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Holographic encoding of universality in corner spectra
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In numerical simulations of classical and quantum lattice systems, 2D corner transfer matrices (CTMs) and 3D
corner tensors (CTs) are a useful tool to compute approximate contractions of infinite-size tensor networks. In
this paper we show how the numerical CTMs and CTs can be used, additionally, to extract universal information
from their spectra. We provide examples of this for classical and quantum systems, in 1D, 2D, and 3D. Our
results provide, in particular, practical evidence for a wide variety of models of the correspondence between
d-dimensional quantum and (d + 1)-dimensional classical spin systems. We show also how corner properties can
be used to pinpoint quantum phase transitions, topological or not, without the need for observables. Moreover,
for a chiral topological PEPS we show by examples that corner tensors can be used to extract the entanglement
spectrum of half a system, with the expected symmetries of the SU (2)k Wess-Zumino-Witten model describing
its gapless edge for k = 1,2. We also review the theory behind the quantum-classical correspondence for spin
systems and provide a numerical scheme for quantum state renormalization in 2D using CTs. Our results show that
bulk information of a lattice system is encoded holographically in efficiently-computable properties of its corners.
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I. INTRODUCTION

Corner transfer matrices (CTMs) were introduced by Baxter
in the context of exactly solvable models in 2D. In his
1968 paper [1] he laid, without noticing it, some of the
basics of CTMs, together with those of the density matrix
renormalization group (DMRG) and matrix product states
(MPS), when dealing with the dominant eigenvector of a 1D
transfer matrix. CTMs are a key ingredient in the exact solution
of several statistical-mechanical models [2] and have also
inspired many advances in the study of quantum many-body
entanglement [3–5]. CTMs have also been important for the
numerical simulation of lattice systems, both classical and
quantum. In retrospect, Baxter proposed in 1978 a variational
method over CTMs [6], inspired by an earlier numerical
method from 1941 by Kramers and Wannier [7]. This, in
turn, was one of the inspirations of Nishino and Okunishi’s
CTM renormalization group method (CTMRG) [8]. Similar
numerical CTM techniques are also currently used in the
calculation of low-energy properties of infinite-size quantum
lattice systems in 2D [4,9,10], for which they have become
one of the standard tools in the approximate calculation of
physically-relevant quantities such as expectation values of
local observables and low energy excitations. CTMs and
their algorithms have also been generalized to 3D by the
so-called corner tensors (CTs) [5,11], in turn allowing us to
explore higher-dimensional systems with tensor network (TN)
methods.

Still, CTMs and CTs contain a great amount of holographic
information about the bulk properties of the system which,
a bit surprisingly, has not yet been fully exploited in the
context of numerical simulations. Apart from being a useful
object in the calculation of observables, the corner objects
also contain, by themselves, information about the universal
properties of the simulated model, providing a nice instance
of the bulk-boundary correspondence for tensor networks
(TNs) [12]. Bulk information is encoded holographically at
the “boundary” corners, in a way similar to the study of the

so-called “entanglement spectrum” and “entanglement Hamil-
tonians” [13]. For instance, Peschel, Kaulke, and Legeza [3]
showed that the entanglement spectrum of a quantum spin
chain (w.r.t. a partition into two semi-infinite segments) is
identical, up to some normalization constant, to the spectrum
of some CTM in 2D, which could be computed exactly in
some cases. This was the case of the Ising and Heisenberg
quantum spin chains in a transverse field, for which they were
able to compute such a entanglement spectrum exactly as
eigenvalues of a “corner Hamiltonian”, which here we call
“corner energies”. Nevertheless, and in spite of these results,
the study of the physical information encoded holographically
in CTMs and CTs has been traditionally overlooked in
numerical simulations, especially in the case of 2D quantum
lattice systems, in spite of the fact that this is, indeed, a quite
natural thing to do.

In this paper we explore the fingerprints of universal physics
that are encoded holographically in numerical CTMs and CTs.
We do this by studying the eigenvalue spectra of these objects
or, more precisely, of contractions of these objects, together
with its associated entropy, in a way to be explained later.
We provide several examples of this both for classical and
quantum systems, including classical and quantum Ising, XY,
XXZ, and N -state Potts models, as well as several instances
of 2D projected entangled pair states (PEPS) [14] describing
perturbed Z2, Z3, symmetry-protected, and chiral topological
orders [15–22]. To achieve this goal we use a variety of TN
methods for CTMs and CTs. For the case of ground-state
properties of a quantum Hamiltonian Hq in d dimensions,
we set up a corner method for a d + 1 dimensional TN as
described in Ref. [5] via the imaginary-time evolution operator
e−τHq for large enough τ . From a broad perspective, some of
our results can be understood as a generalization of the work
by Peschel, Kaulke, and Legeza [3] to 2D quantum systems.
Additionally, whenever we have direct access to the ground-
state wavefunction |ψG〉 in the form of a TN (e.g., a PEPS),
we can also study the CTMs originating from the TN for the
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norm 〈ψG|ψG〉, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG〉 is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP −1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

) =
χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e−HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z = ∑χ

α=1 ωα . Additionally,
the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z = ∑χ

α=1 ωα , as in the lower-dimensional case of CTMs.
Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG〉 is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by

(e)
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑
{s}

e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑
〈i,j〉

s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ±1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 + √
2). It is well known [31]

that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)〉 = 1

Zc

e( β

2

∑
〈i,j〉 σ [i]

z σ
[j ]
z )| + , + , · · · ,+〉, (11)

with β some inverse temperature and |+〉 the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

〈ψ(β)|σ [i]
z σ [j ]

z |ψ(β)〉 = 1

Zc

∑
{s}

s[i]s[j ]e−βHc({s})

= 〈s[i]s[j ]〉β, (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and 〈·〉β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)〉 can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −∑

α ωα log ωα .
The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D

195170-5



CHING-YU HUANG, TZU-CHIEH WEI, AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 195170 (2017)

quantum model by t = Tc/ arcsinh
√

1/h, and to the parameter
g of the 2D Ising PEPS by t = −Tc/ log (sin(2g)). As shown
in the plots, in all cases one can see that the entropy S tends
to have the same type of divergence. Concerning the corner
spectra ωα , we see that all the models reproduce the same type
of branches on both the symmetric and the symmetry-broken
phases. As expected, all spectra match perfectly between
the different calculations, since the different models can be
mapped into each other exactly.

V. BENCHMARKING THE QUANTUM-CLASSICAL
CORRESPONDENCE

In this section we consider the corner energies for a variety
of quantum and classical systems, which allows us to study in
good detail the correspondence between quantum spin systems
in d dimensions and classical systems in d + 1 dimensions.
There are several approaches and here we focus mainly on
three of them, which we shall refer to as the partition-function
method [37], Peschel’s method [38], and Suzuki’s method [24],
respectively. We will give pedagogical treatment, specializing
to a few models and show numerical results for a variety of
1D and 2D quantum and 2D and 3D classical models.

A. Partition-function approach

We now review the standard procedure behind the partition-
function approach for quantum-classical mapping and then
examine such correspondence in terms of entanglement and
corner spectra. The main idea is that, for a d-dimensional
quantum Hamiltonian Hq at inverse temperature β, the
canonical quantum partition function Zq = tr(e−βHq ) can be
evaluated by writing it as a path integral in imaginary time,
i.e.,

Zq = tr(e−βHq ) =
∑
m

〈m|e−βHq |m〉, (14)

with |m〉 a given basis of the Hilbert space. Introducing
resolutions of the identity at intermediate steps in imaginary
time one has

Zq =
∑
{m}

〈m0|U |mL−1〉〈mL−1|U |mL−2〉 · · · 〈m1|U |m0〉,

(15)

with U ≡ e−δτHq , δτ ≡ β/L � 1 (smaller than all time scales
of Hq), and where the sum is for all the configurations of
mα,α = 0,1, . . . ,L − 1 with mL = m0, i.e., periodic boundary
condition in imaginary time.

As such, this way of writing the partition function can be
interpreted in some cases as the one of a classical model with
some variables mα along an extra dimension emerging from
the imaginary-time evolution. In what follows, we make this
specific for the quantum Ising and Potts models and benchmark
the theory with numerical simulations using CTMs and CTs
computing the corner spectra and corner entropy.

1. Transverse field quantum Ising model in d dimensions

(i) Mapping via the partition function: Let us consider the
quantum Ising model with a transverse field in d dimensions

for L spins. For convenience, we use now the following
notation for its Hamiltonian:

Hq = −Jz

∑
〈i,j〉

σ [i]
z σ [j ]

z − Jx

∑
i

σ [i]
x = Hz + Hx, (16)

where σ [i]
α is the αth Pauli matrix on site i, Jz is the interaction

coupling, Jx the field strength, and the sum 〈i,j 〉 runs over
nearest neighbors. The canonical quantum partition function
of this model is given by

Zq = tr(e−βHq ) =
∑
ηz

〈{ηz}|e−βHq |{ηz}〉, (17)

with |{ηz}〉 ≡ |η[1]
z ,η[2]

z , · · · ,η[L]
z 〉 the diagonal z basis of the N

spins, so that η[i]
z = ±1,i = 1,2,...,L. Splitting the imaginary

time β into infinitesimal time steps δτ we obtain

〈{ηz(τ + δτ )}|e−δτHq |{ηz(τ )}〉
≈ 〈{ηz(τ + δτ )}|e−δτHx e−δτHz |{ηz(τ )}〉
= e−δτHz({ηz(τ )})〈{ηz(τ + δτ )}|e−δτHx |{ηz(τ )}〉, (18)

where in the first line we performed a first-order Trotter
approximation with O(δτ 2) error. Next, we consider the term
with Hamiltonian Hx . In the single-site z basis this can be
written as〈

η[i]
z (τ + δτ )

∣∣eδτJxσ
[i]
x

∣∣η[i]
z (τ )

〉
=

∑
η

[i]
x =±1

〈
η[i]

z (τ + δτ )
∣∣eδτJxσ

[i]
x

∣∣η[i]
x

〉〈
η[i]

x

∣∣η[i]
z (τ )

〉

=
∑

η
[i]
x =±1

eδτJxη
[i]
x

〈
η[i]

z (τ + δτ )
∣∣η[i]

x

〉〈
η[i]

x

∣∣η[i]
z (τ )

〉
. (19)

We can now use the overlap relation

〈
η[i]

x

∣∣η[i]
z

〉 = 1√
2
eiπ( 1−η

[i]
x

2 )(
1−η

[i]
z

2 ), (20)

and define η′[i]
z ≡ η[i]

z (τ + δτ ), η[i]
z ≡ η[i]

z (τ ). Using this nota-
tion, we now have〈

η′[i]
z

∣∣eδτJxσ
[i]
x

∣∣η[i]
z

〉
=

∑
η

[i]
x =±1

eδτJxη
[i]
x × 1

2
eiπ( 1−η

[i]
x

2 )(
1−η

′[i]
z

2 + 1−η
[i]
z

2 )

= 1

2

(
eδτJx + e−δτJx η′[i]

z η[i]
z

)
= 1

2
eδτJx

(
1 + e−2δτJx η′[i]

z η[i]
z

)
. (21)

Moreover, we have the alternative representation〈
η′[i]

z

∣∣eδτJxσ
[i]
x

∣∣η[i]
z

〉 = CeJτ η
′[i]
z η[i]

z

= C
(

cosh(Jτ ) + sinh(Jτ )η′[i]
z η[i]

z

)
= C cosh(Jτ )

(
1 + tanh(Jτ )η′[i]

z η[i]
z

)
, (22)

with C a normalization constant. Comparing Eqs. (21)
and (22), we obtain the relation tanh(Jτ ) = e−2δτJx . Finally,
the partition function Zq of the transverse-field quantum Ising
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KxKK

Ky(Jτ )

(Js)
FIG. 6. Coupling constants for a 2D classical Ising model. In

connection with the quantum-classical correspondence, the vertical
direction corresponds to imaginary time.

model can be written as

Zq ≈
∑
{η}

C ′eJs

∑
α,〈i,j〉 η[i]

z (τα)η[j ]
z (τα)eJτ

∑
α,i η[i]

z (τα+1)η[i]
z (τα), (23)

where the “coupling constants” along the imaginary-time (τ )
and space (s) directions are given by

Jτ = tanh−1(e−2δτJx ) Js = Jzδτ. (24)

Therefore, the canonical quantum partition function of a
d-dimensional quantum Ising model with a transverse field
at inverse temperature β can be approximately represented
by the classical partition function of a (d + 1)-dimensional
classical Ising model of size β in the imaginary-time direction.
The exact correspondence arrives if we take the number
of sites L in the imaginary time direction to be infinity,
giving δ = β/L → 0, and then the corresponding classical
model has the couplings Js → 0 and Jτ → ∞. In Monte
Carlo simulations, tricks can be used to deal with such as a
limit [39]. For our simulations using correspondence from such
a partition-function approach, we have to take δ increasingly
small to obtain the exact correspondence of the spectrum.

Reparametrizing the derived classical 2D anisotropic Ising
model (see Fig. 6) we have

βHc = −
∑
〈i,j〉

(Kxs
[i,j ]s[i,j+1] + Kys

[i,j ]s[i+1,j ]), (25)

where Kx,Ky are, respectively, the horizontal and vertical
couplings, s[i,j ] = ±1 are classical spins at site [i,j ], and
the sum runs over nearest neighbors on a square lattice. The
classical canonical partition function of this model is given by

Zc =
∑
{s}

e(
∑

〈i,j〉 Kxs
[i,j ]s[i,j+1]+Kys

[i,j ]s[i+1,j ]). (26)

Comparing Eq. (23) with Eq. (26) we then have the relations

Kx = Js = Jzδτ, Ky = Jτ = tanh−1(e−2δτJx ), (27)

where we can set Jz = 1 and Jx = h. We thus obtain the
relation between h and Kx,Ky ,

tanh Ky = e−2Kxh. (28)

D2
D1φ

φ

φ

FIG. 7. The diagonal transfer matrix of square lattice.

The exact mapping is obtained in the limit Kx → 0 and
Ky → 0.

The case of a 3D classical Ising model on a cubic lattice,
analogous to a 2D quantum Ising model in a transverse field
on the square lattice, only introduces one more relation in
addition to those Eq. (27) for an extra coupling along a spatial
direction, i.e.,

Kx = Js = Jzδτ, Ky = Js = Jzδτ,
(29)

Kz = Jτ = tanh−1(e−2δτJx ).

Such a d-dimensional quantum Ising model is mapped to
a corresponding (d + 1)-dimensional classical Ising model,
which has homogeneous couplings along d spatial dimensions
and is anisotropic in the extra (imaginary) temporal dimension.

(ii) Peschel’s mapping in 2D: In a work by Peschel [38], it
was shown that a 2D classical Ising model with an isotropic
coupling K is in exact correspondence to a 1D quantum spin
chain with Hamiltonian

Hq = −
L−1∑
i=1

σ [i]
x − δσ [L]

x − λ

L−1∑
i=1

σ [i]
z σ [i+1]

z , (30)

where δ = cosh 2K and λ = sinh2 K , by using a transfer
matrix technique. The transverse field labeled as δ at the right
end can be neglected for large L. Then one arrives at the usual
homogeneous chain.

Let us briefly review how this is derived. Consider the
classical Hamiltonian of the 2D isotropic Ising model given
by

βHc = −
∑
i,j

K(s[i,j ]s[i,j+1] + s[i,j ]s[i+1,j ]), (31)

where s[i,j ] = ±1 is a classical spin at site [i,j ] and β is the
inverse temperature. The partition function is given by

Zc =
∑
{s}

e(K
∑

i,j (s[i,j ]s[i,j+1]+s[i,j ]s[i+1,j ])). (32)

Firstly, by drawing the lattice diagonally (i.e., rotate the square
lattice by 45 degrees), the sites can form a row as shown
in Fig. 7, and these rows can be classified into two types:
open circles and solid circles. This means that the number
of rows must be even. Let now N be the number of rows
and M is the number of sites in each row. Moreover, let φr

denote all spins in row r with 2M possible values. In particular,
the partition function can be represented by the diagonal-to-
diagonal transfer matrix W and V as follows:

Zc =
∑
φ1

∑
φ2

· · ·
∑
φN

(D1)φ1,φ2 (D2)φ2,φ3 (D1)φ3,φ4

· · · (D1)φN−1,φN
(D2)φN ,φ1 . (33)
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Here, (D1)φj ,φj+1 contains all Boltzmann weight factors of the
spins (from open circles to solid circles) in the adjacent rows
j and j + 1. Similarly, (D2)φj ,φj+1 contains the other type of
spins (from solid circles to open circles). We now consider
three rows labeled as φ,φ′,φ′′, where φ = {s1,s2,...,sM} are
the spins in the lower row and similarly for φ′ and φ′′. Then
the diagonal-to-diagonal transfer matrix is given by

(D1)φ,φ′ = eK(
∑M

j=1(sj+1s
′
j +sj s

′
j )),

(34)

(D2)φ′,φ′′ = eK(
∑M

j=1(s ′
j s

′′
j +s ′

j s
′′
j+1)).

The partition function can thus be written as Zc =
tr(D1D2...D1D2) = tr(D1D2)N/2 = tr(V )N/2. One can verify
that [Hq,V ] = 0 if the couplings are chosen to satisfy

δ = cosh 2K, λ = sinh2 K. (35)

If the lattice size is large enough, then the single term σx
L

can be neglected. In this case the Hamiltonian can be written
as a 1D quantum Ising chain with transverse field h, Hq/λ =
−∑L−1

i=1 hσ [i]
x − ∑L−1

i=1 σ [i]
z σ [i+1]

z with h = 1/λ = 1/ sinh2 K .
It is worth mentioning that the mapping is exact in the sense
that no limit in any parameter needs to be taken (in contrast to,
e.g., the partition-function approach, where we had δτ → 0).

(iii) Numerical results: According to the mapping described
above, we have computed the corner spectra ωα and the
associated corner entropy for Ising models, first comparing
the 1D quantum and 2D classical, and then the 2D quantum
and 3D classical, using the numerical techniques mentioned
earlier. On the one hand, the comparison of 1D quantum vs
2D classical is shown in Fig. 8, where we also include in the
second panel the mapping to the isotropic classical Ising model
by Peschel [38]. Regarding the anisotropic classical model,
the mapping becomes more and more precise as δτ → 0, i.e.
as Kx becomes smaller. In our results, when plotted with
respect to the same variables, we see a remarkably perfect
agreement for all the numerical values of ωα and S among all
the models. On the other hand, we show in Fig. 9 our results
comparing the 2D quantum vs 3D classical (anisotropic) case.
The match in this case is not as perfect as in the 1D vs 2D
case, but nevertheless, it is still quite remarkable, especially
considering the inner workings and associated errors of the
higher-dimensional numerical algorithms that we used.

To understand further the data obtained from the corners,
we show in Fig. 10 the corner entropies in more detail, as well
as difference between the 2D classical corner entropy and the
one for the 1D quantum case (which equates the entanglement
entropy). One can see in a more precise way that the entropy
in the classical anisotropic case tends to the quantum one
as the coupling Kx tends to zero, as expected from Eq. (27)
for δτ � 1. The effect of a finite Kx is better appreciated
in Fig. 11, where one can see clearly how the classical value
tends to match as a limiting case the quantum value as Kx → 0.
Finally, in Fig. 12 we show a comparison of the entropies for
the 2D quantum vs 3D classical case. Again, as expected,
the agreement between the quantum and the classical case
improves as Kx gets closer to zero.

FIG. 8. (a) Entanglement spectra and entanglement entropy of
the 1D quantum Ising model in a transverse field h as obtained with
iTEBD. (b)–(d) Corner spectra and corner entropy of: (b) the 2D
classical isotropic Ising model, as a function of h, with isotropic cou-
pling K satisfying 1/h = sinh2 K; (c), (d) 2D anisotropic classical
Ising model with fixed Kx = 0.1 (c), Kx = 0.01 (d), and Ky as a
function of h satisfying tanh Ky = e2Kxh. The corner bond dimension
is χ = 20 in all cases.

2. Transverse field quantum N-Potts model in 1 dimension

(i) Mapping: we now consider the 1D quantum N -state
Potts model in 1D for L sites. The corresponding 1D quantum
Potts Hamiltonian is given by

Hq = −
L−1∑
i=1

(
N−1∑
n=1

(Z[i]†Z[i+1])n
)

− h

L∑
i=1

(
N−1∑
n=1

(X[i])n
)

= Hz + Hx, (36)

where operators Z and X at every site satisfy

Z|q〉 = ωq |q〉, X|q〉 = |q − 1〉, (37)

with ω = ei2π/N and q ∈ ZN .
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FIG. 9. Corner spectra and corner entropy of: (a) the 2D quantum
Ising model in a transverse field h by using the simplified one-
directional 2D method [5]; (b)–(d) 3D anisotropic classical Ising
model (also with the same method) with fixed Kx = Ky = 0.1 (b),
Kx = Ky = 0.05 (c), and Kx = Ky = 0.01 (d), and Kz as a function
of h satisfying tanh Kz = e2Kxh. The corner bond dimension for the
CTs is χ = 4 in all cases.

Similar to the case of the Ising model, the quantum
canonical partition function is given again by

Zq = tr(e−βHq ) =
∑
ηz

〈{ηz}|e−βHq |{ηz}〉, (38)

but this time |{ηz}〉 ≡ |η[1]
z ,η[2]

z , . . . ,η[L]
z 〉 is the diagonal basis

of Z for the L spins, so that η[i]
z = 0,1,2, . . . ,N − 1,i =

1,2,...,L. Proceeding as for the Ising model in the previous
section, now we have a similar expression as in Eq. (18), but
with Hz and Hx being the ones in Eq. (36). For the Hamiltonian
term Hz we find

〈
η′[i]

z η′[i+1]
z

∣∣eδτ (
∑N−1

n=1 (Z†[i]Z[i+1])n)
∣∣η[i]

z η[i+1]
z

〉
= eδτϑzδη

[i]
z η

′[i]
z

δη
[i+1]
z η

′[i+1]
z

, (39)

FIG. 10. Corner entropy of the 1D quantum Ising model, 2D
classical isotropic Ising model (1/h = sinh2 K), and 2D classical
anisotropic Ising model with fixed Kx = 0.1, Kx = 0.01, and Kx =
0.001 (tanh Ky = e2Kxh) as a function of the transverse field h with
bond dimension χ = 20. In the inset we show the difference �

between the 2D corner entropies and the 1D entanglement entropy.

where η′[i]
z ≡ η[i]

z (τ + δτ ) and η[i]
z ≡ η[i]

z (τ ). The coefficient
ϑz is ϑz = N − 1 if η[i]

z = η[i+1]
z , and ϑz = −1 otherwise.

FIG. 11. Corner entropy of the 2D classical anisotropic Ising
model with fixed (upper) h = 0.8 and (lower) h = 1.2 as a function
of Kx with corner dimension χ = 20. The blue dashed lines show the
entanglement entropy of the ground state of the corresponding 1D
quantum Ising model obtained by using the iTEBD method.
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FIG. 12. Corner entropy of the 2D quantum Ising model and 3D
classical anisotropic Ising model with fixed Kx = 0.1, Kx = 0.05,
Kx = 0.01 (tanh Ky = e2Kxh) as a function of the transverse field h

with corner dimension χ = 4.

Additionally, for the term Hx one has

〈
η′[i]

z

∣∣eδτh(
∑N−1

n=1 (X[i])n)
∣∣η[i]

z

〉
= 〈

η′[i]
z

∣∣ cosh(δτh)I + sinh(δτh)

(
N−1∑
n=1

(X[i])n
)∣∣η[i]

z

〉

=
{

cosh(δτh) if η[i]
z = η′[i]

z

sinh(δτh) otherwise.
(40)

For the classical case, the Hamiltonian of the 2D classical
N -state Potts model on a square lattice is defined by

βHc = −
∑
〈i,j〉

(
Kxδs[i,j ],s[i,j+1] + Kyδs[i,j ],s[i+1,j ]

)
, (41)

with “Potts spin variables” s[i,j ] = 0,1,2,...,N − 1 at each site.
The classical partition function is then

Zc =
∑
{s}

e(
∑

〈i,j〉 Kxδs[i,j ] ,s[i,j+1] +Kyδs[i,j ] ,s[i+1,j ] ). (42)

From Eqs. (39), (40), and (42) one finds the relations

Kx = Nδτ, tanh(δτh) = e−Ky , (43)

which establish the quantum-classical mapping.
(ii) Numerical results: As we did for the case of the

Ising model, now we have benchmarked the quantum-classical
correspondence by computing numerically the corner spectra
ωα and their associated corner entropy for several quantum and
classical Potts models. Our results are summarized in Fig. 13,
where we show the corner spectra and corner entropy for the
1D quantum and 2D classical N -state Potts models for N = 2,
3, 4, and 5. Again, we find a remarkable almost-perfect match
for the corner properties as computed with different methods
for 1D quantum and 2D classical systems, once the parameters
in the models are rescaled according to the relations found
in the previous section. The spectrums for the 2-state Potts
model coincide with those of the Ising model, as expected.
As N increases, we find small variations in the corner for
different values of N , even though the branches corresponding
to the lowest corner spectra seem to be very similar for all the
computed N .

B. Suzuki’s approach for the quantum XY model

In a work by Suzuki [24] it was proven that a 2D classical
Ising model in the absence of a magnetic field and with

FIG. 13. Entanglement spectra and entanglement entropy for the 1D quantum N -state Potts model in transverse field h for (a) N = 2, (c)
N = 3, (e) N = 4, and (g) N = 5 by using iTEBD method. Corner spectra and corner entropy for the 2D classical N -state Potts model as a
function of h, where h is a function of Ky as in Eq. (43), with Kx = 0.01 for (b) N = 2, (d) N = 3, (f) N = 4, and (h) N = 5 computed with
the 2D directional CTM method. The corner bond dimension is χ = 20 in all cases.

195170-10



HOLOGRAPHIC ENCODING OF UNIVERSALITY IN . . . PHYSICAL REVIEW B 95, 195170 (2017)

anisotropic couplings is “equivalent”, in the sense of having the
same expectation values and physical properties, to the ground
state of a XY quantum spin chain. Unlike the partition function
approach, which maps a quantum model to a classical model
in one dimension higher, Suzuki’s approach works from the
other direction: It starts from the (d + 1)-dimensional classical
partition function and then builds a d-dimensional quantum
model with the same physics. We note that the mapping is
exact and does not involve the limit. However, if one uses the
quantum XY model to study the transverse-field Ising model,
then a similar limit needs to be taken. Moreover, it was known
that there is a range of couplings in the quantum XY model
that there is no valid classical correspondence (see the “O”
region in Fig. 14).

(i) The mapping: let us review the theory behind this
approach by considering first the classical Hamiltonian of the
anisotropic 2D XY model, i.e.,

βHc = −
∑
i,j

(Kxs
[i,j ]s[i,j+1] + Kys

[i,j ]s[i+1,j ]), (44)

where indices i,j denote, respectively, rows and columns,
Kx,Ky are the horizontal and vertical couplings, s[i,j ] = ±1
are classical spin variables at each site, and β is the inverse
temperature. For concreteness let us imagine that we have a
finite periodic square lattice with N × M sites.

The canonical partition function is given by

Zc =
∑
{s}

e(Kx

∑
i,j s[i,j ]s[i,j+1]+Ky

∑
i,j s[i,j ]s[i+1,j ]). (45)

The first sum inside the brackets in the exponential is over
horizontal edges, and the second over the vertical ones. Let
N be the number of rows in the lattice and M the number of
sites in each row. Now let φr denote all spins in row r , so that
φr has 2M possible values. The partition function can thus be
thought of as a function of φ1,.....,φN and can be rewritten as

Zc =
∑
φ1

...
∑
φN

Tφ1,φ2 ...TφN−1,φN
TφN .φ1 . (46)

Here Tφi,φi+1 is the 1D transfer matrix of the system, which
contains all the Boltzmann weight factors of the spin in the
adjacent rows.

Let φ = {s1s2,...sM} be the spins in a given row and φ′ =
{s ′

1,s
′
2,...s

′
M} the ones in the following row. Then the transfer

matrix is given by

Tφ,φ′ = e(Kx

∑
i si si+1+Ky

∑
i si s

′
i )

= eKx

∑
i si si+1 × eKy

∑
i si s

′
i

≡ V1V2. (47)

Here V1 can be decomposed as a product of 2 × 2 matrices,

(V1)si ,si+1 =
(

eKx e−Kx

e−Kx eKx

)
, (48)

which can also be written as

(V1)si ,si+1 = eKxI + e−Kx σx

= eKx
(
I + e−2Kx σx

)
= (2 sinh 2Kx)1/2eK∗

x σx ≡ V1(i), (49)

with I the 2 × 2 identity matrix, σx the x-Pauli matrix, and
where we define tanh K∗

x ≡ e−2Kx (and tanh Kx ≡ e−2K∗
x ) as

well as use the relation sinh 2Kx sinh 2K∗
x = 1. Moreover, one

has the 4 × 4 matrix ((V2)si ,sj ;s ′
i ,s

′
j
)δsi ,s

′
i
δsj ,s

′
j

given by

(V2)si ,sj ;s ′
i ,s

′
j

=

⎛
⎜⎜⎜⎝

(+1, + 1) (+1, − 1) (−1, + 1) (−1, − 1)
eKy 0 0 0
0 e−Ky 0 0
0 0 e−Ky 0
0 0 0 eKy

⎞
⎟⎟⎟⎠

= exp
(
Kyσ

i
zσ

i+1
z

)
= cosh KyI

iIi+1 + sinh Kyσ
i
zσ

i+1
z

≡ V2(i,i + 1). (50)

It is clear that the partition function is the trace of a matrix
product, given by

Zc = tr(V1V2...V1V2) = tr(V1V2)N . (51)

Thus, Zc can also be written as

Zc = tr
(
V

1/2
2 V1V

1/2
2

)N = tr(V )N, (52)

or

Zc = tr
(
V

1/2
1 V2V

1/2
1

) = tr(V ′)N, (53)

where

V1 = (2 sinh 2Kx)M/2e(K∗
x

∑m
i=1 σ i

z ), (54)

and

V2 = e(Ky

∑M
i=1 σ i

z σ
i+1
z ). (55)

The next step is to show that V and the quantum Hamil-
tonian Hq for the 1D quantum XY model can commute and
therefore have common eigenvectors. The usual XY quantum
spin chain is defined by the Hamiltonian

Hq = −
∑

i

(
Jxσ

[i]
x σ [i+1]

x + Jyσ
[i]
y σ [i+1]

y

) + h
∑

i

σ [i]
z , (56)

where γ = (Jx − Jy) is the anisotropy,and h the magnetic
field. The phase diagram of the model is well known [40]
and is sketched in Fig. 14(a).

To prove that the commutator of V and Hq can sometimes
be zero, we first define V2(i,i + 1)

1
2 ≡ v2(i,i + 1). The 1D

quantum Hamiltonian is a sum of two-body operators Hq =∑
i h(i,i + 1). Thus, the commutator reads

[V,Hq] =
∑

i

[V,h(i,i + 1)]

=
∑

i

( · · · [v2(i − 1,i)v2(i,i + 1)v2(i + 1,i + 2)

×V1(i)V1(i + 1)v2(i − 1,i)v2(i,i + 1)

× v2(i + 1,i + 2),h(i,i + 1)] · · · ) = 0. (57)
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FIG. 14. Phase diagram of (a) 1D [40] and (b) 2D [41] quantum
XY model. There are three phases: oscillatory (O), ferromagnetic (F),
and paramagnetic (P). The equation on top is the Barouch-McCoy
circle [42] that sets the boundary between the oscillatory and
nonoscillatory ferromagnetic regions (which is only a crossover).
The separation between F and P in (a) is at h = 1 and in (b) the exact
location is not known and only indicated schematically.

The last equality imposes a constraint on the couplings of the
classical and quantum models in order for the commutator to
vanish. One can see that this implies the relations between the
couplings

Jy

Jx

= e−4Kx ,
h

Jx

= 2e−2Kx coth(2Ky), (58)

which make explicit the quantum-classical mapping. Impor-
tantly, for fixed h,Jx , and Jy , these equations do not have a real
solution in the oscillatory phase of Fig. 14, so that the mapping
is only valid outside of that phase. Finally, the mapping can also
be extended easily to the 3D classical vs 2D quantum case, by
considering a 2D homogeneous coupling Kx = Ky = K and
adding an extra equation for Kz, i.e.,

Jy

Jx

= e−4K,
h

Jx

= 2e−2K coth(2Kz). (59)

(ii) Numerical results: We have explicitly checked this
equivalence by computing numerically the corner spectra and
the associated corner entropy for the quantum and classical
XY models in 1D, 2D, and 3D. For the 1D quantum vs 2D
classical case, this is shown in Fig. 15 for different values of
the anisotropy in the quantum XY model. The expressions in
Eq. (58) have only a real solution for Kx,Ky if the value of h

is outside of the oscillatory phase, as shown in the plots. We
can see that the agreement between the quantum and classical
corner spectra and corner entropy is remarkably good, both
qualitatively and quantitatively, with a slightly larger error
around the critical region h = 1. The comparison between
2D quantum vs 3D classical can be found in Fig. 16. Again
in this case the match between the numerically-computed
classical and quantum values is quite remarkable, considering
the different numerical techniques that were used in this case.

FIG. 15. Corner spectra and entropy for the 1D XY quantum spin chain, with (a) γ = 0.5, (c) γ = 0.9, and (e) γ = 0.99, together with
the corresponding anisotropic 2D classical Ising model (b), (d), (f), respectively, with Kx and Ky being functions of h as described in Eq. (58).
The corner bond dimension (equivalent to the MPS bond dimension in the 1D quantum case) is χ = 40 in both cases. The correspondence of
parameters has a solution only for values of h larger than (b) h ≈ 0.85, (d) h ≈ 0.4, (f) h ≈ 0.1, and therefore the left hand side of each plot in
the lower panel is empty.
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FIG. 16. Corner spectra and corner entropy of: (a) 2D quantum
XY model with γ = 0.7 in a transverse field h by using the simplified
one-directional 2D method [5]; (b) the corresponding 3D anisotropic
classical Ising model as a function of h satisfying Eq. (58). The
corner bond dimension is χ = 4 in all cases. The correspondence of
parameters has a solution only for values of h larger than h ≈ 1.45,
and therefore the left hand side of the plot in the lower panel is empty.

VI. 2D CORNER PHASE TRANSITIONS

We now show how the study of corner properties can
provide other useful information when studying a quantum
or classical many-body system. In particular, we show how
the corner spectra and corner entropy from 2D rCTMs (i.e.,
the CTMs obtained from the 2D TN for the norm) are useful
in determining phase transitions without the need to compute
physical observables.

The usual way to study quantum and classical phase
transitions is through the study of observables, which have
specific properties at the transition point (e.g., the singular
behavior of the observable). The study of entanglement and
correlations in many-body systems has shown us that it is
actually possible to study these transitions from properties of
the state only, such as entanglement entropy, fidelities [43],
entanglement spectra [13], and similar quantities. Following
this trend, in this section we show that one can assess phase
transitions from properties of the corners only, in particular
the rCTM that we introduced in Sec. I. This is very useful
in the context of numerical simulations of, e.g., 2D quantum
many-body systems, since such corner objects are produced
“for free” (e.g., in the infinite-PEPS method with a full
or fast-full update [9,23]). In what follows we show three
practical examples where phase transitions, both topological
and nontopological, can be clearly pinpointed by looking only
at the corner objects.

FIG. 17. Corner spectra ω(r)
α for the norm of the numerical D = 2

PEPS for the XXZ model in a field, at � = 1.5, on the square lattice
with χ = 40, together with the corner entropy computed from the
corner spectra.

A. 2D quantum X X Z model

First we consider the 2D quantum XXZ model for spin-1/2
on an infinite square lattice, under the effect of a uniform
magnetic field h along the z axis. Its Hamiltonian is given by

Hq = −
∑
〈i,j〉

(
σ [i]

x σ [j ]
x + σ [i]

y σ [j ]
y − �σ [i]

z σ [j ]
z

) − h
∑

i

σ [i]
z ,

(60)

where as usual the sum 〈i,j 〉 runs over nearest neighbors on the
2D square lattice, and � is the anisotropy. In the large � > 1
limit, it has been shown [44] that a first-order transition takes
place at some point h1 from a Néel phase to a spin-flipping
phase. As the field increases further, another phase transition
at h2 = 2(1 + �) occurs towards the fully polarized phase.

Here we consider the case with � = 1.5. We have ap-
proximated the ground state of the model using the iPEPS
algorithm with simple update and bond dimension D = 2 [45]
and then computed the reduced corner spectra ω(r)

α and entropy
of the double-layer tensor defining the norm via the directional
CTM approach, as a function of h. Our results are shown in
Fig. 17, where one can clearly see that the two phase transitions
are clearly pinpointed by the spectrum and the entropy. In
particular, we observe the first transition happening at h1 ≈ 1.8
and the second one at h2 = 5.0.

B. Perturbed ZN topological order

Here we consider exact wave functions that exhibit topo-
logical phase transitions for Z2 and Z3 topological order.

(i) 2D perturbed Z2 Toric code PEPS: We consider the
2D PEPS on a square lattice for the Toric code ground
state [22,46], perturbed by a string tension g. This can be
represented by a tensor A

i,j,k,l

αβγ δ with with four physical indices
i,j,k,l = 0,1 and four virtual indices α,β,γ,δ = 0,1. The
coefficients of the tensor are given by

A
i,j,k,l

i,j,k,l =
{
gi+j+k+l , if i + j + k + l = 0 mod 2,

0, otherwise.
(61)

195170-13



CHING-YU HUANG, TZU-CHIEH WEI, AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 195170 (2017)

The norm of this state can be described by a double-layer 2D
TN on a square lattice, where at every site one has the tensor
Tijkl

ijkl ≡ T[ijkl], with coefficients

T[0000] = 1, T[1111] = g8,

T[0011] = T[0110] = T[1100] = T[1001] = g4

T[0101] = T[1010] = g4. (62)

Parameter g is used to tune a crossover from a topological
to a trivial phase. For g = 1 the state reduces to the ground
state of the Toric code model with Z2 topological order. For
g = 0 it reduces to the polarized state |0,0, · · · ,0〉. There is
a quantum phase transition between these two phases which,
as shown in Ref. [47], occurs at gc ≈ 0.802243. One can see,
moreover, that the double tensor T consists of two copies
of the partition function of the 2D classical Ising model in
Eq. (10). In fact, one also finds the relation g = (sinh(β))1/4,
with g the perturbation parameter of the Toric code and β the
inverse temperature of the Ising model. Both models, therefore,
belong to the same universality class. In this case we have
implemented the directional CTM method on the norm tensor
T [4] to study the corner properties. This is shown in Fig. 18(a),
where one can see that the corner spectrum and its associated
entropy clearly pinpoint the quantum phase transition.

(ii) 2D perturbed Z3 topological order: Furthermore,
we consider a 2D PEPS with Z3 topological order under
perturbations described by deformations {q0,q1,q2}. The PEPS
is given by a tensor A

i,j,k,l

α,β,γ,δ with four physical indices

FIG. 18. Corner spectra and corner entropy of the (a) Z2 and
(b) Z3 topological PEPS with perturbation g on the square lattice
with CTM bond dimension χ = 20. In (b) the lines show the first
transition point at g1 ≈ 0.944 as well as the second transition point
at g2 ≈ 1.238 [17].

i,j,k,l = 0,1,2 and four virtual indices α,β,γ,δ = 0,1,2, with
coefficients

A
i,j,k,l

i,j,k,l =
{
q

n0
0 q

n1
1 q

n2
2 , if i + j + k + l = 0 mod 3,

0, otherwise,
(63)

where n0,n1,n2 means the number of the inner indices in 0, 1,
and 2, respectively. We first study the case q0 = 1,n1 = 0,q2 =
g. In such a case, the bond indices of the wave function live
in an effective 2D Hilbert space spanned by |0〉 and |2〉. At
g = 0, the remaining tensor represents a product state of all
state 0. Therefore, the region near g = 0 is a trivial phase
that is adiabatically connected to a product state. At g > 0,
the nonzero components of the double-layer tensor T for the
norm are

T[0222] = T[2022] = T[2202] = T[2220] = g6

T[0000] = 1, (64)

where we used the same notation as in Eq. (62). For g 
 1 one
can neglect the component T[0000], and the tensor becomes
mathematically equivalent to the one for the classical dimer
model at Rokhsar-Kivelson (RK) point, which is critical [48],
and where the topological degenerate ground state is an equal
weight superposition of all possible configurations in a given
winding parity sector on the square lattice. It was shown in
Ref. [17] that for 0.944 � g < 1.238 the PEPS belongs to the
Z3 topologically ordered phase [16], whereas for g > 1.238
the state is critical.

We have computed the rCTM spectra obtained by con-
tracting the TN for the norm using the directional CTM ap-
proach [4] and as a function of the deformation g. This is shown
in Fig. 18(b). The corner spectra show different patterns de-
pending on the phase: In the trivial phase only one eigenvalue is
nonzero, whereas more eigenvalues become populated in the
topological and critical phases. The two transitions are also
clearly pinpointed in the spectrum, as a change of behavior in
the numerically-computed values (in particular, the spectrum
remains almost constant as a function of g in the critical phase).
In Fig. 18(b) we show the associated corner entropy, which
clearly signals also the phase transitions. In particular, we
observe that for g > 1.2, the corner entropy depends strongly
on χ , which is a clear signal of the critical phase.

C. Perturbed SPT order

Next, we study the quantum phase transition between two
different Z2 symmetry-protected topological (SPT) phases on
the 2D square lattice. The fixed point wave function from the
3-cocycle condition can be described by a 2D PEPS [18],
defined by a tensor A

i,j,k,l

αα,ββ ′,γ γ ′,δδ′ ≡ A[ijkl] satisfying i =
α = α′, j = β = β ′, k = γ = γ ′, and l = δ = δ′, as follows:

A[0000] = A[1111] = A[0011] = A[1100] = 1

A[1001] = A[0110] = A[0101] = A[1010] = 1

A[0001] = A[1110] = A[0100] = A[1011] = 1 (65)

A[1000] = A[0001] = g

A[0100] = A[1110] = |g|.
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FIG. 19. Corner spectra ω(r)
α for the norm of the Z2 SPT PEPS

with deformation g on the square lattice with χ = 40, together with
the corner entropy computed from the corner spectra.

At g = 1, this tensor represents a fixed-point wave function
for the trivial Z2 SPT phase. As g = −1, it is the fixed-point
wave function of the nontrivial Z2 SPT phase. As a function
of g, the tensor smoothly interpolates between the two phases.
For large |g| the tensor is also in an ordered phase.

We have computed the corner spectra ω(r)
α and corner

entropy for the double-layer norm tensor of this state by
using rCTM, which we show in Fig. 19. We can see clearly
that both the spectrum and entropy pinpoint all the phase
transitions mentioned above. We find the transition to the
ordered phase at |g| = 1.7, in agreement with the results from
Ref. [18].

VII. CHIRAL TOPOLOGICAL CORNER
ENTANGLEMENT SPECTRUM

We have seen earlier that given a 2D Hamiltonian we can
use CTs (in a 3D setup) to obtain the entanglement spectrum
of a bipartite cut separating two semi-infinite planes. We can
obtain this entanglement spectrum using the 2D quantum state
renormalization approach described earlier using CTs. In this
section, we first consider the so-called Ising PEPS [22,49]
which, by construction, has a quantum phase transition that
corresponds to the classical Ising transition, which was studied
earlier in Sec. V using the rCTM method. Here we use this
state to benchmark the method, and we show the entangle-
ment spectrum in the disordered phase. Then, we use this
approach to study the boundary theory of 2D chiral topological
quantum spin liquids that can be exactly described as a
PEPS.

A. The disorder phase: the Ising PEPS

Let us first consider the Ising PEPS [22,49] on the square
lattice with tensor A = |0〉〈θ,θ,θ,θ | + |1〉〈θ̄ ,θ̄ ,θ̄ ,θ̄ |, where the
ket (bra) corresponds to the physical (virtual) degrees of free-
dom, and |θ〉 = cos θ |0〉 + sin θ |1〉 as well as |θ̄〉 = sin θ |0〉 +
cos θ |1〉 with θ ∈ [0,π/4]. A corresponding local Hamiltonian
can be written down that has this PEPS as a ground state

FIG. 20. Entanglement spectra ωα(ρr ) of a half of 2D quantum
system (see Fig. 2) for the Ising PEPS model in disordered phase
from Ref. [22,49], for bond dimension (a) χ = 30, (b) χ = 40, and
(c) χ = 50.

(not shown here) [22,49]. In Ref. [22,49] it was shown
that there is a second-order quantum phase transition from
ordered phase to disorder phase occurring at θc ≈ 0.349596.
To illustrate that our method is not limited by the usage of
corner tensors, we include results from the 2D Ising PEPS in
the disorder phase with θ = 0.5 in Fig. 20. This was studied
previously in finite systems on a cylinder [22,49]. We observe
that, first, there is a unique lowest entanglement eigenvalue
(or one unique largest eigenvalue of corresponding transfer
matrix), which is clearly identified by our method. Second,
it is known that the low-lying entanglement spectrum seems
to form one-dimensional bands (vs momentum). Because of
the effective size introduced by the finite bond dimension, the
effective momenta are discrete and we expect that our CT
entanglement spectrum will see closely spaced values in one
band, separated by a large gap from other bands. The number
of such discrete values will depend on the bond dimension (see
Fig. 20), and the larger the bond dimension, the more points
will be picked up within a band. This is exactly what we
saw.
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B. SU(2)1 WZW chiral edge state

Next we study the exact 2D PEPS with D = 3 on a square
lattice corresponding to a chiral topological quantum spin
liquid with SU (2) symmetry from Ref. [20]. The state is
known to be critical and has a chiral gapless edge described
by a SU (2)1 Wess-Zumino-Witten (WZW) CFT. The gapless
edge state has been characterized previously by studying the
entanglement spectrum of the PEPS on an infinitely-long but
finite-circumference cylinder [13,20,21]. In that calculation it
was actually possible to find the degeneracies of the different
Virasoro towers of SU (2)1 corresponding to each of the highest
weight states. If no parity or topological sector are explicitly
fixed, then the numerical calculation of the entanglement
spectrum naturally produces the Virasoro tower of the CFT
vacuum state [21]. This wave function can be given by a
PEPS tensor As

i,j,k,l with s = ±1/2 and i,j,k,l = 0,1,2, with
nonzero coefficients as follows:

A
−1/2
2,0,1,1 = −λ1 − iλ2, A

−1/2
2,1,1,0 = −λ1 + iλ2,

A
−1/2
2,1,0,1 = −λ0;

A
−1/2
1,1,2,0 = −λ1 − iλ2, A

−1/2
1,0,2,1 = −λ1 + iλ2,

A
−1/2
0,1,2,1 = −λ0;

A
−1/2
1,2,0,1 = λ1 + iλ2, A

−1/2
0,2,1,1 = λ1 − iλ2, A

−1/2
1,2,1,0 = λ0;

A
−1/2
0,1,1,2 = λ1 + iλ2, A

−1/2
1,1,0,2 = λ1 − iλ2, A

−1/2
1,0,1,2 = λ0;

A
1/2
2,1,0,0 = λ1 + iλ2, A

1/2
2,0,0,1 = λ1 − iλ2, A

1/2
2,0,1,0 = λ0;

A
1/2
0,0,2,1 = λ1 + iλ2, A

1/2
0,1,2,0 = λ1 − iλ2, A

1/2
1,0,2,0 = λ0;

A
1/2
0,2,1,0 = −λ1 − iλ2, A

1/2
1,2,0,0 = −λ1 + iλ2,

A
1/2
0,2,0,1 = −λ0;

A
1/2
1,0,0,2 = −λ1 − iλ2, A

1/2
0,0,1,2 = −λ1 + iλ2,

A
1/2
0,1,0,2 = −λ0, (66)

where λ0 = −2, λ1 = 1,and λ2 = 1.
Here we have computed the entanglement spectrum of this

PEPS wave function, using the quantum state renormalization
approach explained previously. Our results are in Fig. 21
for CT with a bond dimension χ = 50. In the case of
the entanglement spectrum for a quadrant, we see that the
eigenvalues obey an almost flat distribution with a sudden
drop. However, the spectrum of half an infinite system tends
to obey the expected degeneracies of the Virasoro tower for the
vacuum (which has angular momentum j = 0) of the SU (2)1

WZW model that describes the edge physics of this state. More
specifically, the degeneracies of the five largest multiplets of
eigenvalues are well converged and equal to 1,3,4,7 and 13,
exactly matching the first five degeneracies of the Virasoro
tower for the vacuum of the SU (2)1 WZW model [20,21]. We
suspect the reason that we are able to see discrete spectrum
rather than a continuous one is due to the effective size that the
finite bond dimension introduces, even though we are using the
infinite setting of the PEPS description. However, we do not

see the degeneracy corresponding to the angular momentum
j = 1/2 tower.

C. SU(2)2 WZW chiral edge state

Moreover, we consider the calculation of the entanglement
spectrum from the corner properties for the double-layer chiral
topological PEPS from Ref. [21], which has gapless edge
modes described by a SU (2)2 WZW model. The PEPS is
constructed simply from two layers of the tensors in Eq. (66)
symmetrizing the physical indices (i.e., projecting in the total
spin-1 subspace). Our results are in Fig. 22 for CT with a bond
dimension χ = 40. Once again we see an almost flat spectrum
with a sudden drop when we consider one quadrant. However,
for half an infinite system, we see that the degeneracies of the
four largest multiplets of eigenvalues tend to be 1,3,9 and 15,
in agreement with the first four degeneracies of the Virasoro
tower for the vacuum of the SU (2)2 WZW model [21].

Furthermore, our results on chiral topological states ob-
tained from CT agree well with the studies using cylindrical
geometry [20,21]. In those studies as well as in ours it is
found that those (discrete) degeneracy patterns show up in the
low-lying entanglement spectrum and agree with the counting
from conformal field theory.

FIG. 21. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 50. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)1 WZW
model describing the chiral gapless edge.
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FIG. 22. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 40. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)2 WZW
model describing the chiral gapless edge.

VIII. CONCLUSIONS

In this paper we have shown that CTMs and CTs encode
universal properties of bulk physics in classical and quantum
lattice systems and that this can be computed efficiently with
current state-of-the-art numerical methods. We have seen this
for a wide variety of models in 1D, 2D, and 3D, both classical
and quantum. First we have checked the structure of the
corner energies and corner entropy for three models in the
universality class of 1D quantum Ising. Then, we have used
this formalism to check explicitly the correspondence between
quantum systems in d dimensions and classical systems in
(d + 1) dimensions. In this context, we have first used the
partition function approach to do this mapping and checked
numerically the correspondence for the 1D quantum Ising
and quantum Potts models vs 2D classical anisotropic Ising
and Potts models. Then, we have reviewed an approach by

Suzuki mapping the 2D anisotropic classical Ising model to
the 1D quantum XY model and for which the corner energies
and entropies showed a perfect match between the models.
For completeness we have also reviewed Peschel’s approach
for the quantum-classical mapping. We have also shown that
corner properties can be used to pinpoint phase transitions
in quantum lattice systems without the use of observable
quantities. We have shown this for the 2D quantum XXZ

model, perturbed 2D PEPS with Z2 and Z3 topological order,
and a PEPS with perturbed SPT order.

Perhaps more surprising is that the corner objects can be
used to obtain entanglement spectrums of 2D systems, even
with chiral topological order and gapless SU (2)k edge modes,
which we demonstrated for k = 1,2. For this we have proposed
a new quantum state RG in the setting of corner matrices
and tensors, which can be applied very generally to cases
where the wave function can be written in the PEPS form.
This enables efficient computation for entanglement spectrum
for 2D infinite systems, which is much harder than the 1D
case. Our state RG algorithm can also be straightforwardly
generalized to 3D systems. All in all, we have shown that
CTMs and CTs, apart from being useful numerical tools, also
encode by themselves very relevant physical information that
can be retrieved in a natural way from usual implementations
of numerical TN algorithms.

The results in this paper can be extended in a number of
ways. For instance, it would be interesting to check how dy-
namical properties affect corner properties. A similar analysis
should also be possible for dissipative systems and steady
states of 2D quantum systems [50], as well as for models with
non-Abelian topological order. Concerning the calculation of
2D entanglement spectra, two further considerations are in
order. First, notice that one could in principle compute the
“usual” entanglement spectrum on half an infinite cylinder
from the half-row and half-column tensors obtained from
rCTM, wrapping them around a cylinder of finite width and
proceeding as usual with the calculation of the reduced density
matrix. Second, notice that a limitation of our calculation
with corner tensors is that it does not provide a “natural”
way of labeling the different eigenvalues in terms of a
momenta quantum number. We believe however, that this may
be possible by defining appropriate translation operators on
CTMs. This idea will be pursued in future works.
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