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Time-dependent current into and through multilevel parallel quantum dots in a photon cavity
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We analyze theoretically the charging current into, and the transport current through, a nanoscale two-
dimensional electron system with two parallel quantum dots embedded in a short wire placed in a photon
cavity. A plunger gate is used to place specific many-body states of the interacting system in the bias window
defined by the external leads. We show how the transport phenomena active in the many-level complex central
system strongly depend on the gate voltage. We identify a resonant transport through the central system as the
two spin components of the one-electron ground state are in the bias window. This resonant transport through the
lowest energy electron states seems to a large extent independent of the detuned photon field when judged from
the transport current. This could be expected in the small bias regime, but an observation of the occupancy of the
states of the system reveals that this picture is not entirely true. The current does not reflect slower photon-active
internal transitions bringing the system into the steady state. The number of initially present photons determines
when the system reaches the real steady state. With two-electron states in the bias window we observe a more
complex situation with intermediate radiative and nonradiative relaxation channels leading to a steady state with
a weak nonresonant current caused by inelastic tunneling through the two-electron ground state of the system.
The presence of the radiative channels makes this phenomena dependent on the number of photons initially in
the cavity.

DOI: 10.1103/PhysRevB.95.195307

I. INTRODUCTION

Various properties of nanoscale electron and spin systems
in microwave cavities are presently the focus point of many
researchers. Just to mention some; photon emission from a
cavity-coupled double quantum dot caused by an electron
transport through it has been reported [1], and the manipulation
of spin qubits in cavities has gained paramount interest [2,3].

Investigations of transport of electrons through solid-state
electronic systems placed in photon cavities are gaining
attention. Partially, this is due to the obvious connection to
efforts to achieve quantum computation in a solid-state system,
and partially it is due to the interest to study fundamental
light-matter interactions in a system expected to be highly
tunable and offer increased sensitivity of measurements. In
several cases the electronic systems have been single or
multiple quantum dots created with InAs [2], GaAs [4,5],
carbon nanotubes [3], or graphene [6], and very recently in
SiGe heterostructures [7].

Experiments have been reported on carbon nanotube quan-
tum dots in a planar microwave cavity coupled to external
fermionic or superconducting leads. The sensitivity of the
measurements due to the cavity allows for the detection of
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a photon assisted current of 0.3 pA corresponding to the mean
photon number in the cavity being 120 [8,9], a current that
is much lower than what is common in measurements of
photon assisted tunneling through quantum dots when they
are not placed in a cavity [10]. Numerous models have been
presented for transport and processes in cavity-quantum elec-
trodynamics systems [11–13], and time-dependent electron
transport through nanoelectron systems in a photon cavity
in the transient [14], or in the long-time regime on the way
towards the steady state [15].

Here, we present results concentrating on the charging
current of, or the transport current through, a system of
two multilevel parallel quantum dots embedded in a short
two-dimensional quantum wire placed in a photon cavity with
one mode. We use a recently developed Markovian version of
the model to analyze the transport current in the long-time limit
in Liouville space [15,16]. An alternative scheme has been
employed by Marino and Diehl that transform a Markovian
master equation into a dynamical field theoretical model
that they subject to a Keldysh functional renormalization to
investigate nonequilibrium phase transitions in driven open
systems [17].

As we are describing transport through a multilevel system
including both the para- and diamagnetic part of the electron-
photon interaction [18], we will not limit our scope to couple
any particular two levels of the electron system resonantly
with the cavity photon mode, but we will focus our attention
on analyzing all underlying relaxation channels. Experiments
on transport through electron systems in a photon cavity are
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usually not performed with time resolution, but in externally
photon pumped cavities [9]. Calculation results from time
resolved models of the underlying processes can serve as a
basis for understanding and interpreting experimental results
with growing complexity of the systems, as will be discussed
below.

Our goal is to present a method to describe complex
nanoscale electron systems placed in a photon cavity, which
require a special attention to their geometry and all interactions
and couplings present. We use a model with a state-dependent
coupling tensor between the central electron system and the
semi-infinite external leads. Building the interacting equation
of motion requires a stepwise introduction of the model
complexities (interactions and components) together with
appropriate truncation of the ensuing many-body spaces at
each step [14,19].

II. THE MODEL

We consider a short two-dimensional quantum wire, in-
corporating two parallel quantum dots, which is placed in a
photon cavity. We will call this device the central system. The
short quantum wire, and indirectly the entire central system,
is weakly coupled to two external leads, the left (L), and the
right (R) leads, acting as electron reservoirs. The coupling
opens up the central system to electron transport through it
at time t = 0. The model is appropriate for the description
of weak coupling of the central system and the leads in the
regime of sequential tunneling. We consider the leads to be at
temperature T = 0.5 K before the coupling, and assume this
temperature to be higher than the Kondo temperature of the
leads. We do thus not describe processes in the Kondo regime
[20,21].

Our choice of a central system stems from the fact that
with appropriate parameters we have a system with a very
rich character. The states of the system are anisotropic and
thus couple differently to different polarizations of the cavity
photon field. The system has “bound” states with one or two
electrons localized away from the contact area of the external
leads. It has localized states in a quasi-continuum. Due to
the anisotropy and the geometric information contained in
the model, we have different selection rules for different
relaxation channels, or transitions. All these are properties
that should appeal to researchers working in the experimental
field.

Below we first establish details of the central system
of strongly coupled electrons and photons and review its
properties. Then we describe the master equation formalism
used to model the time-dependent electron transport through
the open central system.

A. The central system

We consider a short two-dimensional quantum wire with
two parallel quantum dots placed in a photon cavity. The
potential energy landscape defining the whole central system
(the dots and the finite wire), and the plunger gate voltage, Vg ,
used to raise or lower the central system with respect to the
chemical potentials of the external leads, can be described by
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FIG. 1. The central system connected to the parabolically con-
fined semi-infinite external leads. The common confinement energy
of the leads and the central system h̄�0 = 2.0 meV, and the
small perpendicular external magnetic field B = 0.1 T define a
characteristic length aw = 23.8 nm. The white vertical gaps indicate
the boundary between the leads and the central system.
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)
θ

(
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2
+ x

)
, (1)

with h̄�0 = 2.0 meV, Vd = −6.5 meV, β = 0.03 nm−1, d1 =
−50 nm, d2 = +50 nm, Lx = 150 nm, and θ is the Heaviside
step function. The potential is shown in Fig. 1. The first line
in Eq. (1) describes the parabolic confinement of the short
quantum wire in the y direction, perpendicular to the transport
direction. The second line defines the potential of the quantum
dots, and the third line specifies the spatial domain of the
short wire, beyond which we consider the potential infinite,
supplying the wire with hard wall ends in the x direction.

Considering the small size of the system and the low bias to
be used, the central system can contain several photons (0–16)
and few electrons (0–3) and is best described by a many-body
formalism. The interactions of its constituents are accounted
for via a configuration interaction (CI) approach (also known
as exact numerical diagonalization) [19]. We assume GaAs
parameters, κ = 12.4,m∗ = 0.067me, and g∗ = −0.44. The
parameters of the potential (1) are chosen to investigate a
character-rich GaAs system offering properties listed in the
second paragraph of this section, a system that is still feasible
to attack numerically.

The Hamilton operator for the central system in terms of
the field operators is

HS =
∫

d2rψ†(r)

[
π2

2m∗ + V (r)

]
ψ(r) + HEM + HCoul

− 1

c

∫
d2r j(r) · Aγ − e

2m∗c2

∫
d2r ρ(r)A2

γ , (2)
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with

π =
(

p + e

c
Aext

)
, (3)

where Aext is a classical vector potential generating an external
homogeneous small magnetic field B = 0.1 T along the
z axis perpendicular to the plane of the two-dimensional
semiconductor, inserted in order to break spin and orbital
degeneracies to enhance the accuracy of the results. The exter-
nal magnetic field, B = 0.1 T, and the parabolic confinement
energy of the leads and the central system h̄�0 = 2.0 meV,
lead together with the cyclotron frequency ωc = (eB)/(m∗c)
to an effective characteristic frequency �w = (ω2

c + �2
0)1/2

and an effective magnetic length aw = [h̄/(m∗�w)]1/2. This
characteristic length scale aw is used to scale all variables
with dimension length in the calculations, and assumes
approximately the value 23.8 nm for parameters selected
here. In terms of the creation and annihilation operators, a†

And a, the Hamiltonian for the single cavity photon mode is
HEM = h̄ωa†a, with energy h̄ω = 0.8 meV, corresponding to
the wavelength of 1.55 mm in air. The electron-electron static
Coulomb repulsion is represented by HCoul written in terms of
four field operators,

HCoul = 1

2

∫
d2rd2r ′ψ†(r)ψ†(r′)VCoul(r − r′)ψ(r′)ψ(r),

(4)

and a spatially dependent Coulomb kernel [19],

VCoul(r − r′) = e2

κ
√

|r − r′|2 + η2
, (5)

with a small regularizing parameter η/aw = 3 × 10−7. The
quantized vector potential of the cavity photon field is Aγ .
The last two terms of the Hamiltonian (2) stand for the para-
and the diamagnetic electron-photon interactions, respectively,
necessary since we will consider photon energy that might, or
might not be, close to a transition resonance between particular
electron states [18,22]. The charge and the charge-current
density operators are

ρ = −eψ†ψ, j = − e

2m∗ [ψ†(πψ) + (π∗ψ†)ψ]. (6)

We consider a rectangular photon cavity (x,y,z) ∈
{[−ac/2,ac/2] × [−ac/2,ac/2] × [−dc/2,dc/2]} with the
short two-dimensional quantum wire centered in the z = 0
plane. Using the Coulomb gauge, the polarization of the
electric field is parallel to the transport in the x direction
(with the unit vector ex) by selecting the TE011 mode, or
perpendicular (defined by the unit vector ey) by selecting the
TE101 mode. For the cavity photons, the two versions of the
quantized vector potential are in a stacked notation expressed
as

Aγ (r) =
(

êx

êy

)
A{a + a†}

⎛
⎝ cos

(
πy

ac

)

cos
(

πx
ac

)
⎞
⎠ cos

(
πz

dc

)
, (7)

for the TE011 and TE101 modes, respectively. The strength of
the vector potentialA determines the coupling constant gEM =
eA�waw/c, here set to 0.05 meV, leaving a dimensionless

polarization tensor

gk
ij = aw

2h̄
[〈i|êk · π |j 〉 + H.c.], (8)

where |i〉 and |j 〉 are single-electron states of the short two-
dimensional quantum wire, k = x or y. Latin indices are used
for the single-electron states and greek indices for the many-
body states to be described below.

In order to find the energy spectrum and the states of the
closed central system, we use a stepwise scheme of exact
numerical diagonalizations and truncations [19]. First, the
single-electron states of the system are used to build a Fock
space for 0–3 noninteracting electrons {|μ〉}. This space is
truncated with respect to energy well above the bias window.
For the parameters here we construct the Fock space with
the vacuum state, 36 one-electron states with energy up
to 7.7 meV, 630 two-electron states, and 16 three-electron
states. In each sector of the Fock space, the states lowest
in energy are selected, and due to the size of the central
system and the Coulomb repulsion energy, we can neglect all
many-body states with higher number of electrons. Second,
the Hamiltonian of the Coulomb interacting electrons is
diagonalized in the Fock basis creating a new Fock space
of Coulomb interacting electrons {|μ)}. Third, the 120 lowest
in energy states in the Fock space of the Coulomb-interacting
electrons are used to build a many-body basis for Coulomb
interacting electrons and cavity photons by a tensor product
of {|μ)} and the 17 lowest in energy eigenstates |N〉 of the
photon number operator. This new basis is used to diagonalize
the full Hamiltonian of the central system (2) obtaining a new
Fock space of interacting electrons and photons {|μ̆)}, with
cavity-photon dressed electron states.

As the numerical diagonalizations go beyond any simple
order of perturbation calculations, this construction is remi-
niscent and parallel to the possible construction of a Green
function for the closed system (not done here), where one
starts with a noninteracting Green function, and in a stepwise
fashion first dresses it with the Coulomb interaction, and
subsequently with the photon interactions through the Dyson
equation in both cases. The construction here is entirely carried
out in functional spaces in a grid-free manner. Proceeding in
this way either constructing an interacting Hamiltonian or a
Green functions matrix is practically limited by the size of the
many-body space needed, be it for the diagonalization of the
Hamiltonian or the solution of the Dyson equation. It is proper
to stress again that in our case the small size of the system,
the inherent energy scales and the strength of the Coulomb
repulsion facilitate this task.

The many-body energy spectra versus the plunger gate
voltage Vg for the central system are presented in Fig. 2 for
the x polarization of the cavity photon field and, in Fig. 3, for
the y polarization.

In both cases we indicate with a color coding the electron
content (an integer in the closed system) in the left panel of the
figure, and the photon number in the right panel. Without the
electron-photon interaction the photon number is an integer,
but the interaction does not conserve the number of photons.
We will come back to this fact below. The dressed electron
states contain in general are a linear combination of photon
states, and do thus not represent an exact photon number and
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FIG. 2. Energy spectrum for x-polarized cavity photons vs
plunger gate voltage Vg . Electron number (left) and the mean photon
number (right) is color coded into the states. The horizontal black
lines indicate the chemical potentials of the left, μL = 1.4 meV, and
the right lead, μR = 1.1 meV, that will be coupled to the central
system below. h̄ω = 0.8 meV and gEM = 0.05 meV.

we can not refer to one- or two-photon replicas of an electron
state, but as the replica concept is useful we refer to the first
or second replica of a certain electron state.

In Figs. 2 and 3, we see a slight Rabi splitting of the first
excitation of the one-electron ground state. The photon energy
is 0.8 meV, but the separation of these two lowest one-electron
states is around 0.72 meV. This “detuning” leads to the two
branches of the Rabi-split states having a different photon
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FIG. 3. Energy spectrum for y-polarized cavity photons vs
plunger gate voltage Vg . Electron number (left) and the mean photon
number (right) is color coded into the states. The horizontal black
lines indicate the chemical potentials of the left, μL = 1.4 meV, and
the right lead, μR = 1.1 meV, that will be coupled to the central
system below. h̄ω = 0.8 meV and gEM = 0.05 meV.

content. The Rabi splitting is larger for the y-polarization due
to the anisotropy of the system and its states.

For our parameters here we use 16 photon states. In our
experience the convergence with respect to the photon basis
is not critical, but instead the number of electron states is, as
the photon dressing in the strong coupling regime leads to an
increased polarization or spreading of the charge of a state [23].

B. Coupling to the leads: Time evolution

The central system is weakly coupled to the external leads
and opened up to electron transport through it at time t = 0.
The semi-infinite leads are parabolically confined and are in
the same external perpendicular classical weak magnetic field
as the central system (see Ref. [24], Sec. 3.4 and Appendix
C, for an analytical calculation of their energy spectrum). In
our calculations we include four of their subbands. The weak
coupling is described by the Hamiltonian [25,26]

HT(t) =
∑
i,l

χ (t)
∫

dq
[
T l

qic
†
qldi + (

T l
qi

)∗
d
†
i cql

]
, (9)

where di is the annihilation operator for an electron in the
single-electron state of the the central system labeled with i,
and c

†
ql is the creation operator for an electron in lead l with

momentum and subband index labeled by the composite index
q. The coupling tensor T l

qi describes the coupling between
these single-electron states of lead l and the central system,
and depends on the geometrical form of the corresponding
wave functions in the contact area extending approximately aw

into each subsystem [19,26]. The remaining overall coupling
constant to the leads is gLRa

3/2
w = 0.124 meV. The switching of

the coupling is determined by the Heaviside unit step function
of time, at t = 0. Before the coupling, the electron system
in the leads is at temperature T = 0.5 K, and there exist no
correlations between the leads, or the leads and the central
system.

The time evolution after the coupling of the leads and the
central system can be described by the Liouville-von Neumann
equation for the density operator of the system

∂tρ = Lρ, (10)

were, L is the Liouville operator, defined by the commutator

Lρ = −i/h̄[H,ρ], (11)

with ρ the density operator of the total system, describing the
dynamic state of both the leads and the central system. As
the energy spectra of the leads (the electron reservoirs) are
dense, we have in earlier publications resorted to applying
a formalism of Nakajima [27] and Zwanzig [28] in which
the dynamics of the whole system is projected on the central
system leading to a generalized master equation (GME) [23]

∂tρS(t) = − i

h̄
[HS,ρS(t)] − 1

h̄

∫ t

0
dt ′K[t,t − t ′; ρS(t ′)]

(12)

for the reduced density operator ρS(t) describing properties
of the central system under influence of the external leads,
and defined by tracing out variables of the leads ρS(t) =
TrLR[ρ(t)]. The dissipative integral kernel K is constructed
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using terms of the coupling Hamiltonian (9) up to second order,
but the integrodifferential form of the GME guarantees higher-
order terms in its solution of the elemental type already present
in K . In addition, the time-nonlocal structure of Eq. (12) brings
in higher-order terms not present in an equivalent Markovian
equation [29].

The solution to Eq. (12) can be found by numerical
integration and iterations [25,26]. However, for the N = 120
states needed here for the transport calculations in the photon
dressed basis {|μ̆)}, it is not feasible to integrate the GME in
time much farther than 1000 ps. To go beyond that, we have
made a Markovian approximation to the GME (12) avoiding
any further approximations and using the Kronecker tensor
product and vectorization of matrices to map the equation from
the Fock space of states to the Liouville space of transitions
[15,16].

In the N2-dimensional Liouville space [30], the linear
equation of motion is [31,32]

∂t vec(ρS) = L vec(ρS), (13)

with L being a general non-Hermitian operator with complex
eigenvalues. The vectorization of a matrix is accomplished by
stacking its columns into a vector [16]. The exact solution of
Eq. (13) can be found in Ref. [11],

vec(ρS(t)) =
{
U

[
exp

(
− i

h̄
Ldiag(t)

)]
B

}
vec(ρS(0)), (14)

in terms of the left, U, and right, V, eigenvectors of L,

LB = B Ldiag,

UL = LdiagU, (15)
with the normalization condition

UB = I,

BU = I. (16)

As the terms in L can be cleanly traced back to the left or
the right lead with no mixed terms, we can, as before [25,26],
calculate the current from the left lead into the central system

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

1

 1.1

1  100  10000  1x106  1x108  1x1010  1x1012

N

t (ps)

0G,  Ne
0G,  Nγ
0Gγ, Ne
0Gγ, Nγ

FIG. 4. Mean electron and photon numbers in the central system
as a function of time for initially the vacuum state (0G), and one pho-
ton in the system (0Gγ ). x-polarized photons, Vg = +2.0 mV, B =
0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.

IL and the current from the central system into the right lead
IR using the time-derivative of vec(ρS(t)) in the equation of
motion (13) and its solution (14).

Accuracy in numerical calculations is essential and error
can cumulate in different parts of a model evaluation. We
have taken care designing all functional bases and necessary
truncations thereof balancing RAM memory requirements and
exactness of the results for the closed system within reasonable
bounds, not shying away from heavy RAM usage (64 GB).
This is only feasible with heavy parallelization of the code
(using OpenMP on 24- and 32-core shared memory machines).
As we use no time integration of the equation of motion for
the long times we are interested in, we escape errors seeping
in through finite time steps in an integration. Instead, we
have to pay attention to the quality of the complex valued
eigenvalues of the nonsymmetric Liouvillian L in Eq. (14).
This is a nontrivial task and has been studied within the QUTIP

PYTHON framework [33,34]. In our approach, the accuracy
of the eigenvalues and eigenvectors measured by the trace
of the reduced density operator is such that the trace is
always equal to 1 with at least eight accurate figures for all
the cases described here, evaluated with double precision in
FORTRAN.

Only 84 points, exponentially distributed on the time axis,
are used in the figures to conserve computational time (900
CPU-hr on Intel Xeon CPU E5-2698 with 75% parallelization
efficiency). A careful study of the details of the relaxation of
the spin components forming a braided pattern, for example,
to be presented in Fig. 6 in the range 300 < t < 10 000 ps,
would require more points.

III. RESULTS

We explore the time-dependent electron transport into and
through the system for three different values of the plunger
gate voltage Vg . We start with Vg = +2.0 mV, when only the
two spin components of the one-electron ground state are in
the bias window, set by the chemical potentials of the left and
right leads, μL = 1.4 meV and μR = 1.1 meV, respectively.
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FIG. 5. The current from the left lead (L), and into the right
lead (R) as a function of time for initially the vacuum state (0G)
and one photon in the system (0Gγ ). x-polarized photons, Vg =
+2.0 mV, B = 0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.
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system (0Gγ ) (lower). x-polarized photons, Vg = +2.0 mV, B =
0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.

We expect resonant transport through the system. In Fig. 4,
we show results for the mean electron and photon number in
the central system for two initial states, totally empty system
(0G), and only one photon in the central system (0Gγ ).

In both cases, the mean electron number rises quickly and
remains constant just over 0.7. In the latter case (0Gγ ), the
mean photon number vanishes on a longer time scale, and for
the former case the mean photon number never gains a value
visible in Fig. 4.

Not surprisingly the current for the two cases, shown, in
Fig. 5, is approximately the same. For a short time, the current
is towards the central system from both leads (the right current,
IR , is negative in the beginning). After 10 ns, the system seems
to be in a steady state with the current flowing through the
central system.

This preliminary conclusion is not in agreement with the
occupation of the many-body states of the central system
shown in Fig. 6. In the upper panel of Fig. 6, we see for the
former case (0G) that indeed the system starting in the vacuum
state |1̆) reaches quickly a steady state formed by a mixture of
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FIG. 7. The energy spectrum (right y axis), the mean electron, the
mean photon content, and the spin of the 42 lowest many-body states
for (top) Vg = +0.1 and (bottom) +0.15 mV. The upper horizontal
black line marks the chemical potential of the left lead μl and the
lower one μr , the chemical potential of the right lead. x-polarized
photons. h̄ω = 0.8 meV, and gEM = 0.05 meV.

|1̆) and the partial population of the two spin components of
the one-electron ground state, |3̆) and |4̆). The lower panel of
Fig. 6 shows that even when we see no changes in the current
there are changes in the occupation of states. We see that due
to the presence of one photon initially in the system charge
is promoted temporarily to the intermediate states |8̆) and |9̆),
that are one-electron states with approximately one photon.
They are photon replicas of the two spin components of the
one-electron ground state, and as such have energy 1.98 meV
corresponding to one photon energy above the one-electron
ground state in the bias window. We see thus, as noted earlier,
photon associated tunneling into the system [35]. However,
photons are not supplied to the system and the initial photon
vanishes and the population transfers smoothly to the states
|3̆), |4̆), and |1̆) as before with no change seen in the current
through the central system. In the far-infrared (FIR) regime the
electromagnetic transitions in the system are slow so the steady
state is only reached after 10 μs. In addition, it is important to
have in mind that electromagnetic transitions are only active
due to the coupling to the leads, which is weak here. Without
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FIG. 8. Mean electron and photon numbers in the central system
as a function of time for initially the vacuum state (0G) and one photon
in the system (0Gγ ). x-polarized photons, Vg = +0.1 mV, B =
0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.

this coupling the many-body states of the central system are
its eigenstates.

We now turn to more complex situations with the plunger
gate voltage set at Vg = +0.1 and +0.15 mV shown in
Fig. 7. For the case of Vg = +0.1 mV, the upper panel of Fig. 7,
we see a photon replica of the singlet two-electron ground
state together with the three spin components of the lowest
two-electron triplet state. Just below the bias window are two
one-electron states with vanishing photon components. In the
lower panel of Fig. 7, we have just changed the plunger gate
voltage to +0.15 mV in order to raise the one-electron states
into the bias window still keeping the four two-electron states
there. We use this slight shift in the plunger gate voltage Vg to
shed light on the roles assumed by the one- and two-electrons
states in our transport picture, built on sequential tunneling.

Here, we have more obvious choices for the initial state
of the system. In Fig. 8, we see for the case of an initially
empty system (0G), or with only one photon initially (0Gγ ),
that the photons seem not to play any major role. The system is
charged quickly to one electron, and further delayed charging
seems to go in hand with the vanishing of the initial photon in
the system, or if there was none in the system initially, with
the appearance of a very small photon component, that again
vanishes. As there are several states available below the bias
window we might expect charge to get trapped in the system
suppressing possible current through it in the steady state.

Before looking at the corresponding current and occupa-
tion, we present in Fig. 9 the evolution of the mean electron and
photon numbers for the two electrons initially in the central
system, in the two-electron ground state (2G) and the first
photon replica (2Gγ ) thereof. Here, all changes are slow,
occurring for time between 100 ns and 10 μs. For the first
time, we see here that the discharging of the system depends
on the initial photon number. It is faster for the first photon
replica of the two-electron ground state (2Gγ ) than for the
corresponding ground state (2G). We should have in mind that
the x-polarized photon field in the system stretches the charge
density into the contact area of the central system facilitating
the charge to leave or enter the system [36].
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FIG. 9. Mean electron and photon numbers in the central system
as a function of time for initially the two-electron ground state
(2G) and the first photon replica of the two-electron ground state
of the system (2Gγ ). x-polarized photons, Vg = +0.1 mV, B =
0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.

In Fig. 10, we present the time-dependent occupation of
states for the case of no electron initially in the system,
but either no (0G) (upper panel), or one photon (0Gγ )
(lower panel), corresponding to Fig. 8. For the (0G) case
in the upper panel, we identify the one-electron states |1̆4)
and |1̆5) with energy E ≈ 1.08 meV just below the bias
window that are active in charging the system. The steady
state is a combination of the two spin components of the
one-electron ground state, and with a higher probability the
two-electron ground state. The intermediate states active
around 3 μs are the two-electron triplet states |1̆7), |1̆8),
and |1̆9) together with the one-electron state |5̆), all states
with odd spatial parity (measured along the y axis), that is
slightly broken by the external magnetic field. As we use
a state-dependent coupling to the leads that depends on the
spatial properties of the wave functions, the coupling of these
states to the lowest subband in the leads with even parity is
small.

For the (0Gγ ) case displayed in the lower panel of Fig. 8, we
see the initial one-photon state |1̆0) rapidly depopulated with
the one-electron states |2̆7) and |2̆8) containing one photon
and having energy 1.88 meV taking over. These states are the
first photon replicas of the one-electron states we noticed just
below the bias window. Again, we are observing a photon
associated charging of the system, and before the system
reaches the same steady state as in the (0G) case we see
intermediate states of two types; low energy one-electron states
with no photon content like |4̆) and |5̆), and one-electron states
with approximately one photon |6̆) and |7̆), and last we see
small occupation of the triplet states in the bias window. So,
differently from the (0G) case we see radiative transitions on
the way to the steady state.

Not surprisingly, we see in Fig. 11 for t < 200 ps high
charging current into the system. This is followed by a
considerable current through the system up to the time of
1 μs during which period it is relaxing on the its way to the
steady state. However, the final and real steady state is not fully
reached until after approximately 20 μs. The logarithmic time
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replica of the two-electron ground state of the system (2Gγ ) (bottom).
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gEM = 0.05 meV.

scale in the figures can be a bit deceiving when estimating
the charge flowing into and through the system. As can be
confirmed by Fig. 8 approximately one electron enters the
central system in the charging phase lasting to 200–500 ps, but
in the intermediate time regime extending to 1 μs the number
of electrons passing through is of the order of 105, although
on the average only 0.6 are staying in!

Glancing at Fig. 11 one is tempted to conclude that there is
no steady state current through the system. In order to explore
this situation we now analyze in more detail what happens
when initially there are two electrons in the system. We started
with this in Fig. 9, but now turn to the occupation (population)
for the (2G) and (2Gγ ) cases shown in Fig. 12. The (2G) case
with initially two electrons in the ground state is a simple
case with no electromagnetic transitions active. Very slowly
the two-electron ground state |8̆) (a singlet) looses charge to
the two spin components of the one-electron ground state, |1̆)
and |2̆). This transition is slow as the single-electron wave
functions associated with these states have a small weight in
the contact area of the short wire in the central system, and
all transitions are activated by the coupling to the leads, that
depends on the wave functions in that region.
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The relaxation of the charge from the first photon replica
of the two-electron ground state |1̆6) (the 2Gγ case seen in
the lower panel of Fig. 12) in the bias window is faster with of
course the same steady state reached in the end, but now the
active intermediate states are the one-electron states |6̆) and |7̆),
a radiative transition terminating in the two spin components
of the one-electron ground state |1̆) and |2̆).

Now, we are prepared for viewing the current into and
through the system for both the cases with initially 2 electrons
in the system (2G and 2Gγ ) displayed in Fig. 13. For the
long transient regime up to 1 μs we see the system is slowly
loosing charge as IL is negative, indicating a current from the
central system into the left lead, and IR is positive indicating
current from the central system into the right lead. However,
we notice a nonzero steady state current through the system,
albeit small, that we have to analyze further. Before, we have
to ask the question whether even in the case of an initially
empty system (see Fig. 11) we also had this finite but small
steady-state current without noticing it.

Indeed, Fig. 14 confirms that there is the same steady-
state current through the system for the different initial cases,
independent of whether we start with none, or two electrons in
the system. Even, when we displace slightly the plunger gate
voltage to Vg = +0.15 mV and thus lift the two one-electron
states |1̆4) and |1̆5) into the bias window we continue to have
a slight steady-state current through the system. Where does it
come from? These two one-electron states are not populated
in the steady state.

The answer can be found by analyzing the partial current
through each state in the system, a feature of the model that
can not be repeated in experiments, but can give a valuable
insight into the underling active processes in the system.
In Fig. 15, we display in the upper panel the contribution
of the active one-electron states in the system, and in
the lower panel the active two-electron states. In addition,
we have selected states in the bias window that could be
expected to carry current. In the upper panel, we see that
the one-electron states contribute to the charge loss from
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FIG. 14. Comparison of the current from the left lead (L), and
into the right lead (R) as a function of time for several initial states
(top) Vg = +0.1 and (bottom) +0.15 mV x-polarized photons, B =
0.1 T, h̄ω = 0.8 meV, and gEM = 0.05 meV.

the system as we noticed earlier. The steady state current
of these one-electron state seems to vanish. We have confirmed
that this is indeed true. In the lower panel of Fig. 15, we notice
that the steady state current is only carried by the two-electron
ground state |8̆), even though it is not in the bias window. How
is this possible?

As we saw earlier (see Fig. 12), the two-electron ground
state is the state with the highest energy contributing signif-
icantly to the steady state. In the steady state, the charge has
all relaxed to states below the bias window. The two-electron
ground state (a spin singlet) with even parity (with respect to
the y direction) has higher coupling to the lowest subband of
the leads than the spin triplet states in the bias window. We are
thus seeing an off-resonance inelastic (with respect to the sys-
tem lead tunneling) contribution to the steady-state current by
the two-electron ground state. The current is low, as it is inelas-
tic and the coupling to the two-electron state mostly confined
to the parallel quantum dots is low on grounds of the geometry.

Even though we can talk about a strong electron-photon
coupling here, it should be stated that for the x-polarized cavity
field we are well off-resonance with the photon number close
to an integer for most states. For the y polarization, there is a
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weak Rabi splitting for the low lying one-electron states, but
not for the two-electron states, and here we used two-electron
states as the initial state or started with no electrons in the
central system.

The fact that the electron-photon system is only in a weak
resonance here can be confirmed by inspecting Figs. 2, 3,
and 7. All the same, it is necessary to have in mind that even
for the x-polarization here, we have dressed electron states
with a mixed photon content. This is shown in Fig. 16 for
the one- and two-electron ground states [|1̆) and |8̆)], and the
first replica of the two-electron ground state (|1̆6)). In case
of a stronger resonance between the electrons and the cavity
photons, we have observed in an earlier publication stronger
influence of radiative transitions on the evolution of the system
and stronger variations in the mean photon number [15,16].

IV. DISCUSSION

We have used our model of electron transport through
a central system with interacting electrons and photons to
describe the time evolution of the system after it has been
started/prepared in a certain eigenstate of the closed system.
Time-resolved experiments in this field have not yet been
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performed, but transport experiments on electron systems
in photon pumped cavities are gaining strength [8,9]. The
importance of time-dependent modeling of the systems is
twofold. First, it allows us to gain insight into the underlying
processes in the system. Second, with the knowledge of these
active fundamental processes and their time evolution we can
research the states of the system we would like to maintain
with an external photon pumping, as is commonly done in
experiments, even in a system with a complex structure.

As expected for a small bias, resonant tunneling through
the lowest states of the central system quickly brings it into a
steady state. Judging from the transport current, the relaxation
seems similar for the case of initially one or no photon in
the cavity. The current is not sensitive to the initial number
of photons, but a look at the occupation of states during the
process shows, as could be anticipated, that, of course, different
states take part. The one photon initially in the system promotes
the incoming electron to a photon replica of the one-electron
ground state located above the bias window. The following
internal conversion, or transition, is not seen in the current.
Thus the time point when the system reaches the steady state
does depend on the initial photon number. The conclusion is
that the transport current can not be used as an indication of
when the system reaches the steady state. (See, for example,
Figs. 5 and 6.)
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The situation becomes more complex if the bias window
defined by the external leads is located higher in the many-body
energy spectrum. Then the character of the states in the window
and below it, shaped by their geometry and the coupling
between the constituents of the system, are of importance.
In these cases, we find a small but important off-resonance
current through the system.

Even so, there is a common theme to the results for both
cases. The upper panels of Figs. 6 and 12 display direct
relaxation of the system to its steady state, while the lower
panels of Figs. 6 and 12, and both panels of Fig. 10 show
higher-order processes with intermediate states. This can be
compared to the Markovian time evolution of a simple damped
quantum harmonic oscillator linearly coupled to a reservoir
with a vanishing expectation value for its excitation. If it is
initially placed in a high-energy state, it has to cascade through
all the lower (intermediate) states on its path to the ground state,
the steady state. The cascading is a signature of higher-order
effects in terms of the system reservoir coupling. The twist to
this picture is that in our model the reservoir is the external
leads, but not a photon reservoir, and in the Liouville space
formulation the steady state, reflecting higher-order processes,
can be found directly without a time integration revealing the
history of the time-dependent occupation of the intermediate
states. Of course, this information is hidden in the complex
spectrum of the Liouville operator [16].

Just a reminder, as mentioned after the introduction of
the non-Markovian [Eq. (12)] and the Markovian [Eq. (13)]
equations of motion, there are higher-order effects associated
with the non-Markovian equation (13) that are not present in
the Markovian one (12), caused by the nonlocal-time structure
of the former [29]. The same holds for the solutions of

the respective equations, the memory effects present in the
non-Markovian description represent higher-order terms in the
system-leads coupling.

From our modeling efforts, it is clear that the character of the
transport into and through the system is highly tunable with,
or strongly dependent on, the plunger gate voltage, the photon
frequency, and the initial number of photons present in the cav-
ity. This fact underlines the importance of a computationally
effective approach to explore the dynamic properties of the sys-
tem [16], and the possibility to enhance further the description
of the details of the underlying physical processes beyond the
presently implemented sequential tunneling to high order [29].

With the large number of tunable parameters available
in the system and our emphasis on geometrically dependent
effects, a bit neglected property of quantum optical transport
systems, we observe that in general the properties of the system
have to be explored further before making statements about
possible technical applications and devices at this moment. We
notice a strongly growing interest in implementing quantum
optical systems and quantum computing in solid-state systems
spurring researchers to model complex interacting systems.
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