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Resonance fluorescence and phase-dependent spectra of a singly charged n-doped quantum
dot in the Voigt geometry
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We report on the resonance fluorescence and phase-dependent spectra in singly charged n-doped quantum
dots in the presence of a strong external magnetic field in the Voigt geometry. The use of a nonresonant laser
field driving two of the four active transitions results in the obtention of fluorescent photons along the four
channels. The fluorescent photons coming from the two undriven transitions exhibit sidebands whose spectral
location can be tuned through the Rabi frequency of the driving field and, most interestingly, their linewidths
remain subnatural even for large values of the Rabi frequency of the laser field. It is shown that those sidebands
present quantum fluctuations below the fundamental limit set by vacuum fluctuations. The numerical findings
are fully explained by considering how the dressed states evolve in terms of the external physical magnitudes:
the detuning, the Rabi frequency, and the dephasing rates.
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I. INTRODUCTION

Semiconductor quantum dots (QDs) are analogous to real
atoms, and their optical properties closely resemble the ones
found in atomic physics. Many quantum optical effects—such
as the coherent manipulation of exciton wave functions [1],
optical pumping [2–6], resonance fluorescence [7–23], rota-
tions of the spin vector [24–28], coherent population trapping
[29–32], single photon generation [16,20,33,34]—are the
subjects of stimulating experiments which have revealed their
potential in quantum information science.

The possibility of realizing a spin-photon interface has been
stimulated by the demonstration that the scattered photons
by a solid-state emitter are correlated with the quantum
dot spin [9,14]. One key element of a quantum repeater
protocol is the creation of entanglement between two distant
quantum emitters by overlapping spectrally identical single
photons [11]. However, the spectral inhomogeneity of these
emitters poses a significant challenge. An important aspect in
terms of quantum information processing is the tunability of
the resonantly scattered photons. In order to accomplish this
task, an independent knob to ensure the spectral overlap of the
emitted photons is needed.

The experimental observation of all-optical tunable Ra-
man photons [11] was a first step towards the probabilistic
entanglement of two distant p-doped QDs in the Voigt
geometry [35]. The Raman photons were produced in an
optically driven quantum dot characterized as a � three-level
system. It was shown that by detuning the driving laser from
resonance, the frequency of the Raman photons could be tuned
either by changing this external detuning or the lower level’s
splitting by changing the magnitude of the external magnetic
field. However, in single self-assembled QDs charged with a
single excess conduction-band electron and subject to a high
magnetic field in the Voigt geometry, a four-level description
could provide a more accurate description of the system up
to a field strength of a few teslas. In this case both ground
states are optically coupled to the trion states. The four-level
model has been previously considered to analyze the fidelity
of spin-state preparation [4].

The aim of this work is to extend previous investiga-
tions [11] of the spectral properties of fluorescent Raman
photons scattered by a gated n-doped QD in the Voigt geometry
which is driven by an out-of-resonance laser field, taking into
account the fact that the driving field couples the ground states
to the trion states. We make use of a master equation for
the density matrix equation for the four-level system of a
X1− in a magnetic field. Our treatment generalizes the usual
analysis which reduces the system to a three-level type as
in Refs. [8,11,21]. We show that even if the driven field
populates the trion states, the strength of the driving field
can be used as an additional knob to tune the center frequency
of the Raman photons, keeping subnatural the linewidth of
the corresponding spectral line. In addition, we analyze within
the four-level scheme the phase-dependent spectrum of the
scattered photons. It is found that the subnatural Raman lines
exhibit a level of squeezing below the limit set by vacuum
fluctuations. We also show how these phenomena can be
explained by moving to the dressed state picture. It is worth
mentioning that in a recent experiment, Schulte et al. have
shown that by using a QD with a large optical dipole moment,
and modeling it as a two-level system, quadrature squeezing
and antibunching have been obtained simultaneously [36]. The
noise spectrum of a QD in close proximity to a graphene
sheet has been analyzed also, showing that surface plasmons
strongly influence the level of squeezing of the scattered
radiation [37].

The paper is organized as follows: Sec. II establishes the
model, i.e., the Hamiltonian of the system and the time-
evolution equations of the atomic operators assuming the
rotating-wave approximation. Section III present the results
of numerical simulations together with a physical explanation
of the different effects found. Finally, Sec. IV summarizes the
main conclusions.

II. THEORETICAL MODEL

We consider InAs/GaAs self-assembled QDs via the
Stranski-Krastanov method with growth direction along the
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FIG. 1. Four-level system including the relevant transitions when
the external magnetic field is applied perpendicular to the growth
direction. Transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉 are driven by a πx

polarized laser field (�3), while transitions |1〉 ↔ |4〉 and |2〉 ↔ |3〉
could be driven by a πy laser field (not shown).

Z axis. The QDs are separated from a Fermi sea of electrons
by several nanometers in thick n-doped back contact layer.
An external bias voltage applied between the top gate and the
back contact allows the deterministic charge of the QD [38,39].
The ground spin states are labeled |1z〉 ≡ |↓z〉 and |2z〉 ≡ |↑z〉,
while the excited trion states are |4z〉 ≡ |↓z ↑z ⇓z〉 and |3z〉 ≡
|↓z ↑z ↑z〉. Here ↑z(↓z) and ↑z(↓z) denote a heavy hole and
an electron with spins along (against) the Z axis. Electron and
trion states share the same energy level in the absence of an
external magnetic field. The energy level diagram of such kind
of QD is depicted in Fig. 1(a). The optical transition |1z〉 ↔
|4z〉 ( |2z〉 ↔ |3z〉) is driven by a σ− (σ+) polarized laser field,
while due to selection rules transitions |1z〉 ↔ |3z〉 and |2z〉 ↔
|4z〉 remain dark. The application of an external magnetic field
along the X axis (perpendicular to the Z axis), in the so-called
Voigt geometry, lifts the degeneracy of hole/electron levels
according to E

h(e)
Zm = 1

2μBgh(e)Bx , where E
h(e)
Zm stands for the

Zeeman energy shift relative to Bx = 0 T, Bx being the external
magnetic field, and μB is the Bohr magneton. Quantity gh(e)

is the Landé factor of carrier h (e). The external magnetic
field also causes a reference frame transformation from the Z

axis to the X axis, and we get |2〉 ≡ |↑x〉 = 1/
√

2(|↑z〉 + |↓z〉)
and |1〉 ≡ |↓x〉 = 1/

√
2(|↑z〉 − |↓z〉). Now each ground state

is linked to the two exciton states (|4〉 ≡ |↓x↑x↓x〉 and |3〉 ≡
|↓x↑x↑x〉) via linearly and orthogonally polarized transitions,
as depicted in Fig. 1(b).

The Hamiltonian that governs the dynamics of the QD can
be expressed in the rotating-f approximation as

H = HA + HInt. (1)

The free Hamiltonian HA of the system reads as

HA = h̄

4∑
j=1

ωjσjj , (2)

where h̄ωj is the energy of the j th level and σij are the Pauli
operators.

The interaction Hamiltonian HInt, written as

HInt = −h̄(�31e
−iωLtσ31 + �42e

−iωLtσ42 + H.a.), (3)

accounts for the interaction of the QD with the optical field
of angular frequency ωL which drives transitions |1〉 ↔ |3〉
and |2〉 ↔ |4〉, while transition transitions |1〉 ↔ |4〉 and
|2〉 ↔ |3〉 remain undriven. The Rabi frequencies are given
by �31 = 	μ13 · 	E0h̄/2 and �42 = 	μ24 · 	E0h̄/2, 	E0 being the
slowly varying amplitude of the optical field.

Let us consider the following unitary transformation U (t) =
e−iωL(σ33+σ44)t . The new Hamiltonian should read as

H ′ = U †(t)HU (t) − ih̄U †(t)
∂

∂ t
U (t)

= h̄ω1σ11 + h̄ω2σ22 + h̄(ω3 − ωL)σ33 + h̄(ω4 − ωL)σ44

− h̄(�31σ31 + �42σ42 + H.a.). (4)

Since we are considering a closed system (
∑4

j=1 σjj = Î ,

Î being the identity operator), Eq. (4) can be rewritten as

H ′ = h̄ω1Î + h̄ω21σ22 + h̄(ω31 − ωL)σ33 + h̄(ω41 − ωL)σ44

− h̄(�31σ31 + �42σ42 + H.a.). (5)

Let us define the optical detuning as δ ≡ ω31 − ωL, then Eq. (5)
can be rewritten as

H ′ = +h̄ω21σ22 + h̄δσ33 + h̄(δ − ω34)σ44

− h̄(�31σ31 + �42σ42 + H.a.), (6)

where the constant term h̄ω1Î has been dropped.
The dissipation processes are described through operator

Lρ, which in the Linblad form reads as

Lρ = 
12σ21ρσ12 − 
12

2
(σ11ρ + ρσ11)

+
21σ12ρσ21 − 
21

2
(σ22ρ + ρσ22)

+
31σ13ρσ31 − 
0

2
(σ33ρ + ρσ33)

+
41σ14ρσ41 − 
0

2
(σ44ρ + ρσ44)

+
32σ23ρσ32 − 
0

2
(σ33ρ + ρσ33)

+
42σ24ρσ42 − 
0

2
(σ44ρ + ρσ44)

+ γ22σ22ρσ22 − γ22

2
(σ22ρ + ρσ22)

+ γ11σ11ρσ11 − γ11

2
(σ11ρ + ρσ11). (7)

The terms involving 
kj arise from Linblad operators
L(

√

kjσjk) (j = 1,2, k = 3,4) and they account for the

spontaneous photons produced along transitions |k〉 ↔ |j 〉.
The action of a Linblad operator is defined as L(C) = CρC† −
1
2 (ρC†C + C†Cρ). The term proportional to γii (i = 1,2)
accounts for pure dephasing whereas the terms proportional
to 
21, and 
12 arise from an incoherent relaxation process
which couples states |1〉 ↔ |2〉 bidirectionally. They arise from
exchange interaction with the Fermi sea of electrons in the back
contact giving rise to spin-flip cotunneling.
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The density matrix equations of motion of the system read
as
∂ρ22

∂t
= −(
21 + 
12)ρ22 + (
32 − 
12)ρ33 + (
42 − 
12)ρ44

− i�42ρ24 + i�∗
42ρ42,

∂ρ33

∂t
= −(
32 + 
31)ρ33 + i�31ρ13 − i�∗

31ρ31,

∂ρ44

∂t
= −(
41 + 
42)ρ44 + i�42ρ24 − i�∗

42ρ42,

∂ρ21

∂t
= −F21ρ21 + i�∗

42ρ41 − i�31ρ23,

∂ρ31

∂t
= −F31ρ31 − i�31(ρ33 − ρ11),

∂ρ41

∂t
= −F41ρ41 + i�42ρ21 − i�31ρ43,

∂ρ32

∂t
= −F32ρ32 − i�42ρ34 + i�31ρ12,

∂ρ42

∂t
= −F42ρ42 − i�42(ρ44 − ρ22),

∂ρ43

∂t
= −F43ρ43 − i�∗

13ρ41 + i�42ρ23. (8)

In writing the above, we made use of the following abbrevi-
ations: F21 = 1/2(
21 + 
12 + γ22 + γ11) + iω21, F31 = 1/2
(
31 + 
32 + 
12 + γ11) + iδ, F41 = 1/2(
41 + 
42 + 
12 +
γ11) + i(δ − ω34), F32 = 1/2(
31 + 
32 + 
21 + γ22) + i(δ
− ω21), F42 = 1/2(
41 + 
42 + 
21 + γ22) + i(δ − ω34 −
ω21), and F43 = 1/2(
41 + 
42 + 
31 + 
32) − iω34.

Let us define the vector U (t) = [ρ22(t),ρ33(t),ρ44(t),
ρ21(t),ρ12(t),ρ31(t),ρ13(t), ρ41(t),ρ14(t),ρ32(t),ρ23(t),ρ42(t),
ρ24(t),ρ43(t),ρ34(t)]T , where superscript T stands for trans-
pose. Then we can write Eq. (8) in matrix form as

d

d t
U (t) = MU (t) + B, (9)

with M being an (8 × 8) matrix and B a column vector whose
coefficients can be determined from Eq. (8). Steady-state
values for populations and coherences are derived through
U (∞) = M−1(−B).

We are interested in determining the spectral properties of
the fluorescent photons, in particular the so-called resonance
fluorescence spectrum (RFS) of the QDs. In the steady-state
regime, this spectrum is proportional to the Fourier trans-
formation of the correlation function limt→∞〈E−

s (r,t ′ + t) ·
E+

s (r,t)〉, where E−
s (r,t)/E+

s (r,t) is the negative/positive fre-
quency part of the radiation field in the far zone. The radiation
field consists of a free-field operator and a source-field operator
that is proportional to the atomic polarization operator [40].
Therefore, the steady-state RFS can be expressed in terms of
the atomic correlation function

Sm(ω) ∝ Re

[
lim
t→∞

∫ ∞

0
〈 	E−

s,m(t ′ + t) · 	E+
s,m(t)〉e−iωt ′dt ′

]

(m = x,y), (10)

where Re[ ] denotes the real part of the magnitude enclosed in
square brackets, and E−

s,m(t) is the negative frequency part
of the fluorescent field which in the far-field zone (|	r| �
c/ωkj , k = 3,4, j = 1,2) reads

	E−
s,x(	r,t) =

[
ω2

31

c2|	r| 	μ13σ31(t − |	r|/c) + ω2
42

c2|	r| 	μ24σ42(t − |	r|/c)

]
e−iω(t−r/c),

	E−
s,y(	r,t) =

[
ω2

32

c2|	r| 	μ23σ32(t − |	r|/c) + ω2
41

c2|	r| 	μ14σ41(t − |	r|/c)

]
e−iω(t−r/c), (11)

and 	E+
s,m(t) = ( 	E−

s,m(t))† (m = x,y). In what follows we will assume that ω31 ≈ ω32 ≈ ω41 ≈ ω42, and introduce the spatial

factor f (r) ≡ ω2
32

c2|	r| .
In writing Eq. (10), we abbreviate ω − ωL by ω, but we should interpret ω as a frequency measured relative to the laser

frequency ωL, since we will assume that the QD is driven by a πx polarized laser field. The calculation of Sx(y)(ω) requires us to
evaluate two time correlation functions, which can be performed by means of the quantum-regression theorem [40–42].

Now we may study the optical properties of light scattered by the atom, such as the spectral normally ordered field variance
of Eθ or the squeezing spectrum, which was defined in Refs. [43–46] as

〈: Sk(	r,ω,θ ) :〉 = 1

2π

∫ ∞

−∞
dτ e−iωτ T 〈: 	Ek,θ (	r,t), 	Ek,θ (	r,t + τ ) :〉 (k = x,y), (12)

where 〈A,B〉 = 〈AB〉 − 〈A〉〈B〉 and T is the time ordering operator. Squeezing is characterized by the condition that the normally
ordered variance 〈: Sk(	r,ω,θ ) :〉 of the electric-field quadrature component 	Ek,θ is negative. For this purpose, the operator of the
electric field at the observation point 	r is required. We introduce the slowly varying electric-field operator with phase θ as

	Ek,θ (	r,t) = 1
2

	E+
s,k(	r,t)ei(ωLt+θ) + 1

2
	E−

s,k(	r,t)e−i(ωLt+θ) (k = x,y). (13)

In the case of considering the πx polarized optical transitions, we first calculate the integrand of Eq. (12),

T 〈: 	Ex,θ (	r,t1), 	Ex,θ (	r,t2) :〉 = T 〈: [ 	E+
s,x(t1)ei(ωLt1+θ) + 	E−

s,x(t1)e−i(ωLt1+θ)][ 	E+
s,x(t2)ei(ωLt2+θ) + 	E−

s,x(t2)e−i(ωLt2+θ)] :〉
= T 〈: 	E+

s,x(t1), 	E+
s,x(t2) :〉e+i(ωL(t1+t2)+2θ) + T 〈: 	E+

s,x(t1), 	E−
s,x(t2) :〉e+iωL(t1−t2)

+ T 〈: 	E−
s,x(t1), 	E+

s,x(t2) :〉e−iωL(t1−t2) + T 〈: 	E−
s,x(t1), 	E−

s,x(t2) :〉e−i(ωL(t1+t2)+2θ). (14)
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Now taking into account the time ordering, Eq. (14) can be recasted as

T 〈: 	Ex,θ (	r,t1), 	Ex,θ (	r,t2) :〉 = 〈 	E+
s,x(t1), 	E+

s,x(t2)〉ei(ωL(t1+t2)+2θ)�(t1 − t2) + 〈 	E+
s,x(t2), 	E+

s,x(t1)〉ei(ωL(t1+t2)+2θ)�(t2 − t1)

+〈 	E−
s,x(t1), 	E−

s,x(t2)〉e−i(ωL(t1+t2)+2θ)�(t1 − t2) + 〈 	E−
s,x(t2), 	E−

s,x(t1)〉e−i(ωL(t1+t2)+2θ)�(t2 − t1)

+〈 	E−
s,x(t1), 	E+

s,x(t2)〉eiωL(t2−t1)[�(t1 − t2) + �(t2 − t1)]

+〈 	E−
s,x(t2), 	E−

s,x(t1)〉eiωL(t1−t2)[�(t1 − t2) + �(t2 − t1)], (15)

where �(t) stands for the Heaviside function.
Inserting this last expression in Eq. (12), we obtain

〈: Sx(	r,ω,θ ) :〉 = f (r)2

4π
Re

∫ ∞

0
dτ (eiωτ + e−iωτ )

[(
μ2

13〈σ13(t + τ ),σ13(t)〉 + 	μ13 · 	μ24〈σ13(t + τ ),σ24(t)〉

+ 	μ13 · 	μ24〈σ24(t + τ ),σ13(t)〉 + μ2
24〈σ24(t + τ ),σ24(t)〉)ei2(θ+ωLr/c) + μ2

13〈σ31(t + τ ),σ13(t)〉
+ 	μ13 · 	μ24〈σ31(t + τ ),σ24(t)〉 + 	μ13 · 	μ24〈σ42(t + τ ),σ13(t)〉 + μ2

24〈σ42(t + τ ),σ24(t)〉]. (16)

As for the πy polarized transitions, we arrive at the following expression:

〈: Sy(	r,ω,θ ) :〉 = f (r)2

4π
Re

∫ ∞

0
dτ (eiωτ + e−iωτ )

[(
μ2

14〈σ14(t + τ ),σ14(t)〉 + 	μ14 · 	μ23〈σ14(t + τ ),σ23(t)〉

+ 	μ14 · 	μ23〈σ23(t + τ ),σ14(t)〉 + μ2
23〈σ23(t + τ ),σ23(t)〉)ei2(θ+ωLr/c) + μ2

14〈σ41(t + τ ),σ14(t)〉
+ 	μ14 · 	μ23〈σ41(t + τ ),σ23(t)〉 + 	μ14 · 	μ23〈σ32(t + τ ),σ14(t)〉 + μ2

23〈σ32(t + τ ),σ23(t)〉]. (17)

It is worth mentioning that Eq. (16) is a particular case of the
general expression obtained in Ref. [47], where the effect of
spontaneous generated coherence was considered; i.e., Eq. (12)
in [47] reduces to Eq. (16) in the case with p = 0. However,
the noise spectrum along the diagonal channels of Eq. (17)
was not considered in Ref. [47].

III. NUMERICAL RESULTS

We consider the four levels of the electron-trion system in
the Voigt geometry. The system is driven by an off-resonant πx

polarized laser field detuned by δ from the |3〉 ↔ |1〉 transition.
The excited level relaxes to both ground states with decay
rates 
31 and 
32. The same laser also drives the transition
|4〉 ↔ |2〉 in a more off-resonant way, which in turn results
in a small pumping of population in the opposite direction
with decay rates 
41 and 
42. In what follows we assume that

41 = 
42 = 
32 = 
31 ≡ 
0 = 1.2 μeV, and we consider
the g factors ge = −0.46 and gh = −0.29, as in Ref. [4].
Dephasing rates γ11 = γ22 = 22 MHz and cotunneling rates

12 = 
21 = 1.2 MHz are taken from Ref. [8]. We also assume
that transition dipole moments are equal, i.e., 	μ13 = 	μ24,
which in turn results in �13 = �24 ≡ �.

The obtention of subnatural lines in the RFS has been
experimentally shown to be feasible provided that the system
is driven out of resonance [11]. On the other hand, it is
well known that the RFS is related to the level of population
achieved in the upper levels, thus our first step in our analysis
is to determine how populations are distributed among the
different levels under off-resonant excitation of the continuous
wave (CW) driving field. The results obtained in the case
of considering an external magnetic field of Bext = 2 T are
shown in Fig. 2(a) in the case with δ = −5
0; there we can
appreciate that the two upper levels almost share the same

level of population while level |2〉 is highly populated at a
particular Rabi frequency (�−

opt), where optical pumping is
high in spite of driving the system out of resonance. The
results when the optical detuning is set to δ = +5
0 are shown
in Fig. 2(b), which reveals that the off-resonant pumping
of level |2〉 is less effective in this particular situation and
the optimum Rabi frequency (�+

opt) shifts to lower values,
i.e., �+

opt < �−
opt. If we kept the optical detuning δ fixed and

increase the external magnetic field, the previously described
tendency is maintained, the main differences being (i) the
higher level of population transferred to level |2〉 due to
off-resonant pumping and (ii) the change in the values of the
optimum Rabi frequencies.

Now we focus on the spectrum of scattered photons along
the vertical and horizontal transitions. The results obtained for
a moderate off-resonant driving field (δ = −5
0) are shown
in Fig. 3(a): the solid curve corresponds to the spectrum of
the driven transitions and is made up of the central line and
two blue detuned and two red detuned sidebands, whereas
the dashed curve arises from the undriven transitions and
consequently it lacks from the central line and is made up
of a quadruplet. The innermost sidebands of the undriven
transitions are the ones that exhibit subnatural linewidth. The
use of a positive detuning driving field modifies the spectral
location of the sidebands, although the subnatural narrow lines
are now the outermost sidebands along the undrived channels,
as depicted in Fig. 3(b).

The spectral features depicted in Figs. 3(a) and 3(b) can be
explained by moving to the dressed-state picture (DSP). It can
be shown that the eigenvalues of the quantum system plus the
coherent part of the Hamiltonian are provided by finding the
roots of the polynomial

+ λ4 + b1λ
3 + b2λ

2 + b3λ + b4 = 0, (18)
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FIG. 2. Steady-state population of the states versus the Rabi frequency of the driving field �: |3〉 (solid curve), |4〉 (dashed curve) and |2〉
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FIG. 3. Steady-state RFS of the system [Sj (ω), where j = x,y] driven out of resonance when � = 2
0: Sx(ω) (solid curve) and Sy(ω)
(dashed curve). (a) δ = −5
0 and (b) δ = +5
0. The dotted curve in both panels stands for the spectrum computed in the dressed state picture
[SDSP

y (ω)] as defined in the Appendix. The rest of the parameters are as in Fig. 2. (c) Transition between dressed states accounting for the blue
detuned sidebands in SDSP

y (ω). (d) Sy(ω) for the blue detuned sidebands depicted in (c) where δ = −5
0, and � = 2
0. The thin solid lines
account for the different contributions in Eq. (A5).
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with b1 = −(ω21 − ω34 + 2δ), b2 = ω21δ + (ω21 + δ)(δ −
ω34) − 2�2, b3 = �2δ + �2(ω21 − ω34 + δ) − ω21δ(δ −
ω34), and b4 = �2[�2 − ω21(δ − ω34)]. The roots are labeled
as λj (j = α,β,γ,δ) and are sorted in ascending order, i.e.,
λα < λβ < λγ < λδ . The corresponding eigenstates are

|α〉 = a2α|2〉 + a4α|4〉,
|β〉 = a1β |1〉 + a3β |3〉,

(19)
|γ 〉 = a1γ |1〉 + a3γ |3〉,
|δ〉 = a2δ|2〉 + a4δ|4〉,

where the coefficients are given by a2α = + �√
�2+(ω21−λα )2

,

a4α = + ω21−λα√
�2+(ω21−λα )2

, a2δ = − ω21−λα√
�2+(ω21−λα )2

, a4δ =
+ �√

�2+(ω21−λα )2
, a1β = + �√

�2+λ2
β

, a3β = − λβ√
�2+λ2

β

,

a1γ = + λβ√
�2+λ2

β

, and a3γ = + �√
�2+λ2

β

.

We can shed light on the features found in the spectra
when considering the so-called secular approximation, which

consists of obtaining equations of motion of populations and
coherences while ignoring the coupling between them (the
details are provided in the Appendix). Under such conditions,
the spectra of photons associated with the x and y polarized
channels [Sx(ω) and Sy(ω)] can be split as a superposition
of up to eight Lorentzians whose spectral positions are
given by �jk = λj − λk (j,k = α,β,γ,δ) plus the central line.
Figure 3(c) shows the energy diagram of the dressed states and
the transitions between adjacent manifolds, which account for
all the blue detuned sidebands at a particular value of � and
are valid for the case with δ < 0.

The validity of the secular approximation can be checked
by comparing the spectrum obtained using such a procedure,
[SDSP

y (ω)], with the one determined in the bare basis, [Sy(ω)].
Here we can assess the closeness of the spectrum predicted in
the DSP, plotted in Figs. 3(a) and 3(b) as a dotted line, to the
one in the bare basis, which appears as a dashed line. In the
case considered in Fig. 3(a), transitions |β,N〉 ↔ |α,N − 1〉
and |γ,N〉 ↔ |α,N − 1〉 have a negligible contribution and do
not show up in the spectrum in the dressed basis (dotted line).
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FIG. 4. (a) Spectral location of the narrow sidebands �δγ versus the Rabi frequency � and the optical detuning δ. (b) Linewidth of the
narrow sidebands 2
δγ versus the Rabi frequency � and the optical detuning δ. (c) Linewidth of the narrow sidebands 2
δγ versus the dephasing
γ22 and the optical detuning δ in the case with � = 2
0. (d) Linewidth of the narrow sidebands 2
δγ versus the dephasing γ22 and the Rabi
frequency � in the case with δ = −10
0.
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This latter effect is better appreciated in Fig. 3(d), where the
individual contributions to [SDSP

y (ω)] are displayed separately.
In addition, the subnatural narrow line is obtained along
transition |δ,N〉 ↔ |γ,N − 1〉, which corresponds to the inner
sideband, whereas the outer sideband arises from transitions
|δ,N〉 ↔ |β,N − 1〉. Note that although the full spectrum
along the diagonal channels (dashed curve) only shows two
blue and two red detuned sidebands, the spectrum in the DSP
consists of up to four blue and four red detuned sidebands
[see Eq. (A5)], but two of the Lorentzians have a negligible
contribution and are shadowed by the ones mentioned above.

The adequateness of the DSP to describe the RFS also
holds for the case of a negative detuning, as shown with the
dotted line in Fig. 3(b): in this case the Ramman photons
are produced along transition |δ,N〉 ↔ |β,N − 1〉 and the
spectrum exhibits up to three detuned blue sidebands while the
fourth one, coming from transition |γ,N〉 ↔ |α,N − 1〉, has a
vanishing contribution. Although not shown, the evaluation of
Sx(ω) in the DSP [SDSP

x (ω) as given in Appendix] fits well the
numerical findings of Figs. 3(a) and 3(b).

It is worth noting the asymmetry in the peak values of
the two subnatural sidebands. This asymmetry becomes more
evident for the case with negative detuning in panel 3(b)
and its origin can be attributed to the the different couplings
and populations of the dressed states. By picking the terms
in Eq. (A4) responsible for the blue and the red detuned
sidebands [which are proportional to 〈σγγ (∞)〉 and 〈σδδ(∞)〉,
respectively], we can check that the two Lorentzians share
the same linewidth but have different coefficients due to the
asymmetrical coupling of the dressed states to the driving laser.

The change of either the detuning or the external magnetic
field was shown to allow the frequency tuning of the Raman
photons [11]. Here we show that the change of the Rabi
frequency is an additional parameter which allows us to tune
the center frequency of the subnatural sidebands. Figure 4(a)
presents a contour plot of the center frequency �δγ versus the
Rabi frequency � and the optical detuning δ, while Fig. 4(b)
displays the linewidth of such sidebands (2
δγ ) predicted in the
DSP. These two figures indicate to us that there is a wide range
of parameters (�,δ) which allow one to obtain subnatural
Raman photons over an interval of frequencies [14
0, 22
0].

This indicates to us that the subnatural linewidth is obtained
even for large pumping fields and is not dramatically modified
through power broadening.

Since QDs are known to be prone to dephasing, it is essential
to consider whether obtaining subnatural Raman photons is
limited by this mechanism. Figure 4(c) presents a contour plot
of the linewidth 2
δγ versus the optical detuning δ and the
value of γ22 obtained for the case with � = 
0 and assuming
that γ11 = γ22. The interval of variation for γ22 has been taken
to be from one tenth to ten times the one used in Fig. 3.
Figure 4(d) presents a contour plot of the linewidth 
δγ versus
the Rabi frequency � and the value of γ22 obtained when
considering an optical detuning of δ = −10
0. These two
figures are useful to determine the range of parameters where
subnatural photons can be obtained.

Phase-dependent spectra of the Raman photons

Another interesting aspect which, to our knowledge, has not
been previously addressed relates to the level of fluctuations
of the Raman photons. To this end we consider the phase-
dependent spectra of the fluorescent photons produced along
the diagonal transitions, 〈: Sy(ω,θ ) :〉. We are analyzing the
squeezing spectra given in Eq. (17), therefore we assume that
the scattered radiation field is frequency filtered [46,48].

The most relevant finding is that the scattered field along
the undriven transition exhibits reduced fluctuations at certain
frequencies. Specifically, the use of a negatively/positively
detuned driving field results in the obtention of squeezing
at the sidebands where the Raman photons are obtained for
the out-of-phase/in-phase quadrature, as shown in Fig. 5. This
phenomenon has no counterpart in a two-level system, where
we deal with the scattered field along the transition which is
also pumped by the external laser field.

We have shown in Fig. 4(b) that the same linewidth of
the Raman photons can be obtained along the |δ〉 ↔ |γ 〉
transitions for different pairs of values (δ,�). Let us examine
how the phase-dependent spectrum is modified for a selected
set of pairs (δ,�) chosen such that 
δγ remains constant.
The results of the numerical simulations are displayed in
Fig. 6(a), and indicate to us that the most favorable situation

−50 −30 −15 0 15 30 50

−0.05

0

0.05

0.10

0.15

0.20

ω (units of Γ0)

:S
y
(ω

,θ
)

:

(a) θ = 0
θ = π/2

−50 −30 −15 0 15 30 50
−0.07

0

0.05

0.10

0.15

0.20

ω (units of Γ0)

:S
y
(ω

,θ
)

:

(b) θ = 0
θ = π/2

FIG. 5. Squeezing spectra for the undriven transition 〈: Sy(ω,θ ) :〉: in phase quadrature (solid line) and out of phase quadrature (dashed
line). The Rabi frequency of the field is set to � = 2
0, and the optical detuning to δ = −5
0 in (a) and to δ = +5
0 in (b).
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FIG. 6. (a) Squeezing spectra for the undriven transition 〈: Sy(ω,θ = π/2) :〉 for the out-of-phase quadrature for different pairs of (δ,�)
(in units of 
0) such that 
δγ = 0.22
0: (−3.9,1.9) (solid curve), (−5.8,2.8) (dashed curve), (−7.4,3.4) (dashed-dotted curve), and (−9.1,4.2)
(dotted curve). Other parameters: γ22 = 0.08
0. (b) Detail of panel (a) around the blue detuned sideband associated with the Raman photons.
Squeezing spectra for the undriven transition 〈: Sy(ω,θ = π/2) :〉 and different values of the dephasing: γ22 = 0.008
0 (solid curve), γ22 =
0.08
0 (dashed curve), and γ22 = 0.8
0 (dashed-dotted curve). Other parameters are (c) δ = −9.1
0 and � = 4.2
0; (d) δ = −3.9
0 and
� = 1.9
0.

for maximizing the level of squeezing relies on the use of
a large detuning at the expense of increasing the power of
the driving field. This is better appreciated by inspecting the
detailed view of the squeezing spectrum centered around the
frequencies where the Raman photons are obtained, shown in
Fig. 6(b).

It is to be noted that the (global) time-ordered variance or
quadrature squeezing can be obtained by integrating Eq. (12)
in the frequency domain [45,46,48] according to

〈: ( 	Ey,θ (	r))2 :〉 =
∫ +∞

−∞
dω 〈: Sy(	r,ω,θ ) :〉. (20)

The integral in Eq. (20) can be numerically computed (its
analytical evaluation in the bare basis is unmanageable) and
reveals that there is no quadrature squeezing for the photons
produced along the diagonal transitions: 〈 : ( 	Ey,θ (	r))2 : 〉 > 0.
Under the secular approximation, the evaluation of Eq. (20) is
straightforward using the residue theorem and confirms that
the quadrature squeezing is always positive for any values of
δ and �. It is worth noting that a recent experiment has found

non-null quadrature squeezing from photons scattered from a
neutral exciton transition of a single quantum dot [36].

Finally we address the question of how dephasing modifies
the obtention of squeezing at the sidebands where subnatural
photons can be obtained. Figure 6(c) shows the effect of
dephasing rate γ22 on the level of squeezing obtained at the sub-
natural photons for the case with δ = −9.1
0 and � = 4.2
0.
Here we can see that a reduction of the dephasing rate γ22 by
an order of magnitude results in an increase of the negative
peak value, while the increase of γ22 of an order of magnitude
makes the peak value no longer subnatural, but fluctuations at
that sideband remain negative. This behavior is obtained for
other pairs of values (δ,�), as illustrated in Fig. 6(d).

IV. CONCLUSIONS

In this work we present a theoretical description of the
spectral properties of the fluorescent photons in singly charged
n-doped QDs in the Voigt geometry. The QDs are modeled
as a four-level atomic system and we consider the system
to be driven by a single laser field which couples the vertical
transitions. The characteristics of the fluorescent photons along
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the driven and the undriven channels are analyzed. When the
system is driven out of resonance (δ �= 0), we show through
numerical simulations that the RFS of the undriven transitions
can exhibit up to two or three resolved sidebands depending
on the sign of the detuning, one of them having subnatural
linewidth. It is shown that the center and linewidth of such
a narrow spectral line can be tuned by changing the Rabi
frequency of the driving field. These spectral features are fully
explained by moving to the DSP in the secular approximation,
where it is shown that the RFS can be decomposed as a
superposition of Lorentzians whose center, amplitudes, and
linewidths account for the different numerical findings. In
addition, we have determined the phase-dependent spectra of
the fluorescent photons when δ �= 0, showing that under certain

conditions the narrow sidebands can exhibit fluctuations below
the limit set by vacuum fluctuations. The level of squeezing
found is shown to depend on both the detuning and the Rabi
frequency of the driving field. The influence of dephasing on
the RFS and the phase-dependent spectra is also analyzed,
showing that this is a limiting factor to obtain narrow spectral
lines of the scattered photons along the undriven transitions.
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APPENDIX: RESONANCE FLUORESCENCE AND SQUEEZING SPECTRA IN THE DRESSED STATE BASIS

To obtain the spectra we need to transform the atomic operators σij (τ ) (i,j = 1,2,3,4) to the dressed basis through

σij (τ ) = σαα(τ )aiαajα + σββ(τ )aiβajβ + σγγ (τ )aiγ ajγ + σδδ(τ )aiδajδ + σαβ(τ )aiαajβ + σβα(τ )aiβajα + σαγ (τ )aiαajγ

+ σγα(τ )aiγ ajα + σαδ(τ )aiαajδ + σδα(τ )aiδajα + σβγ (τ )aiβajγ + σγβ(τ )aiγ ajβ + σβδ(τ )aiβajδ + σδβ(τ )aiδajβ

+ σγ δ(τ )aiγ ajδ + σδγ (τ )aiδajγ . (A1)

With the help of Eq. (A1) we can derive the equations of motion for populations and coherences in the secular approximation,
which read

d〈σαα(t)〉
dt

= 
̂αα〈σαα(t)〉 + 
̂αβ〈σββ(t)〉 + 
̂αγ 〈σγγ (t)〉 + 
̂0
αα,

d〈σββ (t)〉
dt

= 
̂βα〈σαα(t)〉 + 
̂ββ〈σββ(t)〉 + 
̂βγ 〈σγγ (t)〉 + 
̂0
ββ,

d〈σγγ (t)〉
dt

= 
̂γ α〈σαα(t)〉 + 
̂γβ〈σββ(t)〉 + 
̂γ γ 〈σγγ (t)〉 + 
̂0
γ γ ,

d〈σβα(t)〉
dt

= −(
βα − i�βα)〈σβα(t)〉, d〈σγα(t)〉
dt

= −(
γα − i�γα)〈σγα(t)〉,
d〈σαδ(t)〉

dt
= −(
αδ − i�αδ)〈σαδ(t)〉, d〈σβγ (t)〉

dt
= −(
βγ − i�βγ )〈σβγ (t)〉,

d〈σβδ(t)〉
dt

= −(
βδ − i�βδ)〈σβδ(t)〉, d〈σγ δ(t)〉
dt

= −(
γδ − i�γδ)〈σγ δ(t)〉, (A2)

where �jk = λj − λk (j �= k and j,k = α,β,γ,δ) stands for the effective Rabi frequencies in the new basis, and the coefficients
appearing in Eq. (A2) involving populations read


̂0
αα = +
42a

2
2αa2

4δ + γ22a
2
2αa2

2δ,


̂αα = −(
42 + 
41)a2
4α − (
21 + γ22)a2

2α − γ22a
2
2α − γ22a

2
2αa2

2δ − 
42a
2
2αa2

4δ + 
42a
2
2αa2

4α + γ22a
4
2α,


̂αβ = 
32a
2
2αa2

3β + 
12a
2
1βa2

2α − 
42a
2
2αa2

4δ − γ22a
2
2αa2

2δ, 
̂αγ = 
32a
2
2αa2

3γ + 
12a
2
1γ a2

2α − 
42a
2
2αa2

4δ − γ22a
2
2αa2

2δ,


̂0
ββ = +
41a

2
1βa2

4δ + 
21a
2
1βa2

2δ, 
̂βα = 
41a
2
1βa2

4α + 
21a
2
1βa2

2α − 
41a
2
1βa2

4δ − 
21a
2
1βa2

2δ,


̂ββ = −(
32 + 
31)a2
3β − (
12 + γ11)a2

1β − 
21a
2
1βa2

2δ − 
41a
2
1βa2

4δ + 
31a
2
1βa2

3β + γ11a
4
4β,


̂βγ = 
31a
2
1βa2

3γ + γ11a
2
1βa2

1γ − 
41a
2
1βa2

4δ − 
21a
2
1βa2

2δ, 
̂0
γ γ = +
41a

2
1γ a2

4δ + 
21a
2
1γ a2

2δ,


̂γ α = 
41a
2
1γ a2

4α + 
21a
2
1γ a2

2α − 
41a
2
1γ a2

4δ − 
21a
2
1γ a2

2δ, 
̂γβ = 
31a
2
1γ a2

3β + γ11a
2
1βa2

1γ − 
41a
2
1γ a2

4δ − 
21a
2
1γ a2

2δ,


̂γ γ = −(
32 + 
31)a2
3γ − (
12 + γ11)a2

1γ − 
21a
2
1γ a2

2δ − 
41a
2
1γ a2

4δ + 
31a
2
1γ a2

3γ + γ11a
4
1γ , (A3)
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whereas the coefficients appearing in Eq. (A2) involving coherences read


βα = 
32 + 
31

2
a2

3β + 
42 + 
41

2
a2

4α + 
21 + γ22

2
a2

2α + 
12 + γ11

2
a2

1β,


γα = 
32 + 
31

2
a2

3γ + 
42 + 
41

2
a2

4α + 
21 + γ22

2
a2

2α + 
12 + γ11

2
a2

1γ ,


αδ = 
41 + 
42

2

(
a2

4α + a2
4δ

) + 
21 + γ22

2

(
a2

2α + a2
2δ

) − γ22a
2
2αa2

2δ − 
42a2αa2δa4αa4δ,


βγ = 
31 + 
32

2

(
a2

3β + a2
3γ

) + 
12 + γ11

2

(
a2

1β + a2
1γ

) − γ11a
2
1γ a2

1β − 
31a1βa1γ a3βa3γ ,


βδ = 
32 + 
31

2
a2

3β + 
42 + 
41

2
a2

4δ + 
21 + γ22

2
a2

2δ + 
12 + γ11

2
a2

1β,


γ δ = 
32 + 
31

2
a2

3γ + 
42 + 
41

2
a2

4δ + 
21 + γ22

2
a2

2δ + 
12 + γ11

2
a2

1γ . (A4)

The RFS spectra along the diagonal and vertical channels in the DSP are derived by making use of Eq. (A2), and the final
results read as

SDSP
y (ω) ≈ +a2

3βa2
2α


βα〈σββ(∞)〉

2

βα + (ω + �βα)2
+ a2

1βa2
4α


βα〈σαα(∞)〉

2

βα + (ω − �βα)2
+ a2

1βa2
4δ


βδ〈σδδ(∞)〉

2

βδ + (ω + �βδ)2
+ a2

3βa2
2δ


βδ〈σββ(∞)〉

2

βδ + (ω − �βδ)2

+ a2
3γ a2

2α


γα〈σγγ (∞)〉

2

γα + (ω + �γα)2
+ a2

1γ a2
4α


γα〈σαα(∞)〉

2

γα + (ω − �γα)2
+ a2

1γ a2
4δ


γ δ〈σδδ(∞)〉

2

γ δ + (ω + �γδ)2
+ a2

3γ a2
2δ


γ δ〈σγγ (∞)〉

2

γ δ + (ω − �γδ)2
,

(A5)

SDSP
x (ω) ≈ +a2

3βa2
1γ


βγ 〈σββ(∞)〉

2

βγ + (ω + �βγ )2
+ a2

3γ a2
1β


βγ 〈σγγ (∞)〉

2

βγ + (ω − �βγ )2
+ a2

4αa2
2δ


αδ〈σαα(∞)〉

2

αδ + (ω + �αδ)2

+ a2
4δa

2
2α


αδ〈σδδ(∞)〉

2

αδ + (ω − �αδ)2
+ S0,x(ω), (A6)

where the term S0,x(ω) accounts for transitions between adjacent manifolds of dressed states, i.e., from |j,N〉 to |j,N − 1〉
(j = α,β,γ,δ), thus the frequency of these transitions is located at ωL.

To determine the contributions to the central line S0,x(ω), let us define the vector Ujj (τ ) =
[〈σαα(τ ),σjj (0)〉,〈σββ (τ ),σjj (0),〈σγγ (τ ),σjj (0)〉〉] (j = α,β,γ,δ). According to the quantum regression theorem and
taking into account the Bloch equations for populations appearing in Eq. (A2), the vector Ujj (τ ) satisfies the following
equation:

d Ujj (τ )

dτ
= M̂Ujj (τ ), (A7)

where the matrix M̂ is given by

M̂ =
⎛
⎝
̂αα 
̂αβ 
̂αγ


̂βα 
̂ββ 
̂βγ


̂γ α 
̂γβ 
̂γ γ

⎞
⎠. (A8)

By making use of the Laplace transform of Eq. (A7), we arrive at Ujj (s) = (sI3 − M̂)−1[Ujj (0)], I3 being a 3 × 3 identity matrix,
where we should make the replacement s = iω. Finally the contributions to the central line read

S0,x(ω) = Re
[ + a2

2αa2
4αU (1)

αα (iω) + a2
3βa2

1βU
(2)
ββ (iω) + a2

3γ a2
1γ U (3)

γ γ (iω) − a2
2δa

2
4δ

(
U

(1)
δδ (iω) + U

(2)
δδ (iω) + U

(3)
δδ (iω)

)]
, (A9)

where U
(k)
jj (iω) stands for the kth element of vector Ujj (iω).

The squeezing spectra along the diagonal and vertical channels in the DSP are derived by making use of Eq. (A2), and the
final results for the in phase cuadrature read as

〈
: SDSP

y (ω,θ = 0) :
〉 = + 
βα


2
βα + (ω ± �βα)2

[
a2

2αa2
3β〈σββ(∞)〉 + a2

1βa2
4α〈σαα(∞)〉 + a1βa3βa2αa4α(〈σαα(∞)〉 + 〈σββ(∞)〉)]

+ 
δβ


2
δβ + (ω ± �δβ)2

[
a2

2δa
2
3β〈σββ(∞)〉 + a2

1βa2
4δ〈σδδ(∞)〉 + a1βa3βa2δa4δ(〈σδδ(∞)〉 + 〈σββ(∞)〉)]
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+ 
γα


2
γα + (ω ± �γα)2

[
a2

1γ a2
4α〈σαα(∞)〉 + a2

2αa2
3γ 〈σγγ (∞)〉 + a1γ a3γ a2αa4α(〈σαα(∞)〉 + 〈σγγ (∞)〉)]

+ 
δγ


2
δγ + (ω ± �δγ )2

[
a2

1γ a2
4δ〈σδδ(∞)〉 + a2

2δa
2
3γ 〈σγγ (∞)〉 + a1γ a3γ a2δa4δ(〈σδδ(∞)〉 + 〈σγγ (∞)〉)],

(A10)

〈
: SDSP

x (ω,θ = 0) :
〉 = + 
αδ


2
αδ + (ω ± �αδ)2

[
a2

2δa
2
4α〈σαα(∞)〉 + a2

2αa2
4δ〈σδδ(∞)〉 + a2αa2δa4αa4δ(〈σαα(∞)〉 + 〈σδδ(∞)〉)]

+ 
βγ


2
βγ + (ω ± �βγ )2

[
a2

1γ a2
3β〈σββ(∞)〉 + a2

1βa2
3γ 〈σγγ (∞)〉 + a1βa1γ a3βa3γ (〈σββ(∞)〉 + 〈σγγ (∞)〉)]

+ S0
x (ω), (A11)

S0
x (ω) being the contribution to the central line. The expression for this component obeys the equation

S0
x (ω) = Re

[ + 2a2
2αa2

4α

(
U (1)

αα (iω) + U (1)
αα (−iω)

) + 2a2
3βa2

1β

(
U

(2)
ββ (iω) + U

(2)
ββ (−iω)

) + 2a2
3γ a2

1γ

(
U (3)

γ γ (iω) + U (3)
γ γ (−iω)

)
− 2a2

2δa
2
4δ

(
U

(1)
δδ (iω) + U

(2)
δδ (iω) + U

(3)
δδ (iω) + U

(1)
δδ (−iω) + U

(2)
δδ (−iω) + U

(3)
δδ (−iω)

)]
. (A12)

The formulas for the out-of-phase quadrature reduce to

〈
: SDSP

y (ω,θ = π/2) :
〉 = + 
βα


2
βα + (ω ± �βα)2

[
a2

2αa2
3β〈σββ(∞)〉 + a2

1βa2
4α〈σαα(∞)〉 − a1βa3βa2αa4α(〈σαα(∞)〉 + 〈σββ(∞)〉)]

+ 
δβ


2
δβ + (ω ± �δβ)2

[
a2

2δa
2
3β〈σββ(∞)〉 + a2

1βa2
4δ〈σδδ(∞)〉 − a1βa3βa2δa4δ(〈σδδ(∞)〉 + 〈σββ(∞)〉)]

+ 
γα


2
γα + (ω ± �γα)2

[
a2

1γ a2
4α〈σαα(∞)〉 + a2

2αa2
3γ 〈σγγ (∞)〉 − a1γ a3γ a2αa4α(〈σαα(∞)〉 + 〈σγγ (∞)〉)]

+ 
δγ


2
δγ + (ω ± �δγ )2

[
a2

1γ a2
4δ〈σδδ(∞)〉 + a2

2δa
2
3γ 〈σγγ (∞)〉 − a1γ a3γ a2δa4δ(〈σδδ(∞)〉 + 〈σγγ (∞)〉)],

(A13)

〈
: SDSP

x (ω,θ = π/2) :
〉 = + 
αδ


2
αδ + (ω ± �αδ)2

[
a2

2δa
2
4α〈σαα(∞)〉 + a2

2αa2
4δ〈σδδ(∞)〉 − a2αa2δa4αa4δ(〈σαα(∞)〉 + 〈σδδ(∞)〉)]

+ 
βγ


2
βγ + (ω ± �βγ )2

[
a2

1γ a2
3β〈σββ(∞)〉 + a2

1βa2
3γ 〈σγγ (∞)〉 − a1βa1γ a3βa3γ (〈σββ(∞)〉

+ 〈σγγ (∞)〉)]. (A14)

Note that in the secular approximation the out-of-phase quadrature for the spectrum corresponding to the vertical transitions
lacks the central component.
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