechanism, which
can be used to derive analytic expressions for the spin
relaxation time in limiting cases, is based on a different
picture where a single electron is considered which performs
a stochastic motion in k space [22,23,60]. Here, we review the
basic results of this stochastic picture.

In the conventional DP picture, it is assumed that the
electron’s wave vector k changes randomly after a time interval
corresponding to a correlation time τc, which we identify
with the momentum scattering time τp defined in Eq. (17).
During this correlation time, the electron spin precesses
about the effective field �k. Thus between each scattering
event the electron spin changes about an angle of θk = τc�k.
If the angle θk is small, which implies that the scattering rate
τ−1
c is much larger than the typical precession frequency, the

time evolution of the electron spin can be regarded as a random
walk consisting of n = t/τc time steps. The root mean square
of the precession angle is then given by

√
	θ2 =

√〈
θ2

k

〉 t

τc

=
√〈

�2
k

〉
τct, (20)

which is of the order of unity at the spin relaxation time

τs ∼ 1〈
�2

k

〉
τc

, (21)

where the brackets indicate the average over the k-space
states available for the random walk process. This way, one
obtains the well-known DP result that the spin relaxation time
is predicted to be inversely proportional to the momentum
relaxation time.

As stated above, the derivation of the expression for the
spin relaxation time τs in Eq. (21) requires the assumption of
the strong scattering limit τ−1

c �
√

〈�2
k〉. However, analytic

expressions for the spin relaxation time can also be obtained
in the opposite limit, τ−1

c �
√

〈�2
k〉 [29]. This can be done

by starting from Eq. (16) and considering an initial carrier
spin polarization along the z axis (growth direction). First,
the z component of Eq. (16) is differentiated. In the resulting

equation, the expressions 〈sx
k1

〉 and 〈sy

k1
〉 have to be eliminated

by expressing them in terms of 〈sz
k1

〉 and ∂
∂t

〈sz
k1

〉 using again
Eq. (16). If terms higher than first order in the momentum
scattering rate τ−1

p are neglected and if it is assumed that the
modulus of the precession frequency is independent of the
polar angle of k1, i.e., one can write

√
�2

k1
= �k1 , one obtains

the second-order differential equation for the z component of
the average electron spin:

∂2

∂t2

〈
sz
k1

〉 + 1

τp

∂

∂t

〈
sz
k1

〉 + �2
k1

〈
sz
k1

〉 = 0. (22)

Equation (22) has the form of a damped oscillator whose
solution for 1

τp
� �k1 is an oscillation with frequency �k1

that decays exponentially with the relaxation rate

1

τs

= 1

2τp

. (23)

Thus Eq. (23) predicts that, in the weak-scattering limit, the
spin relaxation rate is proportional to the momentum relaxation
rate.

It is noteworthy that, in contrast to the strong-scattering
limit, the weak-scattering limit supports oscillations of the spin
polarization. Thus, when an ensemble of electrons with differ-
ent precession frequencies is considered, the superposition of
the different oscillations may additionally lead to a dephasing,
which causes a decay of the total electron spin even in the
absence of momentum scattering τ−1

p = 0. This effect has
been described by Ning et al. as an inhomogeneous broadening
mechanism and was explored numerically in Refs. [30,31].

In situations where the electron occupation is well described
by a quasi-equilibrium Fermi distribution with a significant
Fermi energy, such as in n-doped systems or in transport
experiments, only electronic states with a wave vector close
to the Fermi wave vector |k| ≈ kF are relevant for the spin
dynamics. Because the modulus |k| of the wave vector k
determines the precession frequency |�k|, there is essentially
only one precession frequency present in these situations and
no DIIB takes place.

In contrast, in the case of an optically induced spin-
polarized electron distribution in an intrinsic semiconductor,
the spectral width of the exciting laser, e.g., due to the
energy-time uncertainty associated with the finite duration of
the laser pulse, gives rise to a corresponding finite spectral
width of the electron distribution. In general, this translates
into a non-negligible width of the distribution of the modulus
|k| of the wave vectors of spin polarized carriers. Therefore,
here, the DIIB can be expected to be relevant [61].

The qualitative shape of the time evolution of the total
electron spin due to the DIIB alone, i.e., in the absence of
momentum scattering τp → ∞, can be discussed in some
limiting cases. First, consider the case of the initial distribution
of spin polarized electrons defined by

nk(t = 0) =
{

n0,|k| ∈ [
k0 − 1

2	k; k0 + 1
2	k

]
0, else

, (24a)

sz
k(t = 0) = 1

2nk(t = 0), (24b)
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i.e., a distribution centered at k0 with width 	k. Additionally,
assume for simplicity that the system is only subject to Rashba
spin-orbit interaction, so that

sz
k(t) ≈ n0

2
cos

(
2
αR

h̄
kt

)
. (24c)

If 	k � k0, we can assume that the two-dimensional
k-dependent density of states is approximately constant
D2D(k) ≈ D2D(k0) and that the spin decay rate is essentially
independent of k. Then, the total spin is given by∫

dk D2D(k)sz
k(t)

≈ n0

2
D2D(k0)

∫ k0+ 1
2 	k

k0− 1
2 	k

dk cos
(

2
αR

h̄
kt

)

= n0

2
D2D(k0)

sin
[ 2αR (k0+ 1

2 	k)t
h̄

] − sin
[ 2αR (k0− 1

2 	k)t
h̄

]
2αR

h̄
t

.

(24d)

Thus, in this situation, we find that the total electron spin
decays algebraically as 1

t
. Note that, because this behavior

deviates strongly from an exponential decay, it is not possible
to unambiguously associate a spin decay time with the spin
dynamics.

In Ref. [61], another limiting case of the DIIB was discussed
where a Gaussian initial spin-polarized spectral electron dis-
tribution was considered. It was found that, when the Gaussian
distribution is centered around the band edge, i.e., k ≈ 0, the
time evolution of the total electron spin is given by an expres-
sion that resembles a one-sided Fourier-transform of a function
with a Gaussian-like shape. Thus, the time evolution of the
total electron spin itself is expected to be well approximated
by a Gaussian rather than an exponential. This expectation was
supported by numerical calculations in Ref. [61].

To summarize, in the Markov limit, an explicit expression
for the spin relaxation rate τ−1

s can be given in the strong-
scattering limit τ−1

p �
√

〈�2
k〉 by Eq. (21), which is the

original result of D’yakonov and Perel’ and which predicts
a spin relaxation rate inversely proportional to the momentum
scattering rate. In the weak-scattering limit τ−1

p �
√

〈�2
k〉,

the total spin in a single shell of states with fixed wave vector
modulus |k| decays exponentially, where the spin relaxation
rate is one half of the momentum relaxation rate. If, however, a
distribution of spin-polarized electrons with varying values of
|k| is optically excited, the DIIB mechanism predicts an alge-
braic or a Gaussian decay of the initial electron spin, depending
on the spectral properties of the initial electron distribution.

III. RESULTS

Before presenting the results of numerical calculations, we
first discuss the parameters used in our study as well as the
details of the numerical methods used for the calculations.

A. System parameters

In this paper, we study the spin dynamics in a narrow
AlxGa1−xAs quantum well immediately after optical excita-
tion with circularly polarized light. The Al content x in the

quantum well determines the momentum scattering and will
be varied from zero to a few percent. Furthermore, we assume
that the crystal can be well described by a zinc-blende lattice
with parameters close to that of GaAs. For our calculations,
we use the lattice constant a = 565.35 pm and the effective
conduction band electron mass m∗ = 0.0665 × m0, where m0

is the free electron mass.
The coupling constant J is chosen in such a way [48] that it

is, on a mean-field level, consistent with the conduction band
offset at a GaAs/AlxGa1−xAs interface of 	Ec = x · 0.87 eV
in magnitude [62]. From this consideration, we obtain the
coupling constant J = a3

4 	Ec = 39 meV nm3.
We choose the width of the quantum well to be d = 10 nm

and only consider the lowest confinement state, for which
〈k2

z 〉 = (π/d)2. Then, the Dresselhaus parameter is given by
βD = −γ 〈k2

z 〉 with γ = −11 meVnm3 (cf. Ref. [47]) yielding
βD ≈ 1 meVnm.

The Rashba coefficient on the other hand is not only
dependent on the material, but also on external electric fields
and potentials [47]. We regard the Rashba coefficient as a
tunable parameter and, for the sake of simplicity, set it to
αR = 0, if not mentioned otherwise.

The optical driving is modeled by choosing suitable initial
values for the electron density matrix. We imagine that a single
circularly polarized Gaussian ultrafast femtosecond laser pulse
has selectively excited spin-up electrons at t = 0 via the spin
selection rules. Consistent with the spectral properties of such
a pump pulse, we assume that at t = 0 only the spin-up
occupations in the electron density matrix are populated
and the spectral electron density is described by a Gaussian
centered at an energy Ec above the band edge with a spectral
standard deviation Es .

B. Numerical methods

With the initial values described above, we numerically
solve either the full quantum kinetic equation (13) or the
Markovian equation (16) using a fourth-order Runge-Kutta
algorithm. In order to arrive at a numerically tractable problem,
we only consider electronic states up to a cutoff energy of
about 20 meV. Furthermore, we take the quasi-continuous
limit and replace sums over k with the corresponding
two-dimensional k-space integral, which is then treated in
polar coordinates. The quantities depending on the polar angle
of a wave vector are then expanded in terms of a discrete
Fourier-series, which turns out to drastically speed up the
calculations. This procedure makes it possible to equally treat
all directions in k space, whereas in other approaches [30]
only selected directions, e.g., the coordinate axes, could be
resolved. The modulus |k| of the wave vector is discretized
straightforwardly. It has been checked that neither refining the
discretization of the k space and the time discretization nor
increasing the cut-off energy further leads to visibly different
results from those presented below.

C. Time evolution

We now discuss the general features of the time evolution
of the electron spin polarization as shown in Fig. 1(a), where
the spin polarization is defined by

∑
k〈sz

k〉/( 1
2Ne) with total
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(b)Ec = 0meV; Es = 1meV; x = 0%
Ec = 0meV; Es = 1meV; x = 2%
Ec = 0meV; Es = 1meV; x = 5%
Ec = 3meV; Es = 1meV; x = 0%

Ec = 0.68 meV; Es → 0 meV; x = 0%

FIG. 1. (a) Time evolution of the optically induced electron spin calculated using the Markovian equation (16) for different impurity
concentrations x and different initial electron distributions (Gaussian with central energy Ec above the band edge and standard deviation Es)
shown in (b).

electron number Ne = ∑
kσ Cσ

σk. First of all, for low impu-
rity concentrations and therefore low momentum scattering
rates, pronounced oscillations of the total electron spin are
found, whereas with increasing impurity concentration, the
oscillations are suppressed and the electron spin polarization
eventually decays monotonically. It can be seen from the
results presented in Fig. 1(a) that the time evolution of the
spin polarization is, in general, not well described by an
exponentially damped oscillation, in particular for strong mo-
mentum scattering. For example, the graph for x = 2% shows
nonmonotonic behavior whilst displaying always positive spin
polarization. In contrast, negative spin polarizations would be
expected from an exponentially damped cosine. It is notewor-
thy that the spin polarization decays even for x = 0, where,
according to the stochastic picture without DIIB, the spin decay
rate is expected to vanish, because τ−1

s ≈ 1
2τ−1

p → 0.
In Fig. 1(a), also the spin dynamics for different initial elec-

tron distributions, which are shown in Fig. 1(b), is presented,
corresponding to different properties of the exciting laser
pulse. The center of the Gaussian Ec measured from the band
edge can be controlled by the central frequency of the exciting
laser and the width (standard deviation Es) is related to the
spectral properties of the laser pulse and has a lower bound due
to the energy-time uncertainty. Nevertheless, it is instructive
to discuss the theoretical case of a spectrally sharp initial spin-
polarized carrier distribution with Es → 0, since this situation
corresponds to turning off the effect of DIIB. The calculated
time evolution in such a situation is depicted by the dotted line
in Fig. 1(a). The center of the spectrally sharp initial electron
distribution is chosen in such a way that it has the same average
wave vector modulus 〈|k|〉 as the initial electron distribution of
the Gaussian with Ec = 0 meV and Es = 1 meV. Comparing
the corresponding calculations with zero and finite width of
the electron distributions reveals that the DIIB is responsible
for the spin decay in the absence of momentum scattering
when the initial electron distribution has a finite width,
whereas the oscillations continue indefinitely in calculations
with spectrally sharp initial electron distribution if x = 0.

When the center of the electron distribution is shifted to
higher energies (dashed-dotted line in Fig. 1), the oscillation
frequency is also increased. This can be explained by the fact
that the strength of the Rashba field �k, which determines

the typical precession frequency in the system, increases with
increasing wave vector modulus |k| or, equivalently, increasing
kinetic energy h̄ωk. Furthermore, the shift of the center of the
electron distributions to higher energies leads to a reduction
of the spin decay. We attribute this to the fact that for a
Gaussian distribution with Ec � Es , the situation resembles
that of a spectrally sharp distribution and DIIB becomes less
important.

D. Dependence of the spin relaxation times
on momentum scattering

It is common in the literature [22,23,29] to discuss spin
relaxation times or rates and their dependencies on different
parameters. However, as we have seen in Fig. 1(a), the spin
dynamics can strongly deviate from an exponential behavior
that is implied by the concept of a spin relaxation rate. Thus
the spin relaxation rate becomes ill-defined and ambiguous in
certain cases.

Nevertheless, it is useful for understanding the qualitative
dependence of the spin dynamics on the model parameters to
consider quantities that can, to a certain extent, be interpreted
as a characteristic time for the decay of the spin polarization.
Here, we discuss two different definitions of spin decay
times.

First, we fit a stretched exponential of the form

f (t) = cos(ωf t) exp
[−(

t/τ f
s

)n]
(25)

to the time evolution of the spin polarization, where ωf , τ
f
s ,

and n are free parameters. The value of τ
f
s is then considered to

be a measure of the spin decay time. The variable parameter n

in the stretched exponential allows one to extract a meaningful
spin decay time, e.g., in the limiting cases where an exponential
or a Gaussian decay is expected. Second, we define τ e

s to be
the time after which the spin polarization has decreased to a
value of 1

e
of its initial value.

The parameters τ e
s and τ

f
s are, in general, not equivalent.

For example, τ e
s is, in general, smaller than τ

f
s since also

the oscillatory part cos(ωf t) leads to a decay of the total
signal for small times. The different aspects of the spin
dynamics measured by τ e

s and τ
f
s can be discussed, e.g.,
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FIG. 2. (a) Spin decay time τs as a function of the momentum scattering rate τ−1
p . The spin decay times are determined either by fitting

a stretched exponential to the time evolution of the total spin polarization (τ f
s ) or by extracting the time after which the spin polarization is

decayed to 1
e

of its initial value (τ e
s ). The black pluses represent the results of calculations using the full quantum kinetic equations, while the

remaining results are based on the Markovian equations of motion. The initial electron distributions used for the calculations are Gaussians
with standard deviation Es = 1 meV (Es → 0 for the results depicted as purple squares) centered at Ec = 0 meV [cf. Fig. 1(b)]. The analytic
expressions in the strong- and weak-scattering limits are depicted as lines. For comparison, a linear fit through the last five points of the
Markovian calculation of τ f

s is shown. (b) Precession frequency of the total spin polarization obtained from the fitting procedure.

for the time evolution of the spin polarization for x = 2% in
Fig. 1(a). There, the spin polarization first decays rapidly, then
it increases again slightly and eventually decays very slowly
toward zero. In this situation, the initial fast decay is measured
by τ e

s , while the slow decay at long times enters via the fit
procedure in τ

f
s , which therefore measures the overall time

scale of the spin decay.
In Fig. 2(a), the spin relaxation times τ e

s and τ
f
s obtained

from calculations of the spin dynamics are depicted as a
function of the momentum scattering rate τ−1

p determined
from Eq. (17), which is varied by changing the impurity con-
centration x in the calculations. For comparison, the analytic
results in the strong-scattering (solid straight line) and the
weak-scattering (dashed hyperbola) limits are also depicted.
It is found that above τ−1

p ≈ 0.1 ps−1 both definitions of the

spin decay times τ
f
s and τ e

s lead to quantitatively different
results, but depend qualitatively on the momentum scattering
in a similar way and follow the general trend expected in the
strong scattering limit. However, the numerically obtained spin
decay times are consistently larger than the DP result, even for
the largest studied momentum scattering rate. This tendency
is visualized by fitting a line through the last five points of the
Markovian result for τ

f
s .

Let us first concentrate on the Markovian results. For
momentum scattering rates below 0.1 ps−1, the results of τ e

s

and τ
f
s differ significantly: The spin decay time τ e

s , which
measures the fast initial decay, decreases monotonically with
decreasing momentum scattering rate. However, τ

f
s , which

measures the overall decay of the spin polarization including
the long-time parts, shows a pronounced kink and a minimum
at τ−1

p ≈ 0.1 ps−1. The discrepancy between τ e
s and τ

f
s

can be traced back to the fact that, for small momentum
scattering rates, the time evolution of the spin oscillates and,
as explained above, the oscillatory part leads to a decay of
the spin that is included in the decay time τ e

s but not in
τ

f
s . The momentum-scattering-dependence of the precession

frequency ωf obtained by the fitting procedure is presented in
Fig. 2(b) and supports this explanation. The results depicted
in Fig. 2(b) indicate a bifurcation point close to the kink in
τ

f
s in Fig. 2(a), below which oscillations occur. However, for

values close to τ−1
p = 0.1 ps−1, i.e., the region of the kink

and the onset of the oscillations, the fitting procedure does
not produce reliable results for ωf , as small changes in the
initial values of the fitting parameters can lead to significantly
different results. Thus, in Fig. 2(b), we present only values
for ωf which are stable with respect to changes in the initial
values of the fit parameters, which excludes the region of the
expected bifurcation point.

It is noteworthy that the numerical results for the spin decay
times for τ−1

p → 0 disagree quantitatively and qualitatively
with the analytical result τs = 2τp. In particular, the numer-
ically obtained spin decay time τ

f
s increases approximately

linearly to a finite value when τ−1
p → 0, whereas the analytical

result predicts a divergence, i.e., the spin decay time becomes
infinitely long. However, as discussed in Sec. II D, DIIB can
become important in the limit τ−1

p → 0. To investigate the
influence of DIIB, we present in Fig. 2(a) (purple squares)
also the spin decay time τ

f
s obtained from calculations with a

spectrally sharp initial electron distribution with the same value
of 〈|k|〉 as the Gaussian distribution used for the calculations
discussed so far. It can be seen that the results of these
simulations coincide with the analytical results in the strong-
and weak-scattering limits.

Thus the discrepancies between numerical calculations for
the Gaussian electron distribution and the analytical results
in the respective limits can be traced back to the finite width
of the spectral electron distribution. In the weak-scattering
limit, the DIIB becomes important and dominates the spin
decay. In the strong-scattering limit, the finite spectral width
is found to increase the spin decay time, i.e., the spin decay is
reduced. The reason for this is that the spin decay time accord-
ing to the DP result given by Eq. (21) is inversely proportional
to 〈�2

k1
〉 and the spin relaxes faster in states with larger wave
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vectors. Because of the finite width of the electron distribution,
the ensemble of electron spins has parts whose spin relaxation
is faster than the average and parts where it is slower. At
medium and long times, the faster relaxing electron spins are
already decayed, whereas the slower decaying electron spins
remain and dominate the long-time dynamics. This effectively
increases the decay time of the total spin polarization compared
to the situation where only one precession frequency is
present.

E. Influence of the central frequency of the exciting laser

In Fig. 2, we have studied a situation where a circularly
polarized laser with central frequency matching the band gap
was used for the optical excitation. Now, we consider an
excitation with a central frequency larger than the band gap
and discuss the influence of the energy difference between
the laser and the band gap on the momentum-scattering-
dependence of the spin decay time. To this end, we repeat
the above Markovian calculations of the spin decay time τ

f
s

with different values of the center Ec of the Gaussian initial
spectral electron distribution and extract the fitted spin decay
rate τ

f
s . The results are shown in Fig. 3 together with the

analytical results in the strong- and weak-scattering limits.
It can be clearly seen that with increasing Ec the numerical

and analytical results agree more and more. This can be
explained by the fact that, when the center of the peak of
the electron distribution Ec is increased while its width Es

remains constant, the ratio Es/Ec decreases and the electron
distribution effectively becomes spectrally sharp.

F. Rashba and Dresselhaus fields

The calculations presented so far only considered the
Dresselhaus term as the origin of a k-dependent effective
magnetic field. The effects of the Rashba interaction on the
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FIG. 3. Spin decay time τ f
s as a function of the momentum

scattering rate τ−1
p for Gaussian initial electron distributions centered

at (a) Ec = 3 and (b) 7 meV above the band edge and with standard
deviation Es = 1 meV.
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FIG. 4. Spin dynamics in a quantum well without momentum
scattering (x = 0) subject to Dresselhaus (D), Rashba (R), or both
(R+D) fields. The initial electron distribution is chosen to be a
Gaussian centered at Ec = 0 with standard deviation Es = 1 meV
and Es → 0, respectively.

spin dynamics is shown in Fig. 4 for an optically excited
quantum well without momentum scattering. It can be seen
that the calculations using only the Dresselhaus field (αR =
0, βD = 1 meVnm) and using only the Rashba interaction
(αR = 1 meVnm, βD = 0) yield identical results. In contrast,
when both, the Rashba and the Dresselhaus terms are taken
into account (αR = βD = 0.5 meVnm), the spin polarization
is found to decay much faster.

Even for calculations assuming a spectrally sharp initial
electron distribution, the joint action of the Rashba and
Dresselhaus field results in a significant decay of the spin
polarization, whereas if the Rashba and Dresselhaus fields
act alone an undamped oscillation is found. The reason for
this is that, if only the Rashba or the Dresselhaus field is
considered, the magnitude of the precession frequency is fixed
by the wave vector modulus |k|. When both interactions are
present, this is not the case anymore and the magnitude of
the precession frequency depends on the polar angle of the
wave vector. Similar results for spectrally sharp distributions
have been obtained in previous works based on rate equations
[63,64]. In contrast, for distributions with finite spectral width
typical in optical experiments the DIIB becomes important.
As shown in Fig. 4, the DIIB strongly suppresses the spin
coherence for all spin-orbit fields considered here. The fact that
the impact of DIIB on the spin dynamics is similar for Rashba
and Dresselhaus spin-orbit fields indicates that the qualitative
trends obtained earlier in this work for the Dresselhaus field
also apply for k-dependent fields of different origin.

G. Algebraic decay

In Fig. 5, the spin dynamics is shown on a double-
logarithmic scale for a calculation with x = 1.5% and Es =
1 meV accounting only for the Dresselhaus field. This scale
allows us to discuss the qualitative behavior of the spin
dynamics on long time scales. It can be clearly seen that the
spin dynamic obeys an algebraic decay ∝ 1

t
rather than an

exponential decay at times �100 ps. Note that the divergence
is only an artifact of negative spin polarizations displayed in a
log-log plot.
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FIG. 5. Double-logarithmic plot of the long-time behavior of the
spin dynamics calculated using the parameters Ec = 0, Es = 1 meV,
αR = 0, βD = 1 meV nm, and x = 1.5%.

As discussed in Sec. II D, an algebraic decay is a result
of an averaging over undamped oscillatory components with
a variation in the distribution of oscillation frequencies. If
these oscillations were exponentially damped individually, a
summation over the damped oscillations would also decay at
least exponentially with the smallest decay rate contained in
the ensemble of damped oscillations. Thus we can conclude
that, on long time scales �100 ps, there are oscillatory
components in the spin polarization that are not significantly
damped due to momentum scattering at the impurities.

H. Non-Markovian effects

The discussion of the spin decay times so far was focused on
the results of calculations based on the Markovian equations
of motion (16). We now move on to discuss non-Markovian
effects in the spin dynamics. In Fig. 2(a), the momentum-
scattering-dependence of spin decay times obtained from the
quantum kinetic equation (13) are presented together with
the Markovian results. It is found that in a wide range
of momentum scattering rates the Markovian and quantum
kinetic calculations predict very similar spin decay times
τ

f
s . Only for large momentum scattering rates a quantitative

discrepancy is visible.
To investigate the origin of this discrepancy, the time

evolution of the spin polarization is plotted in Fig. 6(a) for a
case with larger impurity concentration x = 10% and therefore
large momentum scattering rates τ−1

p = 1.12 ps−1. There, the
quantum kinetic result decays much faster than the Markovian
result. The reason for this is that the redistribution of carriers
in k space, which is accounted for in the quantum kinetic
calculations, is completely absent in the Markovian approach.
This redistribution can be seen in the inset of Fig. 6(a), which
shows the electron distribution at t = 0 and 20 ps for both
calculations. It can be seen that the electrons are redistributed
to states with on average larger wave vectors, which increases
the average spin precession frequency and, in accordance with
the analytical DP result (21), reduces the spin decay time.

It is noteworthy that the increase in the average wave vector
implies an increase in the average kinetic energy, which seems
at first glance to be at odds with the conservation of energy.
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FIG. 6. (a) Comparison of the spin dynamics according to the
quantum kinetic theory (QKT) and the Markovian approach for
x = 10%, d = 4 nm, βD = 7 meVnm, Ec = 0 meV, and Es =
0.4 meV yielding a momentum scattering rate τ−1

p = 1.12 ps−1.
(Inset) The spectral electron distribution for the quantum kinetic
and Markovian calculations at t = 0 and 20 ps. (b) Dynamics of
the average correlation energy as defined in Eq. (26) and the total
energy per electron in the quantum kinetic theory.

However, in quantum kinetic calculations that account for
correlations, there is a contribution to the total energy resulting
from the correlations [65]. Thus the increase of the average
single-particle energy is accompanied by a corresponding
build-up of negative carrier-impurity correlation energy. This
is visualized in Fig. 6(b), where the average correlation energy
per particle, defined as

1

Ne

H cor
Imp := JN

V 2Ne

∑
ckk′

C
ck′

ck (26)

with the total electron number Ne = ∑
kσ Cσ

σk, is depicted as
a function of time. The total energy per electron, also shown in
Fig. 6(b), remains constant. It can be seen that the redistribution
of carriers and therefore the build-up of correlation energy is
mostly confined to the first few picoseconds of the dynamics.

IV. CONCLUSION

We have studied the spin dynamics in optically excited
AlxGa1−xAs quantum wells induced by the interplay of spin
precession in k-dependent spin-orbit fields and momentum
scattering, i.e., the D’yakonov-Perel’ (DP) mechansim [23],
using a quantum kinetic theory. Whereas the DP mechanism
is usually only described in the strong- and weak-scattering
limits, where analytic expressions for the spin relaxation rates
can be obtained, we have investigated the dynamics over a
wide range of parameters including the limiting cases.

It is found that the time evolution of the spin polarization
can be highly nonexponential and the notion of a decay rate
for the total spin polarization becomes ambiguous. This can be
seen by the fact that two different definitions of the spin decay
time, one obtained from a fit of a stretched exponential and
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one obtained from the time after which the spin polarization
has decayed to 1

e
of its initial values, show quantitative and

qualitative differences in their dependence on the momentum
scattering rate.

While it is common to consider only the anisotropic
dependence of the spin-orbit fields on the angle of the
wave vector as a source of dephasing, we resolve both, the
angle and the modulus of the wave vector, allowing us to
study situations with nonequilibrium carrier distributions as
is the case immediately after the optical excitation with an
ultrashort laser pulse. This way, we also include the effects
of dispersion-induced isotropic inhomogeneous broadening
(DIIB) originating from the dependence of spin-orbit fields
on the modulus of the wave vector. Although DIIB has largely
been ignored in the literature on the DP mechanism, we find
that it strongly influences the spin dynamics after ultrafast
optical excitation.

In particular, in the weak-scattering limit, where analytic
expressions predict very large spin decay times without DIIB,
the dephasing due to DIIB limits the spin decay times even in
the absence of momentum scattering. In the strong-scattering
limit, the spin decay times are found to be longer than
expected from the analytical result since the ensemble of
precessing electron spins contains oscillatory components
which decay much slower than the average electron spin and,
thus, extend the lifetime of the total spin polarization compared
to calculations where the spectral electron distribution was
assumed to be spectrally sharp and DIIB is suppressed. Some
of the oscillatory components are even found to be practically
undamped and are responsible for an algebraic decay in the
long-time behavior of the total spin polarization that cannot be
measured by a spin decay time.

Whereas a linear dependence of the spin decay time on
the momentum scattering rate in the strong-scattering limit is
usually considered as the hallmark of the DP mechanism, we
find that the DIIB introduces an offset leading to an affine
linear relationship between spin decay time and momentum
scattering rate. Thus DIIB modifies central features of the DP
mechansim.

Moreover, we find that DIIB can occur in situations where
the spectral electron distribution is narrow if the modulus �k
of the k-dependent precession frequency �k depends not only
on the modulus of the wave vector but also on its polar angle.
This is the case, e.g., if Rashba and Dresselhaus interaction
are simultaneously present and of comparable strength. These
findings show that DIIB and the effects of broad spectral
electron distributions [31], which so far are seldom discussed
in the analysis of ultrafast optical experiments dealing with DP-
type spin decay, can in fact lead to significant deviations from
the analytical results in the strong- [23] and weak-scattering
limits [29].

Although our discussion was mostly confined to the Marko-
vian single-electron picture, we have also presented numerical
calculations taking electron-impurity correlations explicitly
into account. The non-Markovian calculations predict a faster
spin decay compared with the Markovian results. This is traced
back to the build-up of electron-impurity correlations with
negative correlation energies, which enables a redistribution
of electrons to states with larger momentum k. This, in turn,
increases the average spin precession frequency and enhances
the dephasing.

In many experiments, there are other momentum scattering
mechanisms to consider. For example, phonon scattering can
become important for elevated temperatures, which gives
rise to another momentum scattering channel and, in addi-
tion, also influences the spin dynamics via the Elliot-Yafet
[24–26] mechanism. Furthermore, for p-doped systems the
Bir-Aronov-Pikus [27] mechanism affects the spin dynamics,
as the electron spins interact with hole spins. In n-doped
systems, the electron spin dynamics is modified because of
the exchange field resulting from the average carrier spins and
the electron-electron scattering, which provides an additional
momentum scattering mechanism [38,66].

Note that most of our results are based on a Markovian
description where the effects of momentum scattering at the
impurities can be subsumed into a momentum scattering
rate. The resulting spin dynamics does, however, not depend
on the origin of the momentum scattering. Thus the same
conclusions for the spin dynamics are reached when other
mechanisms are responsible for the momentum scattering, as
long as the scattering is approximately elastic. For example,
phonon scattering gives rise to a dissipation of energy from
the electron system and eventually leads to a thermalization of
the electron distribution. This can reduce the average kinetic
energy, the average wave vector, and therewith the average
spin precession frequency as well as the width of the spectral
electron distribution. When the phonon-induced redistribution
of carriers in k space is faster than the typical spin decay
time (here, �50 ps), the electron-phonon interaction can
enhance the spin decay times since, in the strong-scattering
limit, the spin decay time is inversely proportional to the
square of the average spin precession frequency and, in
the weak-scattering limit, the spin dynamics is dominated
by inhomogeneous broadening, which is suppressed if the
width of the spectral electron distribution is reduced. More
investigations will be needed to study quantitatively the spin
dynamics in the presence of inelastic momentum scattering.
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