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Similar to nitrogen-vacancy centers in diamond and impurity atoms in silicon, interstitial gallium deep
paramagnetic centers in GaAsN have been proven to have useful characteristics for the development of spintronic
devices. Among other interesting properties, under circularly polarized light, gallium centers act as spin filters that
dynamically polarize free and bound electrons reaching record spin polarizations (close to 100%). Furthermore,
the recent observation of the amplification of the spin filtering effect under a Faraday configuration magnetic
field has suggested that the hyperfine interaction that couples bound electrons and nuclei permits the optical
manipulation of the nuclear spin polarization. Even though the mechanisms behind the nuclear spin polarization
in gallium centers are fairly well understood, the origin of nuclear spin relaxation and the formation of an
Overhauser-like magnetic field remain elusive. In this work we develop a model based on the master equation
approach to describe the evolution of electronic and nuclear spin polarizations of gallium centers interacting with
free electrons and holes. Our results are in good agreement with existing experimental observations. In particular,
we are able to reproduce the amplification of the spin filtering effect under a circularly polarized excitation
in a Faraday configuration magnetic field. In regard to the nuclear spin relaxation, the roles of nuclear dipolar
and quadrupolar interactions are discussed. Our findings show that, besides the hyperfine interaction, the spin
relaxation mechanisms are key to understand the amplification of the spin filtering effect and the appearance
of the Overhauser-like magnetic field. To gain a deeper insight in the interplay of the hyperfine interaction and
the relaxation mechanisms, we have also performed calculations in the pulsed excitation regime. Our model’s
results allow us to propose an experimental protocol based on time-resolved spectroscopy. It consists of a
pump-probe photoluminescence scheme with the detection and the tracing of the electron-nucleus flip-flops
through photoluminescence measurements.

DOI: 10.1103/PhysRevB.95.195204

I. INTRODUCTION

Negatively charged nitrogen-vacancy centers in diamond
[1–5], phosphorous atom impurities in silicon [6–11],
and other schemes based on point defects embedded in
semiconductors have been widely studied as alternatives to
develop quantum bits [12,13]. One of the necessary conditions
for quantum computing is long electron spin decoherence
times to ensure a minimum of fault tolerance [10,14]. In
diamond’s nitrogen-vacancy centers [15], silicon vacancies in
silicon carbide [16], silicon [17], and any III-V based quantum
dots [10,18] the fluctuating nuclear bath is the main source
limiting spin coherence time. The nuclear dipole-dipole
interaction is believed to be the dominant mechanism
behind the diffusion-induced electron-spin decoherence
[19]. To protect the dynamics of the nuclear spins of point
defects from the decoherence induced by the environment,
semiconductors mainly composed of spin-zero isotopes such
as silicon and carbon are preferred over III-V semiconductors
[5]. Even though the two stable isotopes of Ga, 69Ga and
71Ga, have nuclear spin 3/2, in dilute nitride GaAsN point
interstitial defects give rise to paramagnetic centers that
have very peculiar and useful properties. One of them is the
spin-dependent recombination (SDR) [20–27]. In Ga(In)NAs

alloys, Ga2+
i paramagnetic centers with only one bound

electron can selectively capture another conduction band (CB)
electron with the opposite spin orientation [26–30]. Due to
this mechanism, paramagnetic centers act as a spin filter that
blocks the recombination of CB electrons with the same spin
and efficiently captures electrons whose spin is in the opposite
direction. In the centers, the bound and captured electrons form
a singlet state that is destroyed as either one of the electrons
recombines to the valence band (VB). It is important to note
that while the lifetime of conduction electrons with the spin
opposite to that of the bound electrons is a few picoseconds, the
lifetime of conduction electrons copolarized with the majority
of bound electrons may extend to nanoseconds. As a conse-
quence the free photoelectron spin polarization can reach over
80% under circularly polarized incident light. Additionally
the photoluminescence (PL) intensity can be as high as 800%
under circularly polarized optical excitation compared to a
linearly polarized one [21,22]. The increase in CB electron
population allows even for the detection of electron spin po-
larization by electrical means due to a giant photoconductivity
effect under circularly polarized light [24,31].

Whereas in diamond and silicon the optical excitation acts
directly on the point defects, in GaAsN the bound electron is
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dynamically spin polarized due to the recombination of spin-
polarized CB electrons on the paramagnetic centers. Although
this mechanism is radically different, Ga2+

i centers themselves
are very similar to nitrogen vacancies and phosphorous atoms.
Recent experiments on GaAsN subject to a weak magnetic
field in Faraday configuration [32–35] have shown consistently
an enhancement in the spin-filtering mechanism in comparison
to the zero magnetic field. The general agreement among
different models [28,35–37] is that the hyperfine interaction
between the bound electron and the nucleus in the centers is
the key element behind this phenomenon. At low magnetic
fields, the spin-filtering effect is reduced due to spin-state
mixing induced by the hyperfine interaction. For higher values
of the magnetic field such that the Zeeman energy exceeds
the hyperfine interaction, the pure bound electron spin states
and, consequently, the spin-filtering effect are recovered. Even
though the role of the hyperfine interaction is well established,
some aspects of these phenomena lack full understanding.
Some observations point to the existence of an Overhauser-like
effective magnetic field [32,33] whose origin is yet unclear.
It manifests as a shift in the band to band PL intensity or
the degree of CB electron spin polarization as functions of
the longitudinal magnetic field. These two curves shift to the
positive or negative regions of the magnetic field depending
on the helicity of the circularly polarized light. Another aspect
that needs further study is the nuclear interaction between
Ga2+

i centers and adjacent Ga atoms that would lead to
nuclear spin relaxation. The Overhauser-like magnetic field
has been correctly reproduced in Ref. [36], however, nuclear
spins are assumed to relax very rapidly and the relaxation
mechanism is purely phenomenological. Moreover, when a
trap captures an electron it is assumed to instantly lose all
its nuclear spin polarization. On the other hand, the model
presented in Ref. [37] considers two phenomenological and
arbitrary nuclear spin relaxation times for traps with one and
two bound electrons. Despite this improvement, the model
considers Ga centers with 1/2 nuclear spins instead of 3/2 in
order to simplify the kinetic equations. Even though the first
version of this model can only address experimental conditions
in which the magnetic field is in Faraday configuration, it
was later generalized to consider tilted magnetic fields by
introducing off-diagonal terms [38]. However, this model is
strictly valid for Ga paramagnetic traps with 1/2 nuclear spins.
Although the SDR mechanisms are partially integrated to the
rate equation approach [35], the off-diagonal elements of the
master equation are neglected and therefore the hyperfine
interaction is accounted for by phenomenological transition
rates. This analysis has two major limitations: first, it only
allows for the study of situations in which the magnetic field
is in Faraday configuration and, second, it does not take
into account the full complexity of the hyperfine interaction
off-diagonal terms. Even though this analysis gives the correct
behavior for the conduction band electron spin polarization
degree as function of the longitudinal magnetic field, it fails
to explain the origin of the Overhauser-like effective field. It
considers that the Overhauser-like field is proportional to the
nuclear degree of polarization regardless of the nuclear spin.
This contradicts the fact that for 1/2 nuclear spins the magnetic
field shift is strictly zero even for nuclear spin polarization
degrees close to 100% [37].

In this paper we examine the spin dynamics in GaAsN
alloys. We propose a model based on the master equation
for the density matrix that describes the main interactions
between CB electrons, VB holes, and paramagnetic traps. Our
approach overcomes most of the limitations of the previous
models. First, it considers Ga centers with 3/2 nuclear spin.
Second, in contrast to older proposals, all of the off-diagonal
elements arising from the preexisting two-charge model
[20,21,27,29,39], are taken into account. This introduces the
main mechanisms of SDR into the model. The major advantage
of this improvement is that it can be used to study experimental
conditions in which the magnetic field is tilted with respect to
the incident light. Finally, the spin relaxation mechanism was
introduced through Wangsness, Bloch, and Redfield relaxation
theory [40–43]. Two interactions are explored as possible
candidates to produce the nuclear spin relaxation: dipolar
interaction between neighboring nuclei [40] and quadrupolar
[40,44] interaction with charge fluctuations in the environment.
This not only has allowed us to clearly identify the dipolar
interaction as the dominant nuclear relaxation mechanism
but has also shown that the Overhauser-like magnetic field
originates from it.

To further explore the role of hyperfine interaction in
Ga centers, we have studied the time-resolved electronic
and nuclear spin polarizations under pulsed excitation. Using
these results we outline a method based on a pump-probe
photoluminescence scheme to trace the coherent evolution of
coupled electron and nuclear spins as they flip-flop due to the
hyperfine interaction.

This paper is organized as follows. In Sec. II we introduce
the master equation model that describes the key processes
in the spin dynamics of electrons and nuclei in GaAsN.
The role of the hyperfine interaction and the nuclear spin
relaxation mechanism are discussed in this section. The
mathematical forms of the dipolar and quadrupolar dissipators
are introduced in Sec. II D. In Sec. III A we establish the main
mechanism behind the nuclear spin relaxation in Ga2+ centers
by comparing the theoretical results issued by the model
with existing experimental results. Simulations in the pulsed
excitation regime are presented in Sec. III B. In Sec. IV we
summarize the main results.

II. MASTER EQUATION

The system mainly consists of four elements: VB holes,
CB electrons, unpaired traps, and paired traps. Whereas
hole spin relaxes with a characteristic time below 1 ps [45],
CB electronic spin relaxes on a typical time in the range
100–400 ps [25,46]. Therefore, for the sake of simplicity, we
consider VB holes to be unpolarized. Gallium paramagnetic
traps or unpaired traps can be understood as a 3/2 nuclear spin
coupled to a 1/2 bound electron spin via hyperfine interaction.
On the other hand, when a CB electron is captured by an
unpaired trap, forming a paired trap, the bound and captured
electrons produce a singlet state that cannot interact with the
nuclear spin. Thus, the quantum state basis that describes this
system must have: (i) one state for holes in the VB; (ii) two
states for the spin-up and spin-down CB electrons; (iii) eight
states that account for the nucleus-bound electron system in
the unpaired traps; and (iv) four states for the nuclear spin in
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the paired traps. The complete quantum state basis is therefore
given by

B = {|1〉 = |h〉,|2〉 = |↓〉,|3〉 = |↑〉,|4〉 = ∣∣− 3
2 , ↓ 〉

,

|5〉 = ∣∣− 1
2 , ↓ 〉

,|6〉 = ∣∣ 1
2 , ↓ 〉

,|7〉 = ∣∣ 3
2 , ↓ 〉

,

|8〉 = ∣∣− 3
2 , ↑ 〉

,|9〉 = ∣∣− 1
2 , ↑ 〉

,|10〉 = ∣∣ 1
2 , ↑ 〉

, (1)

|11〉 = ∣∣ 3
2 , ↑ 〉

,|12〉 = ∣∣− 3
2 , ↑↓ 〉

,

|13〉 = ∣∣− 1
2 , ↑↓ 〉

,|14〉 = ∣∣ 1
2 , ↑↓ 〉

,|15〉 = ∣∣ 3
2 , ↑↓ 〉}

,

where |h〉 is the VB hole state and | ↑〉 and | ↓〉 are the
spin-up and spin-down CB electron states, respectively. The
following eight states |− 3

2 , ↓〉, |− 1
2 , ↓〉, . . . , | 3

2 , ↑〉 are the
bound-electron and nuclear spin states projected along the z

axis corresponding to the unpaired trap. Finally, the paired
traps are described by the nuclear spin states |− 3

2 , ↑↓〉, . . . ,
| 3

2 , ↑↓〉.
The dynamics of the four parts of the system and their

interactions can be described through the master equation
dρ

dt
= i

h̄
[ρ,H ] + D(ρ), (2)

where ρ is the density matrix, H is the Hamiltonian and
D(ρ) is the dissipator. The Hamiltonian contains the internal
interactions among the four components of the system. We
are interested in the combined effect of an external magnetic
field and the hyperfine interaction in Ga centers, therefore, the
Hamiltonian must contain Zeeman and hyperfine interaction
terms. The interactions among the different parts of the system
and the surroundings are accounted for by the dissipator.
These are mostly interactions with the electromagnetic field,
occurring during recombination or excitation processes, or
interactions with the nuclear spin environment. The main
processes introduced in our model are schematized in Fig. 1.

A. Hamiltonian: Zeeman and hyperfine interactions

The Hamiltonian is given by

H = h̄ω · Ŝ + h̄� · Ŝc + A Î1 · Ŝc. (3)

The first and second terms in the Hamiltonian correspond to
the Zeeman interaction for conduction and bound electrons,
respectively. In these terms ω = gμB B/h̄, � = gcμB B/h̄,
B is the external magnetic field, μB is the Bohr magneton
and, g and gc are the CB and bound electrons gyromagnetic
factors. The hyperfine interaction term, the third one on the
right-hand side of Eq. (3), couples the bound electron and
the nuclear spin in an unpaired trap. The hyperfine coupling
constant is given by A. Other possible interactions between
the electron spins and the many surrounding nuclear spins are
neglected. The strong localization of the 4s electrons wave
function in Ga centers [47] in the vicinity of the nucleus
|ψ4s |2 = 72.7×1024 cm−3 yields a large hyperfine parameter
A ≈ 8.5 eV coupling bound electrons and the corresponding
nuclei. Conversely, CB electrons weakly interact with the
surrounding nuclear spins giving their small probability den-
sity |ψCB |2 ≈ 1/V = 1×1013 cm−3, where V is the sample
volume. Therefore, the hyperfine interaction between CB elec-
trons and all the surrounding nuclei is neglected. Moreover,
the nuclear spin polarization of the host atoms surrounding
the defects should be ruled out, because otherwise it would

(a)CB

VB

UT

G

(b) CB

VB

PT

SDR

Ds

D2

(c) CB

VB

UT

Rec. to VB

Dsc

D1

(d)CB

VB

UT

HFI

FIG. 1. Schematic diagram of the processes involved in the
nuclear spin polarization of Ga centers. The flow of angular
momentum is also shown. Following the selection rules for GaAs,
three spin-up, one spin-down CB electrons, and four unpolarized
VB holes are generated by four photons with 100% left circular
polarization (a). The angular momentum of photons is transferred to
the CB electrons. Traps whose bound electrons are spin polarized in
the opposite direction to the majority of the CB electrons, can capture
CB electrons with opposite spin orientation forming a spin singlet (b).
In a course of this process the angular momentum of the CB electrons
is transferred partly to the bound electrons in traps. Simultaneously,
CB electrons’ spin and paired traps nuclear spin relax due to DS and
D2 leading to loss of angular momentum by the system. When one
of the trapped electrons recombines with the hole the spin singlet in
the paired trap is dissociated and turns into an unpaired trap (c). At
the same time, the bound electron and nuclear spins in the unpaired
trap relax due to the DSC and D1 dissipators (c). Again the system
transfers to angular momentum to the environment. At this stage the
bound electron and the nucleus are able to interact via the hyperfine
interaction and exchange angular momentum through the series of
flip-flops (d). From (d) to (a) the center can capture a new electron
and the cycle starts again.

cause a noticeable shift of the optically detected electron spin
resonance lines, which was not observed in high-resolution
experiments [35,47]. The dynamic polarization of the host
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nuclei as the source of an Overhauser field must also be
excluded from the model. The remarkable signature of such a
field is an additional maximum that appears in the Hanle curve
and shifts with respect to the zero magnetic field [48–50]. A
very recent experiment performed in GaAsN subjected to tilted
magnetic fields [38] clearly shows the absence of the additional
peak.

The spin operator for CB electrons that appears in the
first Zeeman term of the Hamiltonian is Ŝ = (Ŝx,Ŝy,Ŝz).
In unpaired traps, the bound electron spin and nuclear
spin operators entering the hyperfine interaction term are
Ŝc = (Ŝcx,Ŝcy,Ŝcz), and Î1 = (Î1x,Î1y,Î1z), respectively. As
the singlet state formed in the paired traps interacts nei-
ther with the external magnetic field nor with their nu-
clear spin Î2 = (Î2x,Î2y,Î2z), it does not appear in the
Hamiltonian.

B. Density matrix operator space

The relaxation mechanisms of CB electrons and nuclei in
the Ga centers are described by the dissipator D(ρ). Also,
the photoexcitation and recombination of electrons will be
accounted for by D.

Our approach to formulating a suitable dissipator consists
in expanding the relevant operators as linear combination of
the elements of an operator vector space. In principle this set
should be formed in the basis (1) by linearly independent
15×15 Hermitian matrices. However, the density matrix
structure is considerably simplified by assuming that the four
components of the system (CB, unpaired trap, paired trap, VB)
are interconnected only by the dissipator. As the four parts of
the system are exclusively coupled by the recombination or
excitation processes, this is a reasonable assumption. Thus, the
density matrix operator can be presented in the block diagonal
form:

ρ =

⎛
⎜⎝

ρVB

ρCB

ρ1

ρ2

⎞
⎟⎠, (4)

where the four blocks ρVB (1×1), ρCB (2×2), ρ1 (8×8), and
ρ2 (4×4) are the partial density matrices of VB holes, CB
electrons, unpaired traps, and paired traps, respectively. Given
that ρ takes the form of a block diagonal matrix since no
coherences can arise between the four components, it suffices
to consider the smaller vector space of 85 Hermitian matrices
that generate the four blocks.

We start by finding an internal space of Hermitian matrices

� = {λ̂1,λ̂2, . . . ,λ̂n}, (5)

which spans the n = 85 relevant elements of the 15×15 matrix.
The generators in this set can be chosen in such a way that they
are Hermitian and orthogonal with respect to the scalar product
given by the trace

〈λ̂i ,λ̂j 〉 ≡ Tr[λ̂†
i λ̂j ] = δi,j Tr

[
λ̂2

i

]
. (6)

This choice conveniently links the inner product with the
expected value of a given operator Ô

O = Tr[Ôρ] = 〈ρ,Ô〉, (7)

acting on ρ. In this manner any operator can be expanded as a
linear combination of the elements of (5) as

Ô =
85∑

q=1

Tr[λ̂qÔ]

Tr
[
λ̂2

q

] λ̂q . (8)

A very convenient set of operators is the one formed by the
generators of the unitary groups U (1) (VB holes), U (2) (CB
electrons), U (4) (paired traps), and U (8) (unpaired traps). The
operators forming this set are not only of physical significance
but they are also linearly independent and orthogonal with
respect to the trace. Explicitly, the set of operators in (5) is
given by

� = {p̂,Ŝi ,Ûk,j,i ,T̂j,i}, i,j,k = 0,1,2,3, (9)

where p̂, Ŝi , Ûk,j,i , and T̂j,i generate the VB, CB, unpaired
trap, and paired trap blocks. The VB hole population density
operator can be represented by the matrix

p̂ =

⎛
⎜⎜⎜⎝

1

02×2

08×8

04×4

⎞
⎟⎟⎟⎠. (10)

The operators that generate the CB block can be compiled in
the matrix

Ŝi =

⎛
⎜⎜⎜⎝

0

ŝi

08×8

04×4

⎞
⎟⎟⎟⎠, i = 0,1,2,3, (11)

where the electron population density in the CB is given by
n̂ = Ŝ0 and their spin operators are Ŝi for i = 1,2,3. Here
ŝ0 = 1̂2×2 is the 2×2 identity matrix, and ŝi for i = 1,2,3
are the standard Pauli spin matrices that fulfill the usual spin
commutation relations

[ŝi ,ŝj ] = i
∑

k=1,2,3

εijk ŝk. (12)

This definition allows us to write the matrices that generate
the unpaired trap and paired trap blocks in the compact forms

Ûk,j,i =

⎛
⎜⎜⎜⎝

0

02×2

ŝk ⊗ ŝj ⊗ ŝi

04×4

⎞
⎟⎟⎟⎠, (13)

and

T̂j,i =

⎛
⎜⎜⎜⎝

0

02×2

08×8

ŝj ⊗ ŝi

⎞
⎟⎟⎟⎠. (14)

According to this scheme the population density of unpaired
traps is N̂1 = Û0,0,0, and the one for paired traps is N̂2 = T̂0,0.
Similarly, the CB electrons’ spin operators are: Ŝx = Ŝ1,
Ŝy = Ŝ2, and Ŝz = Ŝ3. We have the same case for the bound
electron spin operator components in unpaired traps where
Ŝcx = Û1,0,0, Ŝcy = Û2,0,0, and Ŝcz = Û3,0,0. The operators of
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the nuclear spin of unpaired traps and paired traps can be
expressed as linear combinations of the elements of � as

Î1 = MÛ , (15)

Î2 = MT̂ , (16)

where

Û	 = (Û0,0,1,Û0,1,1,Û0,2,2,Û0,0,2,Û0,1,2,Û0,2,1,Û0,0,3,Û0,3,0),

(17)

T̂ 	 = (T̂0,1,T̂1,1,T̂2,2,T̂0,2,T̂1,2,T̂2,1,T̂0,3,T̂3,0), (18)

and

M =
⎡
⎣

√
3 2 2 0 0 0 0 0

0 0 0
√

3 −2 2 0 0
0 0 0 0 0 0 1 2

⎤
⎦. (19)

C. Dissipator

The dissipator can be separated into six parts

D(ρ) = G + DSDR + DS + DSC + D1 + D2. (20)

Here G contains the terms, which correspond to VB hole and
CB electron photogeneration. The selective capture of CB
electrons in unpaired traps according to their relative spin
orientation and the subsequent recombination to the VB are
described by the DSDR dissipator. CB and bound electron spin
relaxations are accounted for by DS and DSC. Nuclear spin
relaxation of unpaired traps and paired traps are introduced
through the dissipators D1 and D2.

The term G that models the generation of electrons and
holes is given by

G = (G↑ + G↓)(p̂ + n̂) + 2(G↑ − G↓)ê · Ŝ, (21)

where G↑ and G↓ are the spin-up and spin-down electron
generation rates. The unit vector e is collinear with the incident
light.

To build the DSDR part of the dissipator we resort to the
two-charge model [20,21,27,29] given by the following kinetic
equations (h̄ = 1)

ṅ = −cn(nN1 − 4S · Sc) + G↑ + G↓, (22)

ṗ = −cpN2p + G↑ + G↓, (23)

Ṅ1 = −cn(nN1 − 4S · Sc) + cpN2p, (24)

Ṅ2 = cn(nN1 − 4S · Sc) − cpN2p. (25)

Ṡ = −cn(SN1 − Scn) − 1

τs

S + ω × S + G↑ − G↓
2

ê, (26)

Ṡc = −cn(Scn − SN1) − 1

τsc

Sc + � × Sc. (27)

In the above equations, the population densities of CB
electrons and VB holes are given by n and p respectively.
The density of unpaired traps is N1, N2 is the density of
electron singlets hosted by the centers (paired traps), and
consequently Nc = N1 + N2 is the total density of Ga centers.
The vectors S and Sc represent the average spin polarizations
of free and bound electrons. The spin-dependent capture of
free electrons in the Ga centers is ensured by the recombination
rate terms cn(nN1 − 4S · Sc) and cn(SN1 − Scn) where cn is a
constant. Notice that these two terms vanish when the system
is fully polarized, i.e., Sz = n/2, Sx = Sy = 0, Scz = N1/2,
and Scx = Scy = 0. The recombination rate of one of the
electrons trapped in the Ga centers to the VB is given by the
terms cpN2p where cp is a constant. We thus require that the
dissipator’s structure is such that the master equation reduces to
Eqs. (22)–(27) when the hyperfine interaction is lifted (A = 0).
This may be achieved by identifying n, p, N1, N2, S, and
Sc with the quantum statistical average of the corresponding
operators, namely n = Tr[ρn̂], p = Tr[ρp̂], N1 = Tr[ρN̂1],
N2 = Tr[ρN̂2], S = Tr[ρ Ŝ], and Sc = Tr[ρ Ŝc]. As well, the
quantum statistical average of any generator of � is given
by λq = Tr[ρλ̂q] and therefore, the density matrix can be
expanded as

ρ =
85∑

q=1

Tr[ρλ̂q]

Tr
[
λ̂2

q

] λ̂q =
85∑

q=1

λq

Tr
[
λ̂2

q

] λ̂q . (28)

The SDR part of the dissipator DSDR can also be expanded in
terms of the elements of � as

DSDR =
85∑

q=1

C[λ̂q]

Tr
[
λ̂2

q

] λ̂q =
85∑

q=1

Cq

Tr
[
λ̂2

q

] λ̂q . (29)

To determine the coefficients Cq ≡ C[λ̂q] = Tr[λ̂qDSDR] we
insert (29) in the master equation (2) and multiply by n̂, p̂, N̂1,
N̂2, Ŝ, or Ŝc. By taking the trace of the resulting equation we
readily find the coefficients

C[p̂] = −cppN2, (30)

C[n̂] = −cn(nN1 − 4S · Sc), (31)

C[N̂1] = −cn(nN1 − 4S · Sc) + cpN2p, (32)

C[N̂2] = cn(nN1 − 4S · Sc) − cpN2p, (33)

C[Ŝ] = −cn(SN1 − Scn), (34)

C[Ŝc] = −cn(Scn − SN1). (35)

At this point we have considerable freedom since these
equations only define 10 of the 85 coefficients needed to
fully determine the DSDR dissipator. However, the choices
get narrowed down by imposing the symmetry and invariance
properties that the system is expected to satisfy. As the most
basic requirement, the master equation must be invariant under
any arbitrary rotation in accordance with the space’s isotropy.
The tensors T̂j,i and Ûk,j,i must therefore transform by the

195204-5



V. G. IBARRA-SIERRA et al. PHYSICAL REVIEW B 95, 195204 (2017)

corresponding laws. The complete set of coefficients is thus
given by

C[p̂] = −cppT0,0, (36)

C[n̂] = −cn

(
S0U0,0,0 − 4

3∑
r=1

SrUr,0,0

)
, (37)

C[Ŝk] = −cn(SkU0,0,0 − S0Uk,0,0), (38)

C[Û0,j,i] = cppTj,i − cn

(
S0U0,j,i − 4

3∑
r=1

SrUr,j,i

)
, (39)

C[Ûk,j,i] = −cn(S0Uk,j,i − SkU0,j,i), (40)

C[T̂j,i] = −cppTj,i + cn

(
S0U0,j,i − 4

3∑
r=1

SrUr,j,i

)
, (41)

where i,j = 0,1,2,3 and k = 1,2,3. The spin precession terms
ω×S and �×Sc, absent in Eqs. (36)–(41), are accounted for
by the Zeeman terms in the Hamiltonian (3) since they concern
the coherent evolution of the system.

The SDR part of the dissipator also excludes the spin
relaxation of CB and bound electrons. These terms enter the
dissipator through DS and DSC as

DS = − 1

τs

5∑
q=3

λq

Tr
[
λ2

q

] λ̂q = − 2

τs

3∑
i=1

SiŜi , (42)

DSC = − 1

τsc

3∑
k=1

3∑
j,i=0

Uk,j,i

Tr
[
Û 2

k,j,i

] Ûk,j,i . (43)

The CB electron spin relaxation time due to the Dyakonov-
Perel mechanism is given by τs , while τsc is the phenomenolog-
ical bound electron spin relaxation time in Ga centers [36,37].
The dissipators (42) and (43) yield the CB and bound electron
spin relaxation terms S/τs and Sc/τsc in the two-charge model.

D. Nuclear spin relaxation

To get an insight into the role of the possible mechanisms
involved in nuclear spin relaxation we consider three different
models: nonselective, dipolar, and quadrupolar. As a reference
we also study the effects in the absence of spin relaxation.
The dipolar and quadrupolar interactions are dealt through the
Wangsness, Bloch, and Redfield relaxation theory [40–43]
summarized in Appendix A.

First, we study the nonselective [37] dissipators for un-
paired traps and paired traps given by

(D1)sm,s ′m′ = − 1

τn1

⎛
⎝ρ1;s,m;s ′,m′ − δm,m′

4

3/2∑
m′′=−3/2

ρ1;s,m′′;s ′,m′′

⎞
⎠,

(44)

(D2)m,m′ = − 1

τn2

⎛
⎝ρ2;m,m′ − δm,m′

4

3/2∑
m′′=−3/2

ρ2;m′′,m′′

⎞
⎠, (45)

where s = −1/2,1/2 and m = −3/2, − 1/2,1/2,3/2 are the
bound electron spin and nuclear spin indices. This dissipator
is highly symmetrical.

Second, we consider the relaxation due to the dipolar
interactions between neighboring Ga nuclei. In this case, the
Hamiltonian (A1) only contains the irreducible spherical ten-
sors of rank k = 1. The terms in this Hamiltonian correspond
to the angular momentum operators interacting with a random
local field. Substituting (A6) and (A7) in (A5) we obtain the
dissipators for unpaired traps and paired traps in the form

D1 = − 1

3τn1

3∑
i=1

[Î1i ,[Î1i ,ρ]], (46)

D2 = − 1

3τn2

3∑
i=1

[Î2i ,[Î2i ,ρ]], (47)

where Î1i and Î2i are the ith components of the nuclear spin
operators for unpaired traps and paired traps, respectively. The
nuclear spin relaxation times for unpaired and paired traps are
considered to be different in principle and therefore are set to
τn1 and τn2.

Finally, we study the relaxation due to the quadrupole
interaction with random fluctuation of the local electric field
gradient. The Hamiltonian takes the form of (A1) where k = 2.
The substitution of the irreducible spherical tensors of the rank
k = 2 defined by Eqs. (A8)–(A10) in terms of the nuclear
angular momentum components (A5) leads to the following
dissipators

D1 = − 1

2τn1

5∑
i=1

[Q̂1,i ,[Q̂1,i ,ρ]], (48)

D2 = − 1

2τn2

5∑
i=1

[Q̂2,i ,[Q̂2,i ,ρ]]. (49)

Here, the operators Q̂1i and Q̂2i are related to the rank k = 2
irreducible spherical tensors and therefore can be expressed in
terms of the nuclear spin operators as

Q̂n,1 = 1

2
√

3

(
Î 2
nx − Î 2

ny

)
, (50)

Q̂n,2 = 1

2
√

3
(Înx Îny + Îny Înx), (51)

Q̂n,3 = 1

2
√

3
(Înx Înz + ÎnzÎnx), (52)

Q̂n,4 = 1

2
√

3
(Îny Înz + ÎnzÎny), (53)

Q̂n,5 = 1

6

(
2Î 2

nz − Î 2
ny − Î 2

nx

)
. (54)

The explicit forms of the dissipators corresponding to the
dipolar interaction (46)–(47) and quadrupole interaction
(48)–(49) are presented in Appendix B.

III. RESULTS AND DISCUSSION

The model developed above is used in this section to
examine the interplay of the hyperfine interaction and the
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nuclear spin relaxation mechanisms in the continuous wave
and pulsed excitation regimes. First, the theoretical results
are compared with previous experimental observations under
continuous wave excitation in order to identify the main
interaction behind nuclear spin relaxation and hyperfine
interaction in Ga centers. Then, we analyze spin dynamics
of the bound electrons and nuclei in the pulsed excitation
regime. We outline a method for detecting the bound electron
and nuclear spin coherent oscillations induced by hyperfine
interaction by means of a pump-probe PL scheme.

In order to extract information from the model, we start
by building the system of kinetic equations that follow from
the master equation (2). By multiplying both sides of Eq. (2)
by λ̂q , inserting the density matrix in the form (28) into the
resulting expression and taking the trace we obtain a set of
n = 85 differential equations of the form

λ̇q = i

h̄
Tr[[H,λ̂q]ρ] + Tr[Dλ̂q]

= Fq(λ1,λ2, . . . ,λn,t), q = 1,2, . . . ,n. (55)

Unlike the two-charge model that only considers the SDR
mechanism, Zeeman interaction, and electron spin relaxation,
these new kinetic equations also take into account the hyperfine
interaction and nuclear spin relaxation.

We study the spin dynamics of electrons and nuclei
by numerically solving the system of ordinary differential
equations (55). The relevant parameters are then extracted from
the thus obtained λq functions, which in turn are the quantum
statistical averages. We assume that before the optical excita-
tion (t = 0) the unpaired traps are equally populated and that
the electrons as well as the nuclei are completely unpolarized.
Therefore, initially N1(0) = λ6(0) = Nc and λq = 0 for q �= 6.
Notice that these initial conditions also imply that at this stage
there are no paired traps, namely N2(0) = λ70(0) = 0.

A. Nuclear spin relaxation: Continuous wave regime

Under continuous wave stimulation, the generation of spin
up and spin down electrons is given by the smooth step function

G↑↓ = WG
1 ± Pi

4

[
1 + tanh

(
t − t0

σ

)]
, (56)

where W is the excitation power, G =
2.3×1023 mW−1s−1 cm−3 is the power to generated electron
ratio, Pi = ±0.15 is the spin polarization degree of the
optically generated CB electrons, t0 = 100 ps is the onset
time of the excitation and σ = 10 ps is the duration of the
onset. The system is allowed to evolve for a sufficiently long
time (200 ns) to reach steady-state conditions.

Some of other parameters as Nc = 3×1015 cm−3,
τs = 110 ps, τsc = 1700 ps, τ ∗ = 1/cnNc = 4.4 ps, τ ∗

h =
1/cpNc = 12 ps, g = +1, and gc = +2 where estimated from
previous experimental results [20,21,32,51]. For the nuclei
at the Ga centers, the hyperfine parameter was estimated
to be A = 6.9×10−2 cm−1 = 8.5 μeV, the average hyperfine
parameter of the two stable isotopes of Ga atoms [22,32,36].
The nuclear spin relaxation times τn1 and τn2 are determined
below by comparing the theoretical calculations with the
experimental results.

FIG. 2. P CB
e calculated as a function of a magnetic field in the

Faraday configuration for different pump powers and nonselective
nuclear spin relaxation under σ+ (solid lines) and σ− (dashed
lines). The nuclear spin relaxation times are τn1 = 5405 ps and
τn2 = 446 ps. Dotted horizontal lines present the behavior of CB
electron polarization in the absence of nuclear spin relaxation.

As we stated above, the two key features behind the
hyperfine interaction in Ga centers are a growth in the PL
intensity J and degree of circular polarization P CB

e [32,34–37]
and an Overhauser-like magnetic field [32,33,35–37]. They are
observed under circularly polarized excitation and a Faraday
configuration magnetic field Bz.

More specifically for the first feature, P CB
e (Bz) and J (Bz)

exhibit a minimum shifted from Bz = 0. As |Bz| increases,
P CB

e and J (Bz) saturate at values above Bz ≈ 25 mT where
Zeeman energies are comparable to the hyperfine interaction.
In this region the hyperfine interaction has been completely
exceeded by the Zeeman interaction and therefore the bound
electrons and nuclei in the Ga centers are effectively decou-
pled. The degree of circular polarization of the CB to VB
photoluminescence as a function of the Faraday configuration
magnetic field can be described by an inverted Lorentzian-
like curve. In Fig. 2 we have calculated the CB electron
spin polarization degree P CB

e = 2Sz/n as a function of the
magnetic field in Faraday configuration Bz under a circularly
polarized excitation. In this case we have chosen the spin
relaxation times τn1 = 5405 ps and τn2 = 446 ps that give
good quantitative agreement with the experiment. The P CB

e =
2Sz/n dependence for the nonselective mechanism is shown in
Fig. 2 for different pump powers W . As a reference, Fig. 2 also
presents the behavior observed in the absence of nuclear spin
relaxation (D1 = D2 = 0) as thick dotted lines. These plots
show that despite the hyperfine interaction, in the absence of
spin relaxation, P CB

e (Bz) does not display any sign of the spin
filtering enhancement. These results are exactly the same as
those obtained with the two charge model that does not contain
the effects of the hyperfine interaction. Therefore, in order for
the effects of the hyperfine interaction to be visible, nuclear
spin relaxation is essential.

The second experimental feature of this phenomenon is
a shift of the minimum of the plots P CB

e (Bz) and J (Bz)
with respect to Bz = 0 that points to the existence of an
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FIG. 3. Conduction band electron spin polarization P CB
e as a function of the magnetic field in the Faraday configuration for pumping power

W = 25, 75, 150, and 250 mW. Theoretical results for the (a) dipolar and (b) quadrupolar models under σ+ (solid lines) and σ− (dashed lines)
light excitation. (c) Experimental results under σ+ (circles) and σ− (squares) light excitation [32,37], solid lines are the guides for the eye. The
insets in (a) and (b) show the detail of the displacement of the P CB

e curves for σ+ (solid lines) and σ− (dashed lines) that is induced by the
Overhauser-like magnetic field at W = 75 mW.

Overhauser-like magnetic field [33]. The P CB
e (Bz) and J (Bz)

curves are shifted to the positive or negative magnetic field
depending on the helicity of the circularly polarized exciting
light. Thereby, under σ− and σ+ excitation the minimum is
located at Bz = Beff < 0 and Bz = Beff > 0, respectively. The
experimental results show that the Overhauser-like magnetic
field Beff grows with the excitation power W until it apparently
saturates at approximately 25 mT. The nonselective dissipator
yields vanishing Beff as no shift is observed for P CB

e in Fig. 2.
This dissipator is too symmetric to be able to produce an
Overhauser-like magnetic field and hence must be ruled out as
the leading nuclear spin relaxation mechanism.

The dipolar and quadrupolar mechanisms are quite dif-
ferent from the nonselective one. Figures 3 and 4 show the
effect of the dipolar and quadrupolar nuclear spin relaxation
mechanisms on the CB electron spin polarization P CB

e (Bz)
and the PL intensity J (Bz) as functions of the longitudinal
magnetic field at different excitation powers. Contrary to the
nonselective mechanism, the dipolar and quadrupolar ones

yield nonvanishing Beff as it can be seen in Figs. 3(a)–3(b)
and 4(a)–4(b). In Figs. 4(a)–4(b) the PL intensity is calculated
as J (Bz) = crnp where cr is the bimolecular recombination
rate.

Even though the calculated shifts produced by both mech-
anisms qualitatively agree with the experimental observations
[see Figs. 3(c) and 4(c)], only the dipolar one is able to accu-
rately fit the experimental measurements as we discuss below.
In addition to the Overhauser-like magnetic field, two features
that strongly depend on the nuclear spin relaxation mechanism
are the depths of the inverted Lorentzian-like P CB

e (Bz) and
J (Bz) curves, which parametrized by ξ = P CB

e (∞)/P CB
e (0)

and ζ = J (∞)/J (0), respectively. To discern which of the two
mechanisms is the dominant one, we compare our theoretical
calculations with the experimental observations of Beff , ξ ,
and ζ [32,33,37]. The power dependence of Beff , ξ , and
ζ is determined by finding the minima, P CB

e (0) and J (0),
and maxima, P CB

e (∞) and J (∞), of P CB
e (Bz) and J (Bz) for

different excitation powers.

FIG. 4. PL intensity J as a function of the magnetic field in the Faraday configuration for pumping power W = 25, 75, 150, and 250 mW.
Theoretical results for the (a) dipolar and (b) quadrupolar models under σ+ (solid lines) and σ− (dashed lines) light excitation. (c) Experimental
results under σ+ (circles) and σ− (squares) light excitation [32,37], solid lines are the guides for the eye. The insets in (a) and (b) show the
detail of the displacement of the J curves for σ+ (solid lines) and σ− (dashed lines) that is induced by the Overhauser-like magnetic field at
W = 75 mW.
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FIG. 5. Isolines of the Overhauser-like magnetic field Beff and
depths ξ = P CB

e (∞)/P CB
e (0) and ζ = J (∞)/J (0) at fixed power

W = 120 mW for the dipolar relaxation mechanism. The isolines for
Beff = 24 mT, ξ = 1.46 and ζ = 2.1 under an excitation power of
W = 120 mW are shown. These three lines cross at the point marked
with the triangle in τn1 = 212.4 ps = 5405 ps and τn2 = 28.8 ps =
446 ps.

In Fig. 5 we plot the isolines for Beff = 24 mT, ξ = 1.46,
and ζ = 2.1 as functions of the nuclear spin relaxation times
τn1 and τn2. These three correspond to the experimental
results observed for an excitation power of W = 120 mW
[32]. The three isolines intersect at τn1 = 5405 ps and τn2 =
446 ps. In accordance with these results, the Beff , ξ , and
ζ isolines at other excitation power coincide at similar τn1

and τn2 values. Collecting the intersecting points of all the
experimental results we find that the nuclear spin relaxation
times must fall within the ranges 4000 ps < τn1 < 9500 ps
and 400 ps < τn2 < 700 ps. The best quantitative agreement
with the experimental data is accomplished by using the
nuclear spin relaxation times τn1 = 5405 ps and τn2 = 446 ps
consistent with the ranges above.

Plots of Beff , ξ , and ζ as functions of the excitation power
are shown in Figs. 6(a)–6(d). Whereas Fig. 6(a) shows the
magnetic field Beff extracted from the minima of the ξ (Bz)
curves, Fig. 6(c) plots the Beff extracted from the ζ (Bz)
minima. It is worth noting that both Beff obtained from the
ξ (Bz) and ζ (Bz) minima yield almost identical experimental
and theoretical results. The calculated ξ and ζ as functions
of the power present very good quantitative agreement with
the experimental data. Likewise, the theoretical values of
the Overhauser-like magnetic field Beff remarkably coincide
with the experimental results within the range of power
values shown in Figs. 6(a) and 6(c). Nevertheless, while
the experimental results suggest that Beff as a function of
the excitation power saturates at approximately 25 mT, the
computed Beff vanishes for powers above 250 mW [not shown
in Figs. 6(a) or 6(c)].

Contrary to the dipolar mechanism, the quadrupolar one
yields systematically nonintersecting isolines regardless of the
excitation power value used to calculate them. In Fig. 7 we
present the Beff = 24 mT, ξ = 1.46, and ζ = 2.1 isolines that
clearly do not intersect. This behavior is observed for all the

FIG. 6. Overhauser-like magnetic field Beff , ξ , and ζ as functions
of the excitation power W for the dipolar nuclear spin relaxation. In
(a), the experimental data (circles) present the shift of the free electron
polarization dependence P CB

e (Bz) and the simulated curve (line). In
(b), shows the experimental (circles) and theoretical (line) results for
ξ . The experimental data (circles) in (c) present the shift drawn from
the PL intensity dependence J (Bz) and the corresponding theoretical
curve (line). In (d), presents the experimental (circles) [32,33,37] and
theoretical (line) results for ζ .

excitation powers reported experimentally and therefore we
must also rule out the quadrupolar mechanism.

We observe that the calculated widths (≈ 0.3 T) of the
inverted Lorentzian curves for either mechanism do not
coincide with the experimental ones (≈ 0.2 T). The calculated

FIG. 7. Isolines of the Overhauser-like magnetic field Beff and
depths ξ = P CB

e (∞)/P CB
e (0) and ζ = J (∞)/J (0) at fixed power for

the quadrupolar relaxation. The isolines for Beff = 24 mT, ξ = 1.46,
and ζ = 2.1 under an excitation power of W = 120 mW are shown.
Even though these three lines do not cross we have marked with a
triangle the point τn1 = 5405 ps and τn2 = 446 ps that yield the best
fit.
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width remains constant for a wide range of parameters and thus
it is not related to the nuclear spin relaxation mechanisms. This
discrepancy will be discussed elsewhere.

It is important to verify that the nuclear bath is fast enough
for the the Redfield theory and the master equation approach
to be valid for the dipolar mechanism. The nonperturbed
Hamiltonian H0 contains mainly the hyperfine interaction
and the Zeeman energy and therefore |H0| = h̄ω0 ≈ 10 μeV.
On the other hand, the perturbed Hamiltonian corresponds to
the dipolar interaction between neighbouring nuclei and thus
|H1| ≈ h̄ω1 ≈ 0.4–0.6 peV. Equation (A12) then yields

τc � ω−1
1 ≈ 1.14–1.84 ms. (57)

The correlation time is obtained from Eq. (A13)

τc = 1

τnω
2
0

≈ 1 ps. (58)

Consequently the time range of validity for the master equation
approach in this case is given by

1 ps � t � 1 ms, (59)

in accordance with the results obtained here.

B. Coherent oscillations of electronic and nuclear spins
in Ga centers: Pulsed excitation regime

Having identified the nuclear spin relaxation mechanism
and the corresponding relaxation times we are in a position
to consider time-resolved simulations. Our aim here is to
develop a method to observe the coherent oscillations of bound
electrons and nuclei in Ga centers. To do so we propose a
pump-probe scheme that we describe below.

In pulsed excitation regime, the generation terms are given
by

G↑↓ = T WG

σ
√

2π

1 ± Pi

2

[
e− t2

2σ2 + ηe− (t−δt)2

2σ2
]
, (60)

where W is the pulse average power, σ = 1 ps is its width
and T = 12 ns is the period between repeated pulses [31]. The
pump pulse originates at t = 0 and the probe is delayed δt .

Figure 8 is an outline of the proposed method. The pump
pulse is left circularly polarized and therefore most of the
electrons are spin polarized in the +z direction. Likewise, the
probe pulses are left circularly polarized Fig. 8 also shows a
plot of the bound electron and nuclear spin polarizations as a
function of time after being excited by the pump pulse. The
pump and probe pulse’s widths are exaggerated to make them
visible in the given time scale. In this plot it is possible to
observe the electron-nucleus flip-flops as oscillations of I1z

(dashed lines) and Scz (thick lines) that are phase shifted by
π/2. As indicated in this diagram, the second pulse at time
delays t1 and t2 probes two extreme situations. In the first one
CB electrons and bound electrons are mostly spin polarized
in opposite directions. The center is therefore more likely to
capture a CB electron whose spin is oriented in the opposite
direction to the majority therefore rising the population of
electrons in the CB. In contrast, in the second situation centers
are more likely to capture electrons whose direction is parallel
to the majority diminishing the electron population in the CB.

FIG. 8. Time dependence of the spin polarization of bound
electrons Scz (solid lines) and nuclei I1z (dashed lines) after being
excited by the pump pulse. The pump pulse is left circularly polarized
and therefore the majority of the electrons are spin polarized in the
+z direction. Two extreme situations are illustrated. In the probe
pulse 1 bound electrons are spin polarized in the same direction
as CB electrons and in the probe pulse 2 bound electrons are spin
polarized in the opposite direction to CB electrons. In the first
situation CB electrons with the opposite spin polarization to the
majority are rapidly recombined through the Ga centers enhancing the
spin filtering effect. In this case a large SDRr is expected. In contrast,
in the second situation, CB electrons whose spin polarization is that
of the majority are efficiently recombined lowering the SDRr .

A good estimate of the electron and hole population in either
situation is the time-resolved SDR ratio given by

SDRr (t) = J−
JX

= nσ− (t)pσ−(t)

nπX
(t)pπX

(t)
, (61)

where the PL intensity under circularly polarized light J− ∝
nσ− (t)pσ−(t) is proportional to the CB and VB density
populations nσ−(t) and pσ−(t). Similarly JX ∝ nπX

(t)pπX
(t)

where nπX
(t) and pπX

(t) are the density populations of CB
electrons and holes under linearly polarized light. If CB
electrons are captured spin dependently by the Ga centers then
nσ− (t) > nπX

(t) and pσ−(t) > pπX
(t) and therefore SDRr > 1.

In accordance with the above considerations, SDRr (δt1) >

SDRr (δt) > SDRr (δt2) where δt1 < δt < δt2. Thus, it is
possible to trace the oscillations of bound electrons and

FIG. 9. Trace of the coherent electron-nuclear spin oscillations
via the SDRr . The solid circles correspond to maxima of the time-
resolved SDRr as a function of the time delay δt between the pump
and the probe pulses. Below, Scz (solid line) and I1z (dashed line) are
presented for reference.
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nuclei by successively measuring the time-resolved SDRr for
different probe pulse delays.

By determining the maxima of the time-resolved SDRr

for different probe pulse delays we have obtained the plot
displayed in Fig. 9 setting η = 1. Here the SDRr maxima
are plotted as a function of their corresponding time delays
δt as closed circles. Similar results (not shown here) are
obtained by calculating the SDRr from the integrated PL.
Below, the spin polarization of bound electrons Scz and
nuclear spin polarization I1z are shown for reference. This plot
demonstrates that it is possible to trace the coherent oscillations
of the spin polarization of bound electrons interacting with the
nuclei by means of the time-resolved SDR ratio.

IV. SUMMARY

We have analyzed the spin dynamics of electrons and
nuclei in GaAsN by developing a model based on the
master equation approach. The main mechanisms behind
the spin-dependent recombination are considered as well as
the hyperfine interaction in Ga paramagnetic traps. We have
demonstrated that the nuclear spin relaxation in centers plays
an essential role in reproducing the two most significant
signatures of the hyperfine interaction in Ga centers. First,
the amplification of the spin filtering effect under a Faraday
configuration magnetic field is visible only if some nuclear
spin relaxation mechanism is present. Second, the features of
the Overhauser-like magnetic field not only depend on the
hyperfine interaction but also strongly rely on the nature of the
nuclear spin relaxation mechanism. We have tested the dipolar
interaction between neighboring Ga atoms and the quadrupolar
interaction of Ga centers with random charge distribution
background. We have proven that the dipolar is the only
mechanism compatible with the experimental observations.
Indeed, a scenario where large charge distribution variations
are present in the vicinity of the Ga nuclei is difficult
to imagine. Although most of the experimental results are
correctly reproduced by our model some aspects remain
elusive. Two of these are the discrepancies between the
saturation values of the Overhauser-like magnetic field Beff

in the high-power regime and the widths of the P CB
e (Bz) and

J (Bz) curves.
To further explore the effects of the hyperfine interaction

and the nuclear spin relaxation we have tested the model in
the pulsed excitation regime. In particular, we have proposed
a pump-probe scheme that allows us to trace the coherent
oscillations of the bound electron spin interacting with its
nucleus through the hyperfine interaction.

Even though in principle this model is conceived for Ga
centers, it can be easily adapted for other type of centers where
dipolar or quadrupolar interactions are the leading mechanisms
of nuclear spin relaxation.
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APPENDIX A: REDFIELD RELAXATION THEORY

According to the Wangsness, Bloch, and Redfield relax-
ation theory [40–43] the interaction of a nucleus with its
surroundings can be accounted for by the Hamiltonian

H(t) = γ

k∑
r=−k

f ∗
k,r (t)T k,r , (A1)

where γ is a constant, T k,r is a rth component of the rank k

irreducible spherical tensor and fk,r (t) is a random function
that describes the interaction with the surroundings.

To second order, the average fluctuations of the surround-
ings with the nucleus are given by the following dissipator

D = − 1

h̄2

∫ t

−∞
dt ′[H(t),[H(t ′),ρ̄]], (A2)

where ρ̄ is the average density matrix. By substituting the
Hamiltonian (A1) in (A2) and using the fact that f ∗

k,r (t) =
(−1)rfk,−r (t) and T †

k,r = (−1)r T k,−r we get the general form
of the dissipator

D = − 1

h̄2

k∑
s,r=−k

[T †
k,s ,[T k,r ,ρ̄]]

×
(∫ t

−∞
dt ′γ 2fk,s(t)f ∗

k,r (t ′)
)

. (A3)

The above dissipator describes the interaction of a nucleus
with the fluctuations of a random electromagnetic field. The
functions fk,s(t) and f ∗

k,r (t ′) satisfy the relation

γ 2fk,s(t)f ∗
k,r (t ′) = δs,r ξe−|t−t ′|/τc , (A4)

where ξe−|t−t ′|/τc is a correlation function, τc is the correlation
time of the fluctuating field and ξ is the correlation amplitude
when t = t ′. With (A4), the dissipator D (A3) is simplified to

DNSR = − 1

2τn

k∑
r=−k

[T †
k,r ,[T k,r ,ρ̄]], (A5)

where τn = h̄2/2ξτc is the nuclear spin relaxation time.
In the case of magnetic dipole interactions, only the

irreducible spherical tensors of rank k = 1 participate in the
Hamiltonian (A1). They can be expressed in terms of the
nuclear spin components as

T 1,0 = Îz, (A6)

T 1,±1 = ∓ 1√
2

(Îx ± iÎy). (A7)
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In the case of electric quadrupole interaction k is equal to 2
and the components of irreducible spherical tensors of rank 2
are

T 2,0 = 1
6

[
2Î 2

z − Î 2
y − Î 2

x

]
, (A8)

T 2,±1 = ∓ 1

2
√

6
[Îx Îz + ÎzÎx ± i(Îy Îz + ÎzÎy)], (A9)

T 2,±2 = 1

2
√

6

[(
Î 2
x − Î 2

y

) ± i(Îx Îy + Îy Îx)
]
. (A10)

In order for the Redfield theory and the master equation
approach to be applicable the following conditions must be
fulfilled: (i) the bath’s correlation time τc should be sufficiently
short to satisfy the inequality

τcω1 � 1, (A11)

and the density matrix should be valid in the time scale t given
by

τc � t � ω−1
1 , (A12)

where ω1 is a characteristic frequency of the perturbation
Hamiltonian |H1| [43,52,53]; (ii) furthermore, the relaxation
times should be longer than the correlation time

τc � τn. (A13)

The correlation time in the previous expression may be
estimated from [54]

τc ≈ 1

τnω
2
0

, (A14)

where h̄ω0 = |H0| is the characteristic energy of the unper-
turbed Hamiltonian.

APPENDIX B: EXPLICIT FORM OF THE DIPOLAR
AND QUADRUPOLAR INTERACTIONS

The quadrupolar dissipator for paired trap is given explicitly
by

(D2) 3
2 , 3

2
= − 1

τn2

(
ρ2; 3

2 , 3
2
−

ρ2; 1
2 , 1

2
+ ρ2;− 1

2 ,− 1
2

2

)
, (B1)

(D2)− 3
2 ,− 3

2
= − 1

τn2

(
ρ2;− 3

2 ,− 3
2
−

ρ2; 1
2 , 1

2
+ ρ2;− 1

2 ,− 1
2

2

)
, (B2)

(D2) 1
2 , 1

2
= − 1

τn2

(
ρ2; 1

2 , 1
2
−

ρ2; 3
2 , 3

2
+ ρ2;− 3

2 ,− 3
2

2

)
, (B3)

(D2)− 1
2 ,− 1

2
= − 1

τn2

(
ρ2;− 1

2 ,− 1
2
−

ρ2; 3
2 , 3

2
+ ρ2;− 3

2 ,− 3
2

2

)
, (B4)

(D2) 3
2 , 1

2
= − 1

2τn2

(
3ρ2; 3

2 , 1
2
− ρ2;− 1

2 ,− 3
2

)
, (B5)

(D2)− 3
2 ,− 1

2
= − 1

2τn2

(
3ρ2;− 3

2 ,− 1
2
− ρ2; 1

2 , 3
2

)
, (B6)

(D2)− 1
2 ,− 3

2
= − 1

2τn2

(
3ρ2;− 1

2 ,− 3
2
− ρ2; 3

2 , 1
2

)
, (B7)

(D2) 1
2 , 3

2
= − 1

2τn2

(
3ρ2; 1

2 , 3
2
− ρ2;− 3

2 ,− 1
2

)
, (B8)

(D2) 1
2 ,− 1

2
= − 1

τn2
ρ2; 1

2 ,− 1
2
, (B9)

(D2)− 1
2 , 1

2
= − 1

τn2
ρ2;− 1

2 , 1
2
, (B10)

(D2) 3
2 ,− 1

2
= − 1

2τn2

(
3ρ2; 3

2 ,− 1
2
+ ρ2; 1

2 ,− 3
2

)
, (B11)

(D2) 1
2 ,− 3

2
= − 1

2τn2

(
3ρ2; 1

2 ,− 3
2
+ ρ2; 3

2 ,− 1
2

)
, (B12)

(D2)− 3
2 , 1

2
= − 1

2τn2

(
3ρ2;− 3

2 , 1
2
+ ρ2;− 1

2 , 3
2

)
, (B13)

(D2)− 1
2 , 3

2
= − 1

2τn2

(
3ρ2;− 1

2 , 3
2
+ ρ2;− 3

2 , 1
2

)
, (B14)

(D2) 3
2 ,− 3

2
= − 1

τn2
ρ2; 3

2 ,− 3
2
, (B15)

(D2)− 3
2 , 3

2
= − 1

τn2
ρ2;− 3

2 , 3
2
. (B16)

In a short form the above equations can be presented as

(D2)m,m′ = − 1

τn2

∑
m1,m

′
1

Q
(EQ)
m,m′;m1,m

′
1
ρ2;m1,m

′
1
.

Then the quadrupolar dissipator for unpaired trap is given by

(D1)s,m;s ′,m′ = − 1

τn1

∑
m1,m

′
1

Q
(EQ)
m,m′;m1,m

′
1
ρ1;s,m1;s ′,m′

1
.

The dipolar dissipator for paired traps is given explicitly by

(D2) 3
2 , 3

2
= − 1

τn2

(
ρ2; 3

2 , 3
2
− ρ2; 1

2 , 1
2

)
, (B17)

(D2)− 3
2 ,− 3

2
= − 1

τn2

(
ρ2;− 3

2 ,− 3
2
− ρ2;− 1

2 ,− 1
2

)
, (B18)

(D2) 1
2 , 1

2
= − 1

3τn2

(
7ρ2; 1

2 , 1
2
− 3ρ2; 3

2 , 3
2
− 4ρ2;− 1

2 ,− 1
2

)
, (B19)

(D2)− 1
2 ,− 1

2
= − 1

3τn2

(
7ρ2;− 1

2 ,− 1
2
− 3ρ2;− 3

2 ,− 3
2
− 4ρ2; 1

2 , 1
2

)
,

(B20)

(D2) 3
2 , 1

2
= − 2

3τn2

(
3ρ2; 3

2 , 1
2
−

√
3ρ2; 1

2 ,− 1
2

)
, (B21)

(D2) 1
2 ,− 1

2
= − 2

3τn2

[
4ρ2; 1

2 ,− 1
2
−

√
3
(
ρ2; 3

2 , 1
2
+ ρ2;− 1

2 ,− 3
2

)]
,

(B22)

(D2)− 1
2 ,− 3

2
= − 2

3τn2

(
3ρ2;− 1

2 ,− 3
2
−

√
3ρ2; 1

2 ,− 1
2

)
, (B23)

(D2) 1
2 , 3

2
= − 2

3τn2

(
3ρ2; 1

2 , 3
2
−

√
3ρ2;− 1

2 , 1
2

)
, (B24)

(D2)− 1
2 , 1

2
= − 2

3τn2

[
4ρ2;− 1

2 , 1
2
−

√
3
(
ρ2; 1

2 , 3
2
+ ρ2;− 3

2 ,− 1
2

)]
,

(B25)
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(D2)− 3
2 ,− 1

2
= − 2

3τn2

(
3ρ2;− 3

2 ,− 1
2
−

√
3ρ2;− 1

2 , 1
2

)
, (B26)

(D2) 3
2 ,− 1

2
= − 1

τn2

(
3ρ2; 3

2 ,− 1
2
− ρ2; 1

2 ,− 3
2

)
, (B27)

(D2) 1
2 ,− 3

2
= − 1

τn2

(
3ρ2; 1

2 ,− 3
2
− ρ2; 3

2 ,− 1
2

)
, (B28)

(D2)− 3
2 , 1

2
= − 1

τn2

(
3ρ2;− 3

2 , 1
2
− ρ2;− 1

2 , 3
2

)
, (B29)

(D2)− 1
2 , 3

2
= − 1

τn2

(
3ρ2;− 1

2 , 3
2
− ρ2;− 3

2 , 1
2

)
, (B30)

(D2) 3
2 ,− 3

2
= − 4

τn2
ρ2; 3

2 ,− 3
2
, (B31)

(D2)− 3
2 , 3

2
= − 4

τn2
ρ2;− 3

2 , 3
2
. (B32)

If the above equations are presented as

(D2)m,m′ = − 1

τn2

∑
m1,m

′
1

Q
(MD)
m,m′;m1,m

′
1
ρ2;m1,m

′
1
,

then the dipolar dissipator for unpaired trap is given by

(D1)s,m;s ′,m′ = − 1

τn1

∑
m1,m

′
1

Q
(MD)
m,m′;m1,m

′
1
ρ1;s,m1;s ′,m′

1
.
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