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Spin separation and exchange for quantum dots in the Overhauser field
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We describe spin and charge dynamics of the system of two electrons confined within a double quantum dot
defined in a quantum wire. The spin dynamics is driven by the electron motion in the presence of the spin-orbit
interaction and the randomly varying local Overhauser field due to the nuclear spins. The Schroedinger equation
is solved with the time-dependent configuration interaction method that allows for an exact description of the
system dynamics. The procedures of the spin separation, exchange and read-out by the spin to charge conversion
all induced by the detuning variation are simulated. The rates of the potential variation that are necessary for the
spin separation and spin to charge conversion in the context of the Landau-Zener transitions are determined. The
average over random configurations of the hyperfine field produces spin exchange results which qualitatively
agree with the experimental data.
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I. INTRODUCTION

Construction of a universal quantum gate for information
processing on spins of electrons confined in quantum dots [1]
requires implementation of a controllable coupling between
the spins confined in adjacent quantum dots. The proposed
procedure [2] employs time evolution of the system with
switching on the exchange energy [3–7] J , defined as the
difference of the singlet and triplet energy levels, for a short
time. A nonzero exchange energy requires interdot tunnel
coupling and can be achieved by modulation of the tunnel
coupling between the dots with either a tunable interdot barrier
[2] or tunable potential inside one or both quantum dots [8].

The exchange energy [2] in the absence of spin-orbit
interaction and hyperfine interaction is isotropic [9], i.e.,
depends only on relative orientation of the spins and conserves
the total spin in the dynamics of the few-electron systems.
Variation of the spin polarization is possible in the presence
of the spin-orbit coupling which translates the electron motion
in space to rotations of its spin as it precesses in the effective
magnetic field that accompanies the spin-orbit coupling [10–
16]. The spin-orbit coupling allows also for initialization of the
state of the spin qubits, for separation of the spins of moving
electrons [17–19] in particular.

In the present paper we report on a simulation of the spin
separation and spin exchange in a GaAs double quantum dot
two-electron system. We use a quasi-one-dimensional model
with the assumption of a strong lateral confinement and the
time-dependent configuration-interaction approach that allows
for an exact account of the two-electron spin and charge
dynamics. For separation of the spins we use the texture of
the internal magnetic field arising due to a nonzero magnetic
moments of atomic nuclei [20–22]. The field is expressed as
a local classical Overhauser field obtained by summation of
randomly oriented nuclear magnetic moments over the span
of the lateral electron wave function [23].

The coupling of the carrier spins to the changing nuclear
spin field is considered the main source of dephasing and spin
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relaxation in III-V materials [20]. Here, the inhomogeneity
of the nuclear field is used as a resource for separation of
the spins, which is performed via an adiabatic evolution of
the system kept in the ground state when the tunnel coupling
between the dots is quenched. The exchange interaction is
then switched on for the electrons to exchange their spins,
as in Ref. [8]. Next, the procedure of the read out of the
spin exchange result is implemented by projecting the spin
states on the charge configurations of the double dot. The spin
exchange probability averaged over a number of fluctuations
of the Overhauser field reproduce the fringe pattern of the
experimental results of Ref. [8] as a function of the potential
difference in quantum dots (which is related to detuning ε) and
the spin exchange time. We discuss the rate of the potential
modulation for preparation of the initial states, the effects
of the potential asymmetry on the exchange interaction, and
the reproducibility of the spin manipulation procedures in
the presence of the Rashba spin-orbit interaction and the
Overhauser field.

The nuclear field fluctuates in time and reacts to the electron
spins [20] which can induce the dynamical nuclear polarization
processes [24–26] The dynamical polarization and the free
fluctuations of the nuclear field occur at the time scales of
�100 μs [24,27] which is much longer than procedures for
the electron spin separation and exchange that we consider
here that take a few μs at most, which justifies the assumption
of the static field. Moreover, we consider here the case where
the external magnetic field is oriented along the z axis of
the wire along which the electron motion occurs, while the
effective Rashba magnetic field is perpendicular to electron
momentum. An absence of the dynamical nuclear polarization
for the SO magnetic field perpendicular to the external one
was demonstrated in Ref. [27]. The fluctuations of the field are
taken into account by averaging over many runs with different
random field distributions.

II. THEORY

We consider a quasi-one-dimensional double quantum dot
defined within a GaAs quantum wire. The single-electron
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Hamiltonian for the considered system reads

Ĥ3D(1)(t) = h̄2�k2

2m∗ + V (�r) + ĤB + ĤSO, (1)

with �k = −i∇, the electron effective mass in GaAs m∗ = 0.067
m0, and V (�r) stands for the confinement potential. The third
term (ĤB),

ĤB = gμb

2
�σ · ( �B + �BHF (�r)), (2)

accounts for the spin Zeeman effect that includes the external
magnetic field �B and the internal Overhauser field due to
the hyperfine interaction [20] with the nuclear spins, where
g = −0.44 is the GaAs electron Landé factor, μb the Bohr
magneton, and �σ the vector of Pauli matrices. The last
component of the Hamiltonian (1) is responsible for the
Rashba-type spin-orbit coupling

ĤSO = α(σzkx − σxkz). (3)

We apply the coupling constant α = 0.44 meV nm [23,28].
We assume that the system is strongly confined along the

axis of the wire, so that the electrons occupy the ground state of
the lateral quantization only and the charge dynamics involves
time evolution exclusively in the axial direction. For the lateral
single-electron wave functions we adapt the Gaussian form,

�(x,y) = 1√
πl

exp

(
−x2 + y2

2l2

)
, (4)

with l = 10 nm.
The Hamiltonian (1) neglects the orbital effects of the

external field which is justified by the assumption of a strong
lateral confinement. Based on this assumption we consider
the electron wave functions frozen in the form given by
Eq. (4) which allows us to introduce a quasi-one-dimensional
version of the energy operator (1) obtained by integrating the
Hamiltonian 〈�|Ĥ3D(1)|�〉 over x and y dimensions, which
yields:

Ĥ(1) = − h̄2

2m∗
∂2

∂z2
+ V (z) + gμb

2
�σ · ( �B + �BHF (z))

+ iασx

∂

∂z
, (5)

where V (z) is the confinement potential along the axis of
the wire [Fig. 1(a)], with two quantum dots of length L and
R, separated by a barrier of length D. Two barrier regions
fill the remainder of the computational box of length 213.6
nm. We took L = R = 61.02 nm and D = 30.51 nm for
all the presented results. The potential is taken 0 inside the
right quantum dot, 15 meV within the central barrier, and
100 meV in the outer barriers [Fig. 1(a)]. The potential in
the left quantum dot is set equal to �V that is varied in the
simulation.

In most of the calculations the external magnetic field is
taken | �B| = 100 mT as in the experiments [7,8]. For this value
not only the degeneracy between the triplet states is lifted,
but also the nuclear spins separate from the electron spins in
the sense that the electron-nuclear spin flips [20,22,29] are
forbidden by the energy conservation. We approximate the
hyperfine field by a local magnetic field of a random orientation
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FIG. 1. (a) Schematic picture of a fragment of a quantum wire
hosting a double quantum dot and its representation as a value of
potential V [z] along the z axis. (b) A sample of the effective HF
magnetic (Overhauser) field generated at random with the approach
of Ref. [23]. Each vector component (x, y, z) was plotted separately.

which is considered constant during the time evolution of the
electron spin. The latter assumption is justified by a long
fluctuation time of the nuclear field which is of the order
of 10 to 100 μs [20]. The fluctuation of the hyperfine field
in the experimental conditions is accounted for by averaging
the results of the spin dynamics, which is also used in the
experimental data processing [8].

The procedure for derivation of the field �BHF (z) is adapted
from Ref. [23] with a classical vector of the effective magnetic
field of length 5 T generated at random orientation at each ion
of the crystal followed by the averaging of all the local nuclear
vectors with the probability density corresponding to the
Gaussian lateral wave functions (4). A sample of the generated
fields is plotted in Fig. 1(b). The values in Fig. 1(b) are given
for each grid point in the finite difference approach that we
employ for determination of the single-electron eigenstates.
The effective HF field as seen by the electron spin is further
reduced to a few milliteslas [21,22] by averaging over the
probability density along the axis of the quantum dot.

The integration of the two-electron stationary Hamiltonian
over the lateral degrees of freedom produces the operator

Ĥ
(0)
(2) =

2∑
i=1

Ĥ(1)(σi,zi) +
√

π/2e2

4πε0εl
erfcx

( |z1 − z2|√
2l

)
, (6)
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where the last term is the electron-electron interaction potential
that results from the integration of the Coulomb interaction
with the lateral wave function [30], ε = 12.9 is the dielectric
constant, and erfcx is the scaled complementary error function.

The two-electron Hamiltonian (6) is diagonalized by the
configuration interaction method with the basis of Slater
determinants χm of antisymmetrized products of the single-
electron eigenfunctions of operator (5),

ψn(σ1,σ2,z1,z2) =
M∑

m=1

vnmχm(σ1,σ2,z1,z2). (7)

We used at least 120 Slater determinants for the basis (7) to
obtain the eigenstates ψn and the energies of the two-electron
Hamiltonian.

For simulation of the system dynamics we separate the
external potential variation from the time-independent Hamil-
tonian,

Ĥ(2)(t) = Ĥ
(0)
(2) + Ŵ(2)(t). (8)

The simulated potential variation amounts in changing the �V

(additional left quantum dot potential)

Ŵ(2)(t) = �V (t) · (l(z1) + l(z2)), (9)

where l(z) is equal to 1 in the left quantum dot and 0 elsewhere.
We solve the time-dependent Schrödinger equation

ih̄
∂

∂t
ψ(t) = Ĥ

(0)
(2) ψ(t) + Ŵ(2)(t)ψ(t), (10)

in the basis of Ĥ
(0)
(2) eigenstates ψn (7):

ψ(t) =
N∑

n=1

an(t)ψn(σ1,σ2,z1,z2) exp (−iEnt/h̄). (11)

This form of the wave function when plugged into the
Schrödinger equation produces a set of differential equations
for the ak coefficients,

ȧk(t) = − i

h̄

N∑
n=1

an(t)〈ψk|Ŵ(2)(t)|ψn〉ei(Ek−En)t/h̄, (12)

that we solve using the Crank-Nicolson scheme, for which the
subsequent steps of the wave function are given by solution of
an algebraic linear system of equations,[

I − 1
2W (t + �t)�t

]�a(t + �t) = [
I + 1

2W (t)�t
]�a(t),

(13)

with I that stands for the identity matrix, and W (t) that stands
for a matrix with elements

Wk,n(t) = − i

h̄
�V (t)〈ψk|l(z1) + l(z2)|ψn〉ei(Ek−En)t/h̄.

(14)

The above method of integration is numerically exact, even
for large values of �V , provided that a sufficient number
of eigenstates is used in the basis. In the low-energy regime
that we consider here N = 20 eigenstates in the basis are
more than enough. Furthermore, recurring instantaneous �V

switches followed by free evolutions were simulated by simply
projecting the state ψ onto the new basis of eigenstates and
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FIG. 2. (a) Energies E and (b) electron charge qR stored by the
right quantum dot, as functions of the potential difference �V . The
sequence of �V changes is presented in (b). The system preparation
amounts to an adiabatic charge transfer from (0,2)S state to the state
with separated electrons (1,1)S. The manipulation of the state is
carried at �V below the avoided crossing. For the readout of the spin
state after the manipulation stage the system is ramped back to the
voltages for which (0,2)S is the ground state. An axial magnetic field
of Bz = 100 mT is applied here and below, unless stated otherwise.
(c) The exchange energy J defined as the energy difference between
T0 and the lowest-energy singlet S. The center of the avoided crossing
is marked by the vertical dotted line.

updating phases of its components according to (11). The
calculations of projections are summarized in Appendix.

III. RESULTS

A. Two-electron eigenstates

The lowest two-electron energy levels are plotted in
Fig. 2(a) as functions of the difference of potentials in left
and right quantum dot. The charge localized in the right dot
for the corresponding energy levels is plotted in Fig. 2(b).
The splitting of the triplet energy levels in Fig. 2(a) is due to
the axial magnetic field set to Bz = 100 mT. The spectrum in
Fig. 2(a) contains the triplet states with a single electron per
quantum dot [charge configuration denoted by (1,1)] as well
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FIG. 3. Energies of the lowest four states of the system as
a function of external magnetic field B. Inset shows enlarged
anticrossing of states S and T+ . Curves are colored according to
symmetry (singlet/triplet) and not to the actual order of states (which
changes due to crossings).

as the singlet states with separated electrons (1,1)S, and both
electrons localized in the right quantum dot (0,2)S (S

′
in the

following denotes the higher-energy singlet state). Figure 2(a)
shows an avoided crossing of the singlets near �V = 4.79
meV. The (0,2)S energy level does not react to the potential
variation in the left quantum dot with �V , hence its weak
dependence on the potential variation outside the avoided
crossing.

The magnetic field dependence of the energy levels with
separated electrons—obtained for symmetric confining po-
tential (i.e., for �V = 0)—is depicted in Fig. 3. The narrow
avoided crossing between the S and T+ energy levels near 56
mT is induced by the spin mixing factors of the HF field and
the SO coupling.

In the absence of the HF field and the SO coupling the wave
functions of the two-electron eigenstates are separable into the
spatial and spin components, in particular, for the states with
zero total spin projection:

�S = ψS(z1,z2)
1√
2

(χ↑(σ1)χ↓(σ2) − χ↑(σ2)χ↓(σ1)), (15)

and

�T0 = ψT0 (z1,z2)
1√
2

(χ↑(σ1)χ↓(σ2) + χ↑(σ2)χ↓(σ1)),

(16)

where χ are the spin eigenstates. For the states (15) and (16)
the spin-up and spin-down densities are equal in each point in
space, so that the dots store zero average spin. The spatial wave
functions for states (15) and (16) can in the first approximation
be expressed by the single-dot φl and φr ground-state orbitals,
localized in the left and right dots, respectively,

ψS(z1,z2) = 1√
2

(φl(z1)φr (z2) + φr (z1)φl(z2)), (17)

ψT0 (z1,z2) = 1√
2

(φl(z1)φr (z2) − φr (z1)φl(z2)). (18)
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FIG. 4. Averaged absolute values of spin sR in the right quantum
dot in the second excited state, for different values of dot potential
difference �V and barrier potential Vb. Values are taken with negative
sign (orange) if the separation involves S and T0 states, and with
positive sign (red) when T0 and S

′
are involved. The dashed line in

the lower right corner marks the domain area for which the DQD is
actually ill-defined since Vb < �V .

In the weak interdot tunneling regime the S and T0 states
are nearly degenerate and can be mixed by either the spatial
variation of the effective Landé g factor [31–33], the spin-orbit
coupling [34], or the HF field [8]. For the maximal mixing case
one obtains the spin separation over the dots

�↑↓ = 1√
2

(
�S + �T0

)

= 1√
2

(φl(z1)χ↑(σ1)φr (z2)χ↓(σ2)

−φl(z2)χ↑(σ2)φr (z1)χ↓(σ1)) (19)

with the left (right) dot storing the spin-up (spin-down) density
and a state with interchanged spins

�↓↑ = 1√
2

(
�S − �T0

)

= 1√
2

(φr (z1)χ↑(σ1)φl(z2)χ↓(σ2)

−φr (z2)χ↑(σ2)φl(z1)χ↓(σ1)). (20)

The spin-orbit coupling alone can separate the spins over
the dots in the external field but only provided that the double
dot system is strongly asymmetric, with one dot larger by
a factor of three than the other [34]. We find that the spin
separation by the HF field occurs also for quantum dots of
the same size. The average spin in the right dot calculated
for the second excited state (T0 ) is displayed in Fig. 4. The
average was taken over five random HF field distributions.
Naturally, for each random distribution the average spin in
the left and right quantum dots is different. Note, that the
experiment [8] also applies averaging the results of the spin
evolution over many runs—for which the HF field varies.
Figure 4 shows that for a high energy barrier the spin in
the right dot is close to |〈Sz〉| = h̄

2 , i.e., the spin separation
is a typical result. We find that the spin configuration in the
second excited state is then either ↑↓ or ↓↑, depending on the
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FIG. 5. (a) Variation of the potential asymmetry in time with the targeted evolution of the two-electron state explained schematically. (b)
The exchange energy defined as the energy difference between the triplet T0 state and the lowest energy singlet for the potential asymmetry
in (a).

specific HF field distribution, the sign of the spin was hence
neglected, instead, the values were taken as negative (orange)
for the cases where the second state participating in the spin
separation is the ground singlet S. In nanowire double quantum
dots a substantial variation of the g factors in both the dots has
been found [31–33]. The variation should fix the orientation of
the spins in the Hamiltonian eigenstates in the absence of the
exchange interaction. The spin separation in the Hamiltonian
eigenstates is very rarely obtained for the �V values which
correspond to the avoided crossing between the (1,1) and (0,2)
singlets, near �V = 5 meV. In this energy range the exchange
energy is strong and prevails over the HF field fluctuations.
Figure 4 shows that the closer we are to this value, the larger
the interdot barrier Vb needs to be in order to induce the spin
separation. The spin separation in the weak coupling regime is
crucial for the charge and spin dynamics to be discussed below.

B. The spin separation and exchange sequence

The spin separation and exchange procedure that is sim-
ulated below is adapted from the experiment of Ref. [8]
and depicted in Fig. 5. The procedure starts with a strong
potential difference �V with two electron ground state singlets
localized in the right quantum dot S(0,2). A slight change of
�V is applied to pass across the singlets’ avoided crossing
of Fig. 2 with the evolution time that is fast on the time
scale of the hyperfine field spin flipping but slow on the time
scale defined by the exchange interaction, in order to change
the charge occupation of the dots but keep the singlet spin state.
Next, the symmetry of the confinement potential is restored
slowly on the hyperfine interaction time scale, which—as we
show below—in the presence of the HF field leads to the
appearance of the state with definite spin orientation in each of
the dots. Next, large asymmetry of the potential is reintroduced
for the duration of tE . The asymmetry of the confinement
potential enhances the exchange interaction [35] and produces
the spin flips between the dots as a result of time evolution
of the superposition of (1,1)S and (1,1)T0 states. After tE
the exchange energy is first rapidly quenched and then the
potential is adiabatically changed towards the initial state.

The potential rise tE in the experiment of Ref. [8] was
surrounded by short intervals of a constant potential. For
the present simulation of the slow adiabatic potential change
conditions the intervals of a constant potential do not change
the result, since at the end of the adiabatic evolution we have
a well definite state of the instantaneous Hamiltonian which

simply stays there when an interval of a constant potential is
introduced. In a recent version of the experiment [7] the short
intervals after the adiabatic change were skipped. The intervals
of a constant potential do play a role when they are preceded
by a nonadiabatic potential change—as in the exchange pulse,
or in the spin echo procedure.

The right dot is occupied by two electrons with a maximal
probability provided that an even number of spin flips was
performed during the spin exchange time tE . In the subsections
to follow we first explain the electron structure of the
eigenstates, next we move to the description of the system
initialization, readout by the spin to charge conversion, and
the interdot spin exchange.

C. Time evolution: Spin-dependent charge dynamics

The sequence that is simulated [see Fig. 2(b) and Fig. 5]
starts as in the experiment [8] by the two-electron singlet with
both electrons in the right dot (0,2)S. In this subsection we
deal with the charge separation that is achieved by the small
drop of �V from �V = 5 meV to �V = 4.7 meV that is
visible at the beginning of the sequence in Fig. 5(a). The drop
takes the system across the avoided crossing of the singlets
in Fig. 2(a). The initial states are taken as eigenstates of
the stationary Hamiltonian for �V = 5 meV. The final state of
the time evolution is plotted in Fig. 6(a)–6(d) as a function of
the switching time for the first four eigenstates of the Hamil-
tonian for �V = 5 meV and in terms of the eigenstates of the
Hamiltonian for �V = 4.7 meV (lower panels). Additionally,
the resultant value of charge in the right dot (upper panels)
is provided to emphasize states having (0,2) occupation. The
rate of the changes can be compared with two time scales:
the one given by the energy splitting between the singlets,
which at the center of the avoided crossing [see Fig. 2(c)] is
�S � 0.02 meV that corresponds to τE � h̄

2�S
= 16.5 ps and

the one given by the Zeeman splitting in the HF nuclear field
of the singlet and T+ state, �EZ = gμBB ′

HF , where B ′
HF is

given by averaging the nuclear magnetic field of Fig. 1(b) with
the wave function along the z coordinate, typically B ′

HF = 1
mT, for which τHF � h̄

2�Ez
= 12.9 ns.

For the (0,2)S state as the initial state [Fig. 6(a)] the final
one is (0,2)S

′
when the switching is fast on the τS scale.

The transition has then the Landau-Zener character [36–39].
The charge occupation of the dots is left unchanged for the
nonadiabatic abrupt switching. To be more precise, the abrupt
potential change leaves a small admixture of (1,1)S state to
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the (a) (0,2)S, (b) T+ , (c) T0 , and (d) (1,1)S

′
state. Potential difference �V was switched from 5.0 meV to 4.7 meV (state preparation). The

gray areas in the upper panels of (a) and (d) indicate the range within which the charge in the right dot changes in the final state, which is
a superposition of two final Hamiltonian eigenstates when the switching time is short. (e) The schematics of the spectrum and the switching
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(0,2)S
′
, which produces oscillations of the charge localized in

the left dot in the limits that are marked in the upper panel of
Fig. 6(a) with the gray area. For an adiabatic switching time
comparable with τS the final state is the spin separated singlet
(1,1)S, while for a very slow switching time—comparable
with τHF —the evolution is adiabatic on the HF coupling time
scale and the destination state is the T+ ground state [see
Fig. 6(e)]. Summarizing, Fig. 6(a) indicates a sequence of
transitions across the two avoided crossings that involves both
the (1,1) and (0,2) singlets as well as the T+ triplet. The T+ –S

avoided crossing is much tighter than the (1,1)S and (0,2)S
one, and thus it requires a much slower potential variation
for the electron to pass from (0,2)S to the T+ ground state.
Conversely, for the initial state [Fig. 6(b)] set at T+ —an excited
state at �V = 5 meV—a very slow switching time �τHF is
required to keep the electron in the excited state [(0,2)S for
lower �V ], otherwise the time evolution ends at T+ triplet. T0

state does not enter any avoided crossing. For the initial state
set at T0 one stays in the T0 independent of the switching time
[Fig. 6(c)]. Finally, for (1,1)S

′
in the initial state the final one

is (1,1)S for a fast switching (much shorter than τS), (0,2)S
′

for a longer switching time (between τS and τHF ), and T– for
an extremely slow (�τHF ) switching. Therefore, both singlets
in the initial state evolve to spin-polarized triplets in the limit
of slow potential variation.

The time evolution presented in Fig. 6 with �V varied
from 5 meV to 4.7 meV corresponds to the initial state
preparation in the experimental sequence [8]. The reverse
potential variation is used [8] in the spin state detection by
the spin-charge conversion. In the experiment [8] the charge
detection of the right quantum dot is used for determination of
the result of the spin dynamics. The results of the simulation
for the potential variation from �V = 4.7 meV to �V = 5
meV—the small and abrupt rise of the potential in the left dot
at the end of the sequence of Fig. 5(a)—are given in Fig. 7. The
initial state is set as one of the eigenstates of the Hamiltonian
for �V = 4.7 meV with the final states projected onto the
Hamiltonian eigenstates for �V = 5 meV. Figure 7 shows
that the (1,1)S singlet evolves to (0,2)S only provided that
the switching time is longer than �0.1 ns but not longer than
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FIG. 7. Final absolute values of charge qR in the right quantum dot (upper panels) and squared moduli of projections of final state ψ(+∞)
onto the final Hamiltonian basis X ∈ {S, T+ , T0 , T– , S

′} (lower panels), as a function of switching time tswitch, if the system was initially in the
(a) T+ , (b) (1,1)S, (c) T0 , and (d) T– state. Potential difference �V was switched back from 4.7 meV to 5.0 meV (state readout).

�200 ns. For a slower switching the system evolves to T+.
A slower switching time for T+ in the initial state produces
(0,2)S in the final state [Fig. 7(a)]. However, in order to produce
a detectable increase of the charge in the right dot above a
single electron charge, the switching time needs to exceed
10 ns. For T– in the initial state a slow switching produces
the spin singlet but with electrons separated over the dots
[Fig. 7(d)].

The first two panels of Fig. 8 show the time evolution
for the read-out sequence with the HF field switched off
and the orientation of the external field changed to parallel
to the x [Fig. 8(a)] and y directions [Fig. 8(b)]. For the x

direction of the external field the spin of the two-electron state
remains unchanged. In this case the effective SO magnetic
field and the external field are aligned, so that the electron
motion only changes the Zeeman splitting energy and no
precession of the spin is present. For the external field oriented
parallel to the y axis the precession reappears since the
external and the effective fields are no longer aligned. In
the presence of the HF interaction, the intrinsic anisotropy
of the SO interaction is masked by the nuclear field, and
the results remain quantitatively similar for varied external
field orientation. However, the switching times differ within
a certain range from one HF field configuration another. The
results for three random configurations of the HF field are
given in Figs. 8(c) and 8(d) with (d) or without (c) the SO
interaction. The transition between the singlets—which are
spin conserving—ignore the details of the HF field, however
the transition to the spin polarized triplet does depend on
the random HF field. Without the SO interaction the S-T+
switching times differ by two orders of magnitude depending

on the state of the nuclear field. The presence of the SO
coupling reduces this variation range significantly to a single
order of the magnitude only.

D. Time evolution: Spin separation

According to the preceding subsection the single-dot (0,2)S
singlet can be transformed into the state with separated carriers
(1,1)S provided that the switching time across the avoided
crossing is of the order of 1 to 10 ns. For �V = 4.7 meV
considered above the spins are generally not polarized within
the separate quantum dots (see Fig. 4). The spin separation
in the system can then be induced by an adiabatic variation
of the potential from �V = 4.7 to 0.7 meV—see the part
of the sequence with the slow potential difference drop in
Fig. 5(a). The results for the system evolution are depicted
in Fig. 9 for a typical random HF field. Figure 9 shows the
projections of the final states in the basis of the destination
Hamiltonian eigenstates. For the switching time that exceeds
100 ns the final states are the Hamiltonian eigenstates with
separate spins, and there is one to one correspondence between
the S and T0 states to the ↑↓ and ↓↑ ones. Conversely, for the
potential variation in the opposite direction one obtains either
the S or T0 state, depending on the spin distribution ↑↓ or
↓↑ in the left and right quantum dots, respectively. This fact
is next used in the detection of the spin exchange with the
spin and charge conversion induced by the potential variation.
Obviously, the correspondence between S, T0 and ↑↓, ↓↑
states can be opposite with equal probability for a random HF
field distribution, however one or the other is typical for the
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FIG. 8. Same as Fig. 7 for varied conditions of the simulation. The
HF field is switched off (a),(b) and the magnetic field oriented parallel
to the x (a) and y (b) directions. The SO interaction is switched off in
(c). In (d) both interactions are present. Three random configurations
of the HF field were considered in (c),(d).

HF field generated at random (i.e., spins tend to separate at
low �V ).

E. Time evolution: Spin exchange

Above we described how the system initialized in the (0,2)S
ground state is taken across the avoided crossing to the (1,1)S
state and next into the separated spin state ↑↓ or ↓↑, depending
on the state of the HF field. Here, we consider the rapid rise
of the difference of potentials (the center of Fig. 5) for which
a nonzero exchange energy J = ET0 − ES appears. Then, the
solution of the time dependent Schrödinger equation reads

�(t) = 1√
2

exp

(
− iESt

h̄

)(
�S + �T0 exp

(−iJ t

h̄

))
,

(21)

and the spins in both the dots flip with the period of Tf = 2πh̄
J

.
The wave function of this form switches the spin orientations
within the dot, as it varies from �↑↓ (at t = 0) to �↓↑ at
t = T/2.

The spin flips are stopped when the system is taken down
to a small value of �V again. For spin exchange times which
are odd multiples of Tf , a slow rising of the potential takes the
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FIG. 9. Squared moduli of projections of final state ψ(+∞) onto
the final Hamiltonian states with separated spins X ∈ {↑↓ , ↓↑}, as
a function of switching time tswitch, if the system was initially in the
(a) (1,1)S or (b) T0 state. Potential difference �V was switched from
4.7 meV to 0.7 meV.

system to (1,1)T0 eigenstates. For spin exchange times that are
even multiples of Tf the potential variation returns the system
to (1,1)S and next to (0,2)S.

Figure 10 shows the projection of the wave function on
�↑↓, taken as the initial state for the central high �V point
in the time sequence as a function of time. The gray lines
indicate three sample evolutions for some fixed random HF
field orientations, and the green one is an average over 100 such
runs. We can see that the average has a decreasing amplitude
of the oscillations which corresponds to the inhomogeneous
broadening due to the random field. In Fig. 11 we show the
projection of the wave function on the �↑↓ state as a function of
the potential difference �V during the spin exchange and the
spin exchange time tE . The inset shows the result obtained by
Eq. (21) for the exchange energy as calculated in the absence
of the HF field. The simulated pattern of the fringes agrees
with the analytical one.

The result of the simulation contains the effect of the
inhomogeneous potential—the visibility of the oscillations
deteriorates with the exchange time. The oscillations are closer
to the ideal value for a large potential variation �V in which
the interdot tunnel coupling and the exchange energy is larger.
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FIG. 10. Probabilities PS = |〈S|ψ〉|2 of finding the system in
state S as a function of exchange time tE , for which larger potential
difference was reintroduced (to �V = 4.5 meV). Gray plots are
sample Rabi oscillations, while the green is an average over 100
random distributions of the HF field.
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FIG. 11. Square of the absolute value of the projection of the wave
function on the (1,1)S singlet state as a function of exchange time
tE and potential difference �V . Every horizontal strip of the plot is
an average of 60 simulations, each run for different HF sample. Inset
presents the results expected for the time evolution given by Eq. (21)
for the exchange energy determined by the �V [see Fig. 2(c)].

The spin exchange is not only faster but occurs with the larger
fidelity for larger �V , i.e., closer to the (1,1)-(0,2) avoided
crossing.

F. Time evolution: Spin echo

Besides coherent spin exchange, the considered system
is also suitable for performing spin-echo experiment [8].
Potential sequence for spin echo [Fig. 12(a)] comprises only
rapid switches of �V . After the initialization in (0,2)S state,
the system is brought to (1,1) charge distribution [below the
dotted line in Fig 12(a)] and switched rapidly to a near-zero
value of J , leading to a state being a superposition of ↑↓ and
↓↑ states [Fig. 9], which is then subject to dephasing due to
the random nuclear field.

Dephasing may be reversed by applying a potential rise for
a time sufficient to exchange the spins and then letting the
system to evolve freely for the same amount of time (here 100
ns) it was previously allowed to dephase. By the end of the
sequence the state is projected back onto (0,2)S and T0 for
readout.

Figure 12(b) presents the averaged results of 100 runs, for
each potential value used for exchange (ranging from 4.35 to
4.65 meV), each run with different nuclear field sample used.
Again, the plot presents the expected fringe pattern (as in the
inset in the upper right corner) affected by inhomogeneity for
both larger times tE and lower exchange potential differences
�V . The spin echo, unlike the spin exchange presented in
Fig. 11, cannot transfer the system from singlet to T0 state but
only rephase it in the initial S state for tE value being an odd
multiple of Tf [30].

IV. SUMMARY AND CONCLUSIONS

We presented simulation of the spin separation, exchange,
and spin-to-charge conversion for a model of a two-electron
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FIG. 12. (a) Sequence of potentials used to examine spin echo.
(b) A plot, similar to Fig. 11, presenting probability of returning to
state S after the operation versus �V and tE of the central pulse (100
simulations were averaged to produce each horizontal strip). Inset
presents the perfect behavior, according to Eq. (21).

system confined in a double quantum dot defined within GaAs
quantum wire and a texture of the HF nuclear magnetic field
with the SO interaction using the configuration interaction
method and an effective Overhauser field distribution. For
the potential difference (detuning) sweeps through the (0,2)S-
(1,1)S avoided crossing—that is used for preparation of the
initial state as well as for the spin to charge conversion
applied for the readout, the HF field, and the SO interaction—
play similar roles, and one can be replaced by the other.
The transition times in HF field differ from one random
distribution to the other, while the SO interaction introduces
an anisotropy of the evolution in the external magnetic field. A
simultaneous presence of the HF field and the SO interaction
stabilize the variation range of the transition times and reduce
the anisotropy as a function of the external magnetic field
orientation.

The spin separation at the preparation stage is achieved
due to the HF field and an adiabatic evolution at the scale
of the nuclear Zeeman effect. The rate of the spin exchange
induced by a pulse of potential �V differs strongly from one
random nuclear spin distribution to another, but the averaged
spin evolution closely follow the time scale set by the exchange
energy in the absence of the HF field.

APPENDIX: STATE PROJECTION ONTO NEW BASIS

The applied method for the solution of the Schrödinger
equation is based on an expansion of the wave function into
a basis of the eigenstates of the Hamiltonian [Eq. (11)] for
a fixed potential. The changes of the potential (rising and
lowering) and their consequences are integrated in the chosen
basis [Eq. (13)].
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When the potential is rapidly changed and then kept
constant—as for the exchange pulse—integration in the initial
eigenstate basis would require a lot of computation while the
solution in the target eigenstate basis is trivial. The basis is
therefore changed on the course of the calculation.

Given a state ψ(t) expressed as a superposition of
eigenstates ψ0,ψ1, . . . ,ψN of the Hamiltonian for the initial
potential [as in Eq. (11)] and wishing to re-express it in an
eigenstate basis ψ ′

0,ψ
′
1, . . . ,ψ

′
N of another Hamiltonian (with

other potential difference �V ), we write:

|ψ(t)〉 =
N∑

n=1

an(t)|ψn〉e−iEnt/h̄ = Î

N∑
n=1

an(t)|ψn〉e−iEnt/h̄

≈
N∑

k=1

|ψ ′
k〉〈ψ ′

k|
N∑

n=1

an(t)|ψn〉e−iEnt/h̄. (A1)

We may elaborate (A1) further, to obtain the state expressed
in the new basis:

|ψ ′(t)〉 =
N∑

k=1

a′
k(t)|ψ ′

k〉e−iE′
k t/h̄, (A2)

where coefficients

a′
k(t) =

N∑
n=1

an(t)〈ψ ′
k|ψn〉ei(E′

k−En)t/h̄. (A3)

One may find that integrals 〈ψ ′
k|ψn〉 from the above equation

are given by:

〈ψ ′
k|ψn〉 =

M∑
l=1

M∑
m=1

(v′
kl)

∗vnm〈χ ′
l |χm〉, (A4)

where χ ′
l , χm are Slater determinants of single electron wave

functions, and v′
kl and vnm are coefficients of the expression

of eigenstates ψ ′
k and ψn in their respective Slater determinant

bases of size M . Terms 〈χ ′
l |χm〉 need to be numerically

integrated for each pair of determinants χ ′
l , χm, using their

single-electron components.
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