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Jain-2/5 parent Hamiltonian: Structure of zero modes, dominance patterns,
and zero mode generators
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We analyze general zero mode properties of the parent Hamiltonian of the unprojected Jain-2/5 state. We
characterize the zero mode condition associated to this Hamiltonian via projection onto a four-dimensional
two-particle subspace for given pair angular momentum, for the disk and similarly for the spherical geometry.
Earlier numerical claims in the literature about ground-state uniqueness on the sphere are substantiated on analytic
grounds, and related results are derived. Preference is given to second-quantized methods, where zero mode
properties are derived not from given analytic wave functions, but from a “lattice” Hamiltonian and associated
zero mode conditions. This method reveals new insights into the guiding-center structure of the unprojected
Jain-2/5 state, in particular, a system of dominance patterns following a “generalized Pauli principle,” which
establishes a complete one-to-one correspondence with the edge mode counting. We also identify one-body
operators that function as generators of zero modes.
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I. INTRODUCTION

The theoretical exploration of topological phases in the
fractional quantum Hall (FQH) regime owes its success to
our ability to associate simple data to valid points in the
phase diagram. At the level of the low-energy effective
theory, these data may be thought of describing a topological
quantum field theory, or a related rational conformal field
theory. Remarkably, the same data lend themselves to the
construction of microscopic many-body wave functions [1].
In this context, such data have also been thought of as
“dancing patterns” [2]. To the extent that these patterns
translate into simple analytic properties of wave functions,
often the construction of a local parent Hamiltonian is also
possible. This situation may be thought of as nearly ideal:
the existence of simple data that both lead to an effective
field theory as well as a solvable microscopic Hamiltonian.
This last step, however, the construction of a Hamiltonian,
has not always been successful thus far. The experimentally
most important sequence of quantum Hall states appears to
be described by weakly interacting composite fermions as
originally discussed by Jain [3]. This includes states described
by Laughlin’s seminal wave functions [4], for which parent
Hamiltonians have been successfully constructed early on
[5,6]. However, for the majority of Jain states, there seem
no successful attempts at construction of a parent Hamiltonian
thus far. To the best of our knowledge, this is in particular true
for all lowest Landau-level projected versions of Jain states,
aside from Laughlin states.

A special niche seems to be occupied by the un-projected
Jain-2/5 state. Generally speaking, the fact that the polynomial
part of the wave function is no longer holomorphic, but
depends on both holomorphic and antiholomorphic complex
coordinates when higher Landau levels are involved, tends to
make it more difficult to identify analytic clustering principles
that allow for the construction of a Hamiltonian. However,
for the unprojected Jain-2/5 state, a parent Hamiltonian has
been identified [7]. Well-studied parent Hamiltonians in the
fractional quantum Hall regime tend to achieve more than

just stabilizing a ground state: the ground state is the unique
zero energy state (zero mode) at a given filling factor, but is
degenerate with other zero modes when the filing factor is
reduced by introducing more flux quanta or reducing particle
number. The number of these additional zero modes at fixed
angular momentum relative to the ground state is generally
in one-to-one correspondence with edge mode counting in
the conformal field theory describing the edge [8]. Here, the
angular momentum of the microscopic zero mode, relative
to the ground state, plays the role of energy in the effective
edge theory, as may be justified by adding a confining
potential proportional to angular momentum. We will say that
a Hamiltonian that conforms to the above paradigm satisfies
the “zero mode paradigm.” For many quantum Hall parent
Hamiltonians involving projection onto the lowest Landau
level, pertinent zero mode counting exercises have a long
tradition in the field [9–12]. However, the parent Hamiltonian
of the Jain-2/5 state involves projection onto two (artificially
quenched) Landau levels. Here, the situation seems to have
been less studied. One of the results of this paper will be the
rigorous characterization of all zero modes of this Hamiltonian
and their one-to-one correspondence with degrees of freedom
of the edge theory, including certain “zero-momentum modes”
of the latter that involve changes in particle number or transfer
of particles between different edge branches.

Moreover, recent years have shown that the data specifying
a topological phase in the fractional quantum Hall regime
largely survive in certain skeletal forms of special wave
functions associated with the thin torus limit [13–21] or with
“dominant partitions” [22–25]. These in particular contain
information about quasiparticle statistics (see Ref. [26] for a
review). Furthermore, in Ref. [27] a mechanism was identified
that explains the appearance of such dominant partitions, or
dominance patterns, in any quantum Hall wave function for
which a parent Hamiltonian with the properties described
above can be given. It is worth noting that this is different
from relating such dominance patterns to analytic clustering
properties of first-quantized wave functions, which was done
by the original work [22–25]. While the latter approach does
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not utilize a Hamiltonian principle of the kind described
above (which may not always be available), the approach
pursued here and in earlier works by some of us does not
require analytic clustering conditions (which may not always
be present [28,29]). Moreover, we will argue below that the
Hamiltonian approach may give some insights into why certain
types of wave functions cannot be stabilized by a Hamiltonian
satisfying the zero mode paradigm. In particular, we will argue
this to be the case for projected Jain states.

Lastly, it appears that neither approach to dominance
patterns has so far been applied to a situation where the
many-body state was not described by holomorphic wave
functions (modulo nonholomorphic, e.g., Gaussian factors
common to all states). In the majority of cases, dominance
patterns for special FQH wave functions have been discussed
for single-component states in the lowest Landau level. In
some cases, additional degrees of freedom such as spin were
present [12,15]. Also, Landau-level projected Jain states have
been discussed from the point of view of dominance patterns
[30]. The idea of this paper is to present a case study for both
the zero mode paradigm as well as a description in terms of
dominance patterns, and the interplay between these concepts,
for a state that is not projected onto the lowest Landau level,
and whose wave function is consequently not holomorphic.
For present purposes, this will be the unprojected Jain-2/5
state.

The remainder of the paper is organized as follows. In
Sec. II, we will present the second-quantized form of the parent
Hamiltonian of this state on the disk, which represents the
natural framework for our approach. In Sec. III, we will use
this second-quantized form to establish a description of zero
modes in terms of dominance patterns. In Sec. IV, we use these
results to establish the one-to-one correspondence between
zero modes, dominance patterns, and modes of the edge
theory. In Sec. V, we present second-quantized single-particle
operators that serve as generators for zero modes. In Sec. VI,
we extend our main results to the spherical geometry. In
Sec. VII, we will discuss our results. We conclude in Sec. VIII.

II. SECOND QUANTIZATION IN DISK GEOMETRY

In this paper, we will be concerned with the two-body
Trugman-Kivelson interaction [6]

H = Pn ∇2
1δ(x1 − x2)δ(y1 − y2)Pn, (1)

projected onto the first n Landau levels via an orthogonal
projection operator Pn, focusing on the case where n = 2.
For n = 1, it is well known that this interaction agrees, up to
a factor, with the V1 Haldane pseudopotential [5]. The case
n = 2 was identified by Rezayi and MacDonald [7] as a parent
Hamiltonian for the Jain-2/5 state, where at the same time, the
kinetic energy is quenched not only within individual Landau
levels, but the splitting between the lowest and first excited
Landau level is set to zero. Here, we will mainly be concerned
with the properties of this (n = 2) Hamiltonian. Results for
the case n = 3 have appeared recently [31]. The extension of
the methods developed below to n > 2 is left to a forthcoming
paper.

As a starting point, we establish a second-quantized form
of the Hamiltonian in various geometries, beginning with

the disk geometry. For positive, angular momentum conserv-
ing two-particle operators, the second-quantized many-body
Hamiltonian is generally [27] of the form

H =
M∑

k=1

∑
R

T
(k)
R

†
T

(k)
R , (2)

where T
(k)
R = ∑

x f k
i,j (R,x)ci,R−xcj,R+x destroys a pair of

particles with well-defined angular momentum 2R, ci,m is an
electron destruction operator for a state in the ith Landau level
(LL) with angular momentum m, and f k

i,j (R,x) is a form factor

defining the operator T
(k)
R . In Eq. (2), the sum over R is over

integer and half-odd integer values, and x in the definition of
T

(k)
R is either over integer or half-odd integer, depending on R

(i.e., 2x ≡ 2R mod 2). In the most general case, the number
M of families of T operators can be infinite.

We now work out the connection between Eqs. (1) and (2)
specializing to n = 2 Landau levels (carrying Landau-level
indices 0 and 1, respectively). To this end, we recall the
wave functions for a single particle in the disk with angular
momentum Lz = m in the lowest and first excited LLs under
symmetric gauge

η0,m(z) = zme−|z|2/4l2
B√

2π2ml2m+2
B m!

(3)

and

η1,m(z) =
[
z̄zm+1 − 2l2

B(m + 1)zm
]
e−|z|2/4l2

B√
2π2m+2l2m+6

B (m + 1)!
, (4)

respectively, where z = x + iy is the complex coordinate on
the disk, and lB is magnetic length

√
h̄/eB. As an immediate

consequence, we have the following analytic structure for
general two-particle wave functions projected onto the first
two LLs,

ψ(z1,z2) = (C00(z1,z2) + z̄1C10(z1,z2) + z̄2C01(z1,z2)

+ z̄1z̄2C11(z1,z2))e
− |z1 |2

4l2
B

− |z2 |2
4l2

B , (5)

where C00(z1,z2), C10(z1,z2), C01(z1,z2), and C11(z1,z2) are
holomorphic functions of z1 and z2. For two-particle states,
it is generally advantageous to phrase expressions in terms
of a center-of-mass coordinate zc = (z1 + z2)/2 and a relative
coordinate zr = z1 − z2, and their complex conjugates z̄c, z̄r .
Furthermore, in this paper we will be exclusively considering
fermions. Then, Eq. (5) can be recast as

ψ(zc,zr ) = (d00(zc,zr ) + z̄cd10(zc,zr ) + z̄rd01(zc,zr )

+ (
z̄2
c − z̄2

r

/
4
)
d11(zc,zr ))e

− |zc |2
2l2

B

− |zr |2
8l2

B , (6)

where d00(zc,zr ), d10(zc,zr ), d01(zc,zr ), and d11(zc,zr ) are
holomorphic functions of zr and zc with well-defined
parity in zr . Specifically, antisymmetry dictates that
d00(zc,zr ), d10(zc,zr ), d11(zc,zr ) are odd in zr whereas
d01(zc,zr ) is even in zr . It will be beneficial to work with an
orthogonal basis of two-particle states that preserves as far as
possible a factorization into center-of-mass and relative parts.
Note that unlike the lowest LL, higher Landau levels are not
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invariant subspaces of the relative or center-of mass angular
momentum operators individually, hence, unlike in the lowest
LL, there are no good quantum numbers associated with these
observables. This is related to the presence of the last term in
Eq. (6). We thus write

ψ(zc,zr ) =
∑
R,�

{
aR,� ηr

0,�(zr )ηc
0,2R−�(zc)

+ bR,� ηr
0,�(zr )ηc

1,2R−�(zc)

+ cR,� ηr
1,�(zr )ηc

0,2R−�(zc)

+ dR,�

[
ηr

0,�(zr )ηc
2,2R−�(zc)

− ηr
2,�−2(zr )ηc

0,2R+2−�(zc)
]/√

2
}
, (7)

where functions ηr
k,m(zr ) and ηc

k,m(zc) are obtained from

ηk,m(z) via lB → √
2lB and lB → lB/

√
2, respectively, � is

restricted to odd integers, the k = 0,1 Landau-level wave
functions were given above, and those for k = 2 are also
needed:

η2,m(z) = e−|z|2/4l2
B

× zm
[
z̄2z2 −4l2

B(m + 2)z̄z + 4l4
B(m + 2)(m + 1)

]
√

2π2m+5l2m+10
B (m + 2)!

.

(8)

It is easy to see that Eq. (7) reproduces the analytic structure of
Eq. (6). Moreover, for sufficiently rapidly decaying ψ(zc,zr ),
which we will always assume, any such ψ(zc,zr ) can be ex-
panded in the form Eq. (7), which follows from completeness
properties of the η functions.

One may see that the Hamiltonian (1) is positive (semidef-
inite) for general n, which will be made explicit for n = 2
below. Therefore, as in the more familiar case n = 1, any zero
modes are exact ground states. One may further see easily
that the familiar analyticity requirements for zero modes for
n = 1 generalize as follows. For the two-particle state (7)
not to be annihilated by H (i.e., to have any nonzero matrix
elements within the image of Pn), its polynomial expansion
(not including the Gaussian term) must have terms that are at
most linear in zr , z̄r . With this in mind, working at fixed angular
momentum Lz = 2R at the moment, we see that all nonzero
eigenstates of H must be contained in the six-dimensional
subspace spanned by the following states:

ηr
1,−1(zr )ηc

0,2R+1(zc), (9a)

ηr
0,1(zr )ηc

0,2R−1(zc), (9b)

ηr
0,1(zr )ηc

1,2R−1(zc), (9c)[
ηr

0,1(zr )ηc
2,2R−1(zc) − ηr

2,−1(zr )ηc
0,2R+1(zc)

]
√

2
, (9d)

ηr
1,1(zr )ηc

0,2R−1(zc), (9e)[
ηr

0,3(zr )ηc
2,2R−3(zc) − ηr

2,1(zr )ηc
0,2R−1(zc)

]
√

2
, (9f)

while its orthogonal complement (for given R) is spanned by
states already annihilated by H . It follows from this that the
Hamiltonian may be written in the form

H =
∑
R

6∑
i,j=1

mi,jQ
(i)
R

†
Q

(j )
R , (10)

where the operators Q
(i)
R

†
, i = 1 . . . 6, create the states in Eq. (9). Specifically, in second-quantized form, these operators read as

Q
(1)
R = 1

2R+1/2

R+1∑
x=−R

√(
2R + 1
R + x

)
c1,R−xc0,R+x, (11a)

Q
(2)
R = − 1

2R

R∑
x=−R

x

√
1

R

(
2R

R + x

)
c0,R−xc0,R+x, (11b)

Q
(3)
R = 1

2R+1/2

R+1∑
x=−R

(1 − 2x)

√
1

2R + 1

(
2R + 1

R + x

)
c1,R−xc0,R+x, (11c)

Q
(4)
R = − 1

2R+1/2

R+1∑
x=−R−1

x

√
1

2R + 2

(
2R + 2

R + 1 + x

)
c1,R−xc1,R+x, (11d)

Q
(5)
R = 1

2R

R+1∑
x=−R

(
2x2 − 2x − R

)√ 1

2R(2R + 1)

(
2R + 1
R + x

)
c1,R−xc0,R+x, (11e)

Q
(6)
R = − 1

2R
√

3

R+1∑
x=−R−1

[2x3 − (3R + 2)x]

√
1

2R(2R + 1)(2R + 2)

(
2R + 2

R + 1 + x

)
c1,R−xc1,R+x. (11f)
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As before, x is summed over (half-)integers when R is
(half-)integer. Possible values for R ± x are non-negative
for Landau-level index i = 0, and are greater than or equal
to −1 for i = 1, to accommodate for the Lz = −1 angular
momentum state in the first excited Landau level. One may

check that these operators satisfy 〈0|Q(n)
R Q

(m)
R′

†|0〉 = δn,mδR,R′ ,
as expected from the orthonormality of first-quantized wave
functions used in this analysis. The matrix elements mij in
Eq. (10) turn out to be independent of R, and can be read of
the following expression:

H = 1

4π

∑
R

Q
(1)
R

†
Q

(1)
R + 3

8π

∑
R

Q
(4)
R

†
Q

(4)
R

+ 1

4π

∑
R

(
Q

(1)
R

†
Q

(4)
R + H.c.

) + 1

4π

∑
R

Q
(3)
R

†
Q

(3)
R

+ 1

4π

∑
R

Q
(2)
R

†
Q

(2)
R + 1

2π

∑
R

Q
(5)
R

†
Q

(5)
R

+ 3

8π

∑
R

Q
(6)
R

†
Q

(6)
R −

√
2

4π

∑
R

(
Q

(2)
R

†
Q

(5)
R + H.c.

)

−
√

6

8π

∑
R

(
Q

(2)
R

†
Q

(6)
R + H.c.

)

+
√

3

4π

∑
R

(
Q

(5)
R

†
Q

(6)
R + H.c.

)
. (12)

It further turns out that only four of the six eigenvalues of the m

matrix are nonzero, having values 5±√
17

16π
, 1

4π
, and 9

8π
, respec-

tively. Eigenstates corresponding to these nonzero eigenvalues

are
√

2

2
√

17∓√
17

[(−1 ± √
17)Q(1)

R

† + 4Q
(4)
R

†
]|0〉, Q

(3)
R

†|0〉, and

(−√
2Q

(2)
R

† + 2Q
(5)
R

† + √
3Q

(6)
R

†
)|0〉/3. If we denote the latter

by T
(1)†
R |0〉, T

(4)†
R |0〉, T

(3)†
R |0〉, and T

(2)†
R |0〉, then the Hamilto-

nian can be written in diagonal form

H = 5 + √
17

16π

∑
R

T
(1)†
R T

(1)
R + 5 − √

17

16π

∑
R

T
(4)†
R T

(4)
R

+ 1

4π

∑
R

T
(3)†
R T

(3)
R + 9

8π

∑
R

T
(2)†
R T

(2)
R . (13)

After rescaling of the T operators, this is of the form (2)
with M = 4. The Hamiltonian (13) is manifestly the sum of
positive (which we will always take to mean semidefinite)
terms. A direct consequence of this is that any zero mode
of the Hamiltonian (13) must be a simultaneous zero-energy
eigenstate of each positive term T

(k)†
R T

(k)
R , and, to this end, must

be annihilated by each individual operator T
(k)
R . Any zero mode

|ψ0〉 thus obeys the zero mode condition

T
(i)
R |ψ0〉 = 0 (14)

for i = 1,2,3,4 and for any integer or half-integer R. Equiva-
lently, zero modes are annihilated by Q

(1)
R , Q(4)

R , Q(3)
R , and T

(2)
R ,

leading to a slightly more convenient reformulation of the zero

mode condition:

Q
(1)
R |ψ0〉 = 0, (15a)

Q
(3)
R |ψ0〉 = 0, (15b)

Q
(4)
R |ψ0〉 = 0, (15c)

T
(2)
R |ψ0〉 = 0. (15d)

This generalizes the familiar statement for n = 1 Landau
level, where the V1 Haldane pseudopotential is a two-body
projection operator onto states of relative angular momentum
1. Presently, for n = 2, and for given pair angular momentum
2R, the spectral decomposition of the Trugman-Kivelson
interaction involves four two-particle projection operators,
each associated to a one-dimensional eigenspace spanned by
T

(i)†
R |0〉, i = 1 . . . 4. Note that it is no longer possible to ascribe

definite relative angular momentum quantum numbers to these
states. Note also that the four coefficients in Eq. (13) may be
replaced with any positive numbers without affecting the zero
mode structure of the theory.

III. DERIVATION OF GENERAL PROPERTIES OF
DOMINANCE PATTERNS IN DISK GEOMETRY

With the second-quantized form of the parent Hamiltonian,
we are now in a position to analyze properties of what we
will call general dominance patterns of zero modes of this
Hamiltonian. To this end, we will utilize a recently developed
method [27] to extract dominance patterns of zero modes
directly from the parent Hamiltonian, without any need for
studying presupposed wave functions. This has the advantage
that since rules for root patterns are arrived at directly as
properties of the Hamiltonian, these rules immediately provide
rigorous constraints on the zero mode counting for the respec-
tive Hamiltonian. In particular, upper bounds for the number
of zero modes are immediately available (which we will
subsequently show to be saturated), and in particular claims
about the unprojected Jain state as the unique densest zero
mode of its parent Hamiltonian are immediately established
(and in some geometries, refined). Such claims have appeared
earlier in the literature [7,32], but, by our reading, have so far
been based on numerics, and were thus limited to finite particle
number. The present treatment will be free of such limitations.

We begin by clarifying what we mean by a dominance pat-
tern. The notion of a dominance pattern has mainly appeared
in the literature in the context of single component states,
where dominance patterns are essentially simple product states
associated to more complicated quantum Hall trial wave
functions. The present situation involves Landau-level mixing
and is more akin to that in multicomponent states, which is
more complicated and was described in Refs. [12,15,33,34].

We first remind the reader of what has been termed a
“nonexpandable” basis state [27] in the expansion of a zero
mode

|ψ0〉 =
∑
{n}

C{n}|{n}〉. (16)

Here, each |{n}〉 is a basis state created by a product of
single-particle creation operators c

†
i,m. We will call a basis
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state |{n}〉 in Eq. (16) nonexpandable if it enters the expansion
with nonzero coefficient C{n} and it cannot be obtained from
any other such basis state |{n′}〉, also having C{n′} 
= 0, through
“inward-squeezing” processes [23]. That is,

|{n}〉 
= c
†
l1,j

c
†
l2,i

cl3,i−xcl4,j+x . . . |{n′}〉, (17)

where a single inward-squeezing process is a center-of-mass
conserving inward pair hopping satisfying i − x < i � j <

j + x, the l1 . . . l4 are arbitrary Landau-level indices (thus
generalizing the standard notion of inward squeezing for single
Landau-level one-component states), and the dots represent
a multiplicative string of any finite number of such inward-
squeezing terms.

The existence of nonexpandable states in any occupancy
number spectral decomposition of the form (16) follows from
the finiteness of the number of states available at given angular
momentum. (We may of course limit the discussion to zero
modes of well-defined angular momentum without loss of
generality). It turns out, as we will show below for the
present case, that such nonexpandable states are subject to
certain quite restrictive rules. We will first describe the more
familiar situation for single-component, lowest LL states. In
this context, the rules governing nonexpandable product states
have been referred to as generalized Pauli principles (GPPs)
[22–25]. Product states satisfying these rules are generally
known as dominance patterns or root patterns. Every zero
mode contains at least one nonexpandable root pattern in
its orbital occupancy number spectral decomposition (16).
Typically, a clever basis of zero modes may be chosen in
a manner that there is precisely one such nonexpandable
root pattern per zero mode. It then follows from the above
that every |{n}〉 appearing in the zero mode’s decomposition
(16) may be obtained from its unique root pattern through
inward-squeezing processes. This then establishes a one-to-
one correspondence between root patterns and zero modes. It
is worth pointing out that while this correspondence has been
discussed for a large class of single-component quantum Hall
states [22–25,35], this was usually done by analysis of special
analytic clustering conditions attributed to first-quantized
zero mode wave functions. The very notion of clustering
conditions may be less clear in the presence of Landau-
level mixing. Related to this, while for single-component
states root patterns always represent simple, nonentangled
product states, we find it useful to relax this notion in the
multicomponent or multi-Landau-level situation of interest
here. Indeed, the analysis of multicomponent states [12,15]
suggests the following generalization: We will distinguish
between dominance patterns and “root states.” Dominance
patterns are certain strings of symbols subject to rules we will
work out below (Lemmas 1–6). To each dominance pattern,
we can associate a root state, which will be a fairly simple
linear combination of product states |{n}〉, but one possibly
featuring some local entanglement. It will then follow from the
rules below that the nonexpandable Slater determinants |{n}〉
appearing in any zero mode must appear as linear combinations
of root states. Again, a clever basis of zero modes can be
chosen, where each zero mode is associated to exactly one
dominance pattern, or one root state. This does, however,

no longer imply that the zero mode features just a single
nonexpandable Slater determinant in its expansion (16).

We note again that “entangled root states” as described
above have appeared earlier in the context of multicomponent
quantum Hall states [12,15]. In this context, other approaches
to defining dominance patterns have been brought forth as well
[34]. The approach taken here is such that, while no reference
to a “thin torus” like geometry is made, our definition of a
root state will necessarily agree with that based on the thin
torus limit. The thin torus approach has been explored for the
multicomponent states discussed in Refs. [12,15] using first-
quantized analytic wave functions. In the following, however,
we argue that a more efficient and general approach to studying
the structure of root states is to forgo first-quantized wave
functions, and work with a second-quantized form of the zero
mode condition as in Eq. (14). We find this particularly true
in problems where degrees of freedom beyond pure guiding
centers are present, e.g., spin and/or Landau-level degrees of
freedom. To this end, we generalize the method introduced in
Ref. [27] for single Landau level, single-component states to
states living in multiple Landau levels.

In the following, we will write second-quantized wave
functions in terms of a string of numbers, e.g., 10x0x0!10 . . .,
where ! stands for an occupied orbital in the lowest LL,
1 represents an occupied orbital in the first excited LL, x

represents a particle in any of the two LLs (and possibly
different LLs for different occurrences of x), and 0 stands
for an unoccupied orbital. Here, orbitals are arranged in the
order of ascending angular momenta starting with −1. Before
proceeding to our main results, we will state and prove a few
lemmas. For definiteness, we find it useful to refer to any
nonexpandable Slater determinant |{n}〉 appearing in a zero
mode as a “root pattern.” The root state of the zero mode is then
the state obtained by keeping only root patterns in Eq. (16). A
basis for all possible root states can then be labeled by certain
dominance patterns (formal strings of symbols), as we will see
below.

Lemma 1. There is no 101 in root patterns of any zero mode
|ψ0〉.

Proof. We will use the method of contradiction and the
property that any root pattern is, by definition, nonexpandable.
Now, let us assume that a root pattern |{nroot}〉 contains
the string 101 in which 0 has angular momentum j . Then
|{nroot}〉 can be written as |{nroot}〉 = c

†
1,j+1c

†
1,j−1|{n′}〉. For

|x| > 1, c
†
1,j+xc

†
1,j−x |{n′}〉 must have zero coefficient in the

spectral decomposition of |ψ0〉, i.e., 〈{n′}|c1,j−xc1,j+x |ψ0〉 =
0 for |x| > 1, otherwise |{nroot}〉 would be expandable.
Thus, keeping only the x = ±1 terms, 〈{n′}|Q(4)

j |ψ0〉 =
−21/2−j

√
( 2j+2

j+2 )/(2j + 2)〈{nroot}|ψ0〉, which is nonzero. This,

however, contradicts the zero mode condition (15c). Thus, 101
must be excluded from any root pattern. �

Using precisely the same logic, and the respectively
appropriate zero mode condition, we may further obtain the
following 2 lemmas:

Lemma 2. There is no 11 in root patterns of the zero mode.
Lemma 3. A root pattern cannot feature any simultaneous

occupancy of both lowest and first excited Landau level orbitals
of given angular momentum j � 0.
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We then have the following stronger version of Lemma 2:
Lemma 4. There is no xx in root patterns of any zero mode

|ψ0〉.
Proof. According to Lemma 2, there is no 11 in any root

pattern, so possible configurations of xx are !!, !1, and 1!.
Thus, we consider |ψ0〉 = (γ0,0c

†
0,j c

†
0,j+1 + γ0,1c

†
0,j c

†
1,j+1 +

γ1,0c
†
0,j+1c

†
1,j )|{n′}〉+ orthogonal terms where the first three

terms are root patterns. As in the above, Eqs. (15a)
and (15b) then lead to

√
j + 1γ0,1 + √

j + 2γ1,0 = 0 and
−√

j + 1γ0,1 + √
j + 2γ1,0 = 0, respectively. Thus, both γ0,1

and γ1,0 are zero. We then use Eq. (15d) to find that γ0,0 is also
zero. �

The following Lemma states that x0x is allowed in root
patterns, but requires local entanglement between the x sites
of the resulting root state:

Lemma 5. If x0x appears in root patterns of a zero mode
|ψ0〉, then the proportions of coefficients of root patterns
having !0!, !01, and 10! with all other occupancies the same
are 2 :

√
j + 2 : −√

j , where j is the angular momentum of
the “0” in x0x.

Proof. We can write |ψ0〉 = (α0,0c
†
0,j−1c

†
0,j+1 +

α0,1c
†
0,j−1c

†
1,j+1 + α1,0c

†
1,j−1c

†
0,j+1 + β0,1c

†
0,j c

†
1,j )|{n′}〉 +

orthogonal terms. In the latter expression, the first three terms
define three x0x root patterns related as in the statement
of the lemma, whereas the fourth term is inward squeezed
from these root patterns. Note that 101 must be absent
in root patterns because of Lemma 1. Using Eqs. (15a),
(15b), and (15d) in a manner analogous to the proofs of the
preceding lemmas, we find that α1,0 = −α0,1

√
j/

√
j + 2,

β0,1 = −2α0,1
√

j/
√

j + 2, and α0,1 = α0,0
√

j + 2/2. �
Note that in the special case j = 0, !0! and !01 are both

impossible, and the Lemma implies that x0x cannot occur at
the very beginning of a root pattern.

The next lemma involves three particles at a time. Such
rules are known from single-component states only in the case
of three-body Hamiltonians, but can arise here because of root
state entanglement:

Lemma 6. There is no x0x0x in root patterns of a zero mode
|ψ0〉.

Proof. From the first four lemmas, the only allowed x0x0x

in root patterns are 10!01, 10!0!, !010!, !0!01, and !0!0!. If
we assume that the angular momentum of the first orbital in
the above patterns is j , then from Lemma 5, the proportions
of the coefficients of 10!0!, 10!01, and 1010! are 2 :

√
j + 4 :

−√
j + 2. 1010! is excluded from root patterns by virtue of

Lemma 1, therefore, 10!0! and 10!01 are also excluded. Using
the same trick, the remaining three possible configurations are
excluded form root patterns as well. �

The last lemma will be proven later:
Lemma 7. There are no constraints on the occurrence of

x00x is in root patterns, that is, !00!, !001, 100!, and 1001, and
likewise for more than two zeros between occupied orbitals.

Lemma 7 is listed here for completeness, as together with
the remaining lemmas, it gives a complete set of rules for the
construction of root states in one-to-one correspondence with
the zero modes of the Hamiltonian. That all the root states
allowed by these rules do indeed correspond to a zero mode
follows only from explicit construction of such zero modes,
and will be discussed below. The constraints imposed by

TABLE I. Some dominance patterns consistent with Lemmas 1–6
for N = 9 particles. The leading position corresponds to single-
particle angular momentum Lz = −1 and can only be 0 (empty)
or 1 (first excited Landau level). (a) Unique dominance pattern at
smallest angular momentum L = 83. (b)–(e) All consistent patterns
with 
L = 1 relative to the ground state. (f)–(n) All consistent
patterns with 
L = 2. (o) A consistent pattern with higher 
L = 19.
As is shown in the text, the number of consistent patterns at given

L equals the dimension of the zero mode subspace of the n = 2
Hamiltonian (1).

(a) 100x0x00x0x00x0x00x0x

(b) 100x0x00x0x00x0x001001
(c) 100x0x00x0x00x0x00!00!
(d) 100x0x00x0x00x0x00!001
(e) 100x0x00x0x00x0x00100!
(f) 100x0x00x0x00x0x000x0x

(g) 100x0x00x0x00x0x0010001
(h) 100x0x00x0x00x0x001000!
(i) 100x0x00x0x00x0x00!000!
(j) 100x0x00x0x00x0x00!000!
(k) 100x0x00x0x00100x0x001
(l) 100x0x00x0x00100x0x00!
(m) 100x0x00x0x00!00x0x001
(n) 100x0x00x0x00!00x0x00!
(o) 100100x0x0000!00x0x0001001

Lemmas 1–6, on the other hand, can then be used to rigorously
imply that the set of zero modes thus constructed is complete.
It may be instructive, though, to see why the logic used to
derive Lemmas 1–6 does not give additional constraints in
the situation relevant to Lemma 7. To briefly show this, we
may write |ψ0〉 = (ac

†
0,j c

†
0,j+3 + bc

†
0,j c

†
1,j+3 + dc

†
1,j c

†
0,j+3 +

ec
†
1,j c

†
1,j+3 + f c

†
0,j+1c

†
0,j+2 + gc

†
0,j+1c

†
1,j+2 + hc

†
1,j+1c

†
0,j+2 +

ic
†
1,j+1c

†
1,j+2)|{n′}〉+ orthogonal terms as in the proofs of

Lemmas 4 and 5. Lemma 7 is then related to the fact that
there are eight unknown coefficients and four zero mode
conditions (15).

We may now make precise the notion of a dominance
pattern. Any root pattern satisfying Lemmas 1–4 and 6 defines
a formal string of symbols “0,” “1,” and “!” as discussed above.
The first character in such a string cannot be !, and the lemmas
translate into the requirements that any 1 and any ! in such
a string may have no nearest and at most one next-nearest
neighbor other than 0, and 101 is further disallowed. If, in
all possible such strings, we send any occurrence of 10!, !01,
and !0! to x0x, we will call the resulting set of strings the
dominance patterns consistent with Lemmas 1–6. Examples
are shown in Table I. Alternatively, we can characterize the set
of all possible dominance patterns as all possible concatena-
tions of the strings 0, 100, !00, and x0x00, with the leading
character not being !. We will refer to these concatenation rules
as the GPP for dominance patterns, though this may be a slight
abuse of terminology, as dominance patterns are not generally
in one-to-one correspondence with product states. However,
we may identify dominance patterns with certain states in the
Fock space, consisting of the unique (up to an overall factor)
linear combination of all root patterns associated to it that also
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satisfies Lemma 5. Lemmas 1–6 can then be summarized as
saying that any root state of a zero mode must be a linear
combination of states obtained from dominance patterns via
this identification. Since the identification yields states of well-
defined particle number N and angular momentum L, we can
obviously assign quantum numbers N and L to any dominance
pattern.

Using these notions, we are able to arrive at the following
important theorem(s) about the zero mode counting of the
Hamiltonian (1), where in the following, we will always imply
the case n = 2 and disk geometry:

Theorem 1. At given particle number N and given angular
momentum L, the number of linearly independent zero modes
of the Hamiltonian (1) is no greater than the number of
dominance patterns satisfying the GPP.

Proof. Assume that the number of linearly independent
zero modes is greater than the number of dominance patterns
satisfying the GPP. Then, it is possible to make a nontrivial
linear combination |ψ0〉 of such zero modes that is orthogonal
to all states identified with these dominance patterns. Hence,
P |ψ0〉 = 0, where P is the orthogonal projection onto the sub-
space spanned by all states associated to dominance patterns.
On the other hand, since |ψ0〉 is a zero mode, the definition of a
root state and the lemmas imply |ψ0〉 = |root〉 + |rest〉 where
|root〉 is nonzero, P |root〉 = |root〉, and 〈root|rest〉 = 0. This
contradicts 〈root|P |ψ0〉 = 0. �

As a result, we immediately have the following.
Corollary 1.1. For given particle number N , there exist no

zero modes of the Hamiltonian (1) at angular momentum L <

Le(N ) := 5/4N2 − 2N for N even, and at angular momentum
L < Lo(N ) := 5/4(N − 1)2 + 1/2(N − 3) for N odd. If a
zero mode exists at L = Lo(N ), it is unique, whereas for
N even, a zero mode at L = Le(N ) can be at most doubly
degenerate.

Proof. The densest possible dominance patterns consistent
with the GPP are, respectively, 100x0x00x0x . . . 00x0x

for N odd, and 100x0x00x0x . . . 00x0x001,
100x0x00x0x . . . 00x0x00! for N even (see also Fig. 1),
where “densest” means in particular that no consistent
dominance patterns exist at smaller angular momenta than the
ones corresponding to these patterns, which can be seen to be
Le(N ) for even N and Lo(N ) for odd N . Hence, the statement
is a special case of Theorem 1. �

For any zero mode, let lmax be the highest angular momen-
tum among the single-particle orbitals that are at least partially
occupied in that zero mode, i.e., that have 〈∑i c

†
i,lci,l〉 
= 0.

Then, we finally have the following corollary.
Corollary 1.2. Any zero mode of the Hamiltonian (1) has

lmax � 5(N − 1)/2 − 1 for N odd, and lmax � 5N/2 − 3 for
N even. Any zero modes satisfying these bounds have angular
momentum Lo(N ) or Le(N ), respectively, and in particular the
statements about degeneracy from Corollary 1.1 apply.

Proof. Any |{n}〉 appearing in a zero mode either appears
in its root state or can be obtained via inward squeezing from
some other Slater determinants appearing in the root state.
Hence, the lmax of the zero mode is the same as that of
its root state, which in turn is the highest occupied orbital
among dominance patterns contributing to the root state. For
given N , the dominance patterns of smallest lmax are those
referenced in the proof of Corollary 1.1, and these have the

FIG. 1. Composite fermion occupancy patterns and resulting
dominance patterns. Three different cases are shown. Level diagrams
show composite fermion occupancies, followed by a more symbolic
composite fermion occupancy pattern and the associated dominance
pattern as explained in text. (a) Corresponds to the densest (minimum
angular momentum) zero mode for odd particle number, followed
by the two configurations corresponding to the doubly degenerate
densest zero modes for even particle number (b) and (c). Note that
only the dominance patterns manifestly encode the total angular
momentum of the state. More general dominance patterns consistent
with Lemmas 1–6, and thus in one-to-one correspondence with zero
modes (see text), are shown in Table I.

lmax values given in the statement of Corollary 1.2, which hence
follows. �

If we define the filling factor ν of a zero mode as N/lmax,
then Corollary 1.2 implies that the densest (highest) filling
factor for which zero modes exist is bounded from above by
2/5 in the thermodynamic limit. This bound is, of course,
saturated, as the corresponding wave function is known [3,7].
So far, the statements derived here constitute upper bounds
on the number of zero modes of the Hamiltonian (1). In the
following, we will be concerned with the question whether
these bounds are saturated, and how the resulting zero mode
counting is related to the mode counting in the effective edge
theory.

IV. ZERO MODE COUNTING AND EDGE THEORY

A. Zero mode counting

As argued in the Introduction, the zero mode condition
derived from a good quantum Hall parent Hamiltonian will not
only characterize the incompressible quantum fluid sufficiently
uniquely, but also encode the proper edge theory of the system.
The rules derived in the preceding section thus far only suggest
a certain zero mode structure, but, with the exception of (the
yet unproven) Lemma 7, only constrain this structure without
guaranteeing the existence of any zero modes. It is, however,
worth noting that all of this was derived from the second-
quantized operators Q

(i)
R alone, and, if we took Lemma 7 for

granted, the entire zero mode structure in terms of dominance
patterns would follow correctly from this analysis. To prove
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Lemma 7 and thus establish the complete zero mode structure
of Eq. (1) with n = 2, we briefly make contact with the first-
quantized presentation of zero modes, though at least in part
we will see below that an operator-based approach could also
be envisioned. (In all aspects, such an operator-based approach
has been constructed by some of us previously for the n = 1
case related to the 1/3-Laughlin state, and in fact for all the
Laughlin states [27,36,37]. We will comment more on the
situation below.)

The analysis of Sec. II implies that a sufficient (and neces-
sary) property of any zero mode is that the associated analytic
many-body wave function contains the factor (zi − zj )2 for
all i,j [see in particular discussion following Eq. (8)]. This
is, in fact, a quite special property of the cases n = 1 and 2
of Eq. (1). More generally, zero modes of Eq. (1) may be
linear combinations of terms containing the factors (zi − zj )2,
(zi − zj )(z̄i − z̄j ), and (z̄i − z̄j )2, which, by symmetry, must
be true for all i,j . That is, a zero mode vanishes at least to
second order in the separation of any pair of coordinates. For
n � 2, however, the third term is prohibited by Landau-level
projection, and the second then always necessitates another
factor of zi − zj by antisymmetry, such that the first term
still covers all possible cases for having a second-order zero.
This renders the n = 2 of Eq. (1) rather special. While the
presence of the first excited Landau level allows terms in z̄i to
be present in the wave function, the zero mode condition can
thus be stated only in terms of the holomorphic variables zi .
Indeed, it is only for n � 2 that the ground state of Eq. (1) is
in the Jain sequence of states [31].

Thanks to the work done in the preceding section, for now it
will do to note that divisibility of the wave function by ψ1/2 =∏

i<j (zi − zj )2, the bosonic ν = 1
2 Laughlin-Jastrow factor, is

a sufficient criterion for a wave function to be a zero mode. In
our present approach, the necessity of this criterion (for n = 2),
i.e., the completeness of the resulting zero mode space, will be
inferred from Theorem 1. This route will set the stage for the
larger n Hamiltonians as well. As an added benefit, this will
establish the one-to-one correspondence between dominance
patterns satisfying the rules given above and zero modes of the
Hamiltonian.

We thus consider zero mode wave functions of the form
ψ1/2p(z1,z̄1, . . . ,zN ,z̄N ), where p is an arbitrary polynomial
of the requisite antisymmetry and at most first order in the z̄i (so
as for ψ1/2 p to be contained within the first two Landau levels),
and we drop the obligatory Gaussian factor for simplicity. It
is clear that a suitable basis for these polynomials is given by
S{n}(z1,z̄1, . . . ), where S{n} is a Slater determinant of single-
particle states in the lowest and first excited Landau level, with
occupancies determined by a set of occupancy numbers {n}.1
Hence, we wish to study zero modes of the form

ψ1/2(z1, . . . )S{n}(z1,z̄1, . . . ). (18)

We note that zero modes of this form are naturally viewed
as composite fermion (CF) states, where any fermion forms

1If there were any doubts as to the completeness of these Slater
determinants for present purposes, this would follow below from the
fact that all possible dominance patterns are obtained in this way.

a composite object with two flux quanta. In particular, if the
CF occupancy configuration {n} is chosen to represent two
equally filled Landau levels, one recovers the Jain-2/5 state,
and one easily verifies that this state saturates the bounds of
the corollaries of the last section. Therefore, the Jain-2/5 state
is the densest zero mode of Eq. (1) for n = 2, unique up to the
twofold degeneracy mentioned in Corollary 1.1 (see below).

We emphasize that while notationally similar to the electron
occupancy numbers {n} labeling basis states in Eq. (16), the
labels {n} represent composite fermion occupancy numbers
and must be well distinguished from the labels {n}. To analyze
the dominance patterns underlying the zero modes (18), we
make use of well-known rules [38] for products of polynomials
with known root patterns, generalized to the case where
nonholomorphic variables (or more than a single Landau
level) are present. Every CF-Slater determinant configuration
S{n}(z1,z̄1, . . . ) is naturally its own root state, as it is the
only Slater determinant appearing in its wave function. The
associated CF occupancy pattern {n} may now be thought of
as a string made up of characters X, 0, 1, and !. The last three
characters have the analogous meaning as in our notation for
root patterns of full zero mode wave functions (but refer to
CFs), and X now means a double occupancy of the associated
angular momentum state in both Landau levels. As before,
the first character can only be 1 or 0 (see Fig. 1). Moreover,
as is well known [39], the bosonic Laughlin factor ψ1/2 has
a root state given by the pattern !0!0!0!0 . . . . Dominance
patterns may generally be associated to partitions lN + lN−1 +
· · · + l1 = L, where li � li+1 is the angular momentum of
the ith particle in the pattern, and L is the total angular
momentum of the pattern. When two wave functions whose
root states have dominance patterns with partitions {li} and {l′i},
respectively, are multiplied, the resulting wave function has a
root state whose dominance pattern has the partition {li + l′i}.
It is easy to see that these rules, when applied to the present
situation, imply that the multiplication of ψ1/2 by the Slater
determinant S{n} leads to a wave function with a dominance
pattern obtained from the pattern associated to {n} as follows.
The character ! is replaced with !00, (! →!00, rule 1). An X

in the CF pattern corresponds to the case where li = li+1 in
the associated partition, signifying two particles with identical
angular momenta but different Landau-level indices. The
resulting ambiguity in ordering these two particles leads to
the situation described as x0x in the dominance pattern of the
resulting zero mode, i.e., we have the rule X → x0x00 (rule
2). That the underlying configurations !0!, 10!, and !01 indeed
occur with the ratios claimed by Lemma 5 could be verified
directly from Eq. (18), but this is not necessary since Eq. (18) is
definitely a zero mode, and then the proof of Lemma 5 applies.
A “1” in the CF pattern associated to S{n} leads to at least two
root patterns in the root state of Eq. (18), one obtained from
the replacement 1 → 100 (rule 3.a), and one from 1 →!00
(rule 3.b). However, it is clear that if we ignore rule 3.b for the
moment, rules 1–3.a establish a one-to-one correspondence
(see Fig. 1) between CF occupation number patterns {n} of N

particles occupying orbitals with angular momentum up to lmax

and permissible dominance patterns of N particles occupying
orbitals with angular momentum up to lmax + 2(N − 1) [where
the addition of 2(N − 1) can be thought of as being due to flux
attachment]. Let us now denote a dominance pattern satisfying
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the GPP of the preceding section by p and the associated root
state by |p〉. Let us choose an ordering of these patterns such
that the number of 1s in the pattern increases monotonously for
patterns associated to the same partition {li}. Furthermore, we
may order patterns associated to different partitions according
to increasing S({li}) := ∑

i l
2
i . (Note that these requirements

do not specify the order uniquely; however, any ordering in
compliance will do.) Finally, let us order the CF occupancy
patterns {n} in the same way, by means of the one-to-one
correspondence. We then see that the matrix

Cp,{n} = 〈p|ψ1/2S{n}〉 (19)

is upper triangular2 with nonzero diagonal and thus invertible.
Therefore, new linear combinations of the |ψ1/2S{n}〉 can be
found such that the new overlap matrix with the 〈p|’s is
the identity.3 This implies that for each dominance pattern
p satisfying the GPP, there is a superposition of zero modes of
the form (18) that is dominated precisely by the associated root
state |p〉, with no other of the states |p′〉 present in its spectral
decomposition (16). This establishes both the completeness
of zero modes of the form Eq. (18) (by Theorem 1), and,
moreover, the following stronger version of Theorem 1.

Theorem 2. At given particle number N and given angular
momentum L, the number of linearly independent zero modes
of the Hamiltonian (1) is exactly equal to the number of
dominance patterns satisfying the GPP.

B. Edge mode counting

We will now discuss that the counting of zero modes at
a given angular momentum and particle number that follows
from the construction of dominance patterns above agrees with
counting of edge states in the effective edge theory. We will
argue that there is a weaker and a stronger version of this
statement. The weaker version, often found in the literature,
is concerned with the number of zero modes/edge modes
N (
L), where 
L is the angular momentum relative to the
ground state at fixed particle number. In the thermodynamic
limit of large particle number N , this quantity is not expected
to depend (much) on N . We will see that the counting problem
defined by N (
L) can be conveniently addressed in terms of
CF patterns. However, the quantity N (
L) is not sensitive to
all aspects of the K matrix describing the edge theory. Indeed,
the K matrix of any Jain state is congruent to a matrix of the
form K ′ = WT KW = mJn + 11 [40], where Jn is an n × n

matrix of ones, and W is an SL(n,Z) matrix. K ′ has precisely
one eigenvalue different from 1, which is nondegenerate with
eigenvector t describing charged excitations. The quantity
N (
L) is only sensitive to neutral excitations orthogonal to
t , which always lie in the eigenvalue 1 eigenspace of K ′. In

2Let pn be the pattern that is associated to n. Then, by design, any
p′ different from pn but having the same partition {li} must come
before pn in order for the overlap (19) to be nonzero. Likewise, any
such p′ corresponding to a different partition {l′i} would be obtainable
from the dominant pattern pn via inward squeezing, and thus have
smaller S({l′i}).

3Linear combinations with coefficients given by the columns of the
inverse of the matrix (19).

particular, N (
L) does not distinguish between Jain states
that have the same number of edge branches. [For example,
N (
L) does not distinguish different Laughlin states; see,
e.g., the discussion in Ref. [41].] In contrast, we may consider
the number of zero modes N (N,L) at given particle number
and given total angular momentum, which, among other
things, also keeps track in absolute terms of how angular
momentum changes with particle number. We will show that
this quantity, when evaluated for the present microscopic
Hamiltonian, captures all aspects of the K matrix of the edge
theory.

To make things concrete, we consider the edge theory of
the Jain-2/5 states in the form [2]

H = 1

4π

∫
dx Vij : ∂xφi∂xφj : − μi

2π

∫
dx ∂xφi, (20)

where i,j = 1,2 describe two bosonic edge modes
through phase fields φi(x) and associated densities ρi =

1
2π

∂xφi , satisfying the Kac-Moody algebra [ρi(x),ρj (x ′)] =
(K−1)ij i

2π
∂x ′δ(x − x ′). The colons imply normal ordering

with respect to finite momentum modes defined below. Kij

is a characteristic matrix that together with the charge vector
ti defines the edge theory. The Jain- or hierarchy-2/5 edge
can be described by K = (3 2

2 3) [40] and t = (1,1), where t is

defined such that ρe = ∑
i tiρi represents the physical electron

charge. In the following, we will pay special attention to the
zero momentum modes of the densities ρi , which we will write
as Ni/(2πR), where R is the radius of the quantum Hall fluid.
Physical operators must respect the integer character of the Ni

[2]. We note in passing that close formal relations [1] between
the edge theory conformal blocks and CF wave functions have
been explored in detail in Ref. [42].

Equation (20) describes an edge with general interaction
matrix Vij between densities and with general chemical
potentials μi coupling to the integer charges Ni . The latter
control both the total particle number as well as the radial
spatial separation between the two edge branches, which,
in the limit of large separation, define two individual edges
between a 2/5 phase and a 1/3 (Laughlin) phase and between
a 1/3 phase and vacuum, respectively. On general grounds
[8], a close relation is expected between the spectrum of the
edge Hamiltonian and the angular momentum operator of the
fluid, if the interactions are so tuned that the edge theory is
conformally invariant. This requires all edge modes to travel
with the same velocity v. Is is easy to see that this can be
achieved by letting Vij = vKij , leading to the equation of
motion ∂tρi + v∂xρi = 0. With this, we then look at the mode
expansion of Eq. (20):

H = v

2R

(
3N2

0 + 3N2
1 + 4N0N1

) − μ0N0 − μ1N1 + v

R
P,

P =
∑
j=0,1

∑
n>0

n b
†
j,nbj,n. (21)

Here, the b
†
j,n (bj,n) are appropriate linear combinations of the

positive (negative) Fourier components of the ρi(x) satisfying
[bj,n,b

†
j ′,n′ ] = δj,j ′δn,n′ , n = 1,2, . . . .

For the purpose of comparing the dimensions of zero mode
spaces and edge mode spaces for various sectors, it is useful
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to identify the quantum numbers N0, N1 of the edge theory
with the CF numbers in the lowest and first excited LL,
respectively, in zero modes of the form (18). We first appeal
to the one-to-one correspondence between CF occupancy
patterns of fixed Ni and excitations of the edge theory, likewise
for fixed Ni . This is a standard result in bosonization [43],
applied here to the case of two chiral branches. Let us denote
the CF state with “densest” (minimum angular momentum)
CF occupancy pattern for given Ni by |N0,N1〉CF. Then, the
one-to-one correspondence between CF states and edge states
at fixed Ni applies to all CF states whose angular momentum
relative to |N0,N1〉CF is smaller than a cutoff given by particle
number: 
L � Ni (cf., e.g., Ref. [37]). That is, the number of
such CF zero modes of given Ni and 
L relative to |N0,N1〉CF
is equal to the number of edge states described by Eq. (21) of
fixed Ni and “edge momentum” P = 
L.

We note, however, that counting at fixed Ni is an artificial
constraint from the point of view of the microscopic theory,
as these quantum numbers do not correspond to any local
(or even Hermitian) conserved quantities in the microscopic
theory. Moreover, counting subject to this constraint contains
no information about the K matrix (except for its dimension).
To make a statement that is both more physical and stronger,
we now claim that for proper choice of chemical potentials
μi and up to a scale factor v/R we will let equal to 1, for
any given particle number N = N0 + N1, the degeneracies
of the eigenvalues of the angular momentum operator of the
macroscopic theory, projected onto the zero mode subspace of
Eq. (1), are exactly the same as the degeneracies of the energy
eigenvalues of the edge Hamiltonian (21). That is, the number
N (N,L) introduced above for the microscopic Hamiltonian is
identical to the degeneracy of the energy E = L of Eq. (21) for
given N = N0 + N1. Loosely speaking, the edge Hamiltonian
(21) is the zero-mode-projected angular momentum operator
of the microscopic theory.

It is sufficient to show that edge states with P = 0 and
given N = N0 + N1 have an energy equal to the angular
momentum of the CF “vacua” |N0,N1〉CF defined above. For
then, it follows that all states identified within each N0, N1

sector via bosonization must also have identical eigenvalues
for, respectively, energy [in Eq. (21)] and angular momentum
(in the microscopic theory). The choice of μi for which this is
true is totally determined by the requirement that N0 = N1 = 1
leads to angular momentum L = 1 in the microscopic theory,
whereas N0 = 0, N1 = 1 leads to L = −1, giving μ0 = 3/2,
μ1 = 5/2 in Eq. (21) (v/R = 1, P = 0). It thus suffices to
show that the minimum angular momentum states |N0,N1〉CF
have L equal to

Lmin = 3
2 (N0 + N1)(N0 + N1 − 1) − N1(N0 + 1). (22)

That this is indeed the case can easily be established consid-
ering first the densest pattern for given N0 + N1 [e.g., (a) in
Table I] and then proceeding by induction to general values
of N1 − N0 [examples are (b) and (c) in Table I for N0 = 3,
N1 = 6 and N0 = 5, N1 = 4, respectively]. Alternatively, the
statement also can be followed from Eq. (18).

The above establishes that the counting of microscopic zero
modes at given particle number N and angular momentum
L is exactly the same as that of energy eigenmodes in an
appropriately scaled edge Hamiltonian describing the 2/5

edge. While the counting can be done in terms of CF patterns,
as expected in any system that can be understood in terms
of noninteracting CFs, we have shown that counting can be
done equally well in terms of dominance patterns. In this
regard, it is worth noting that CF occupancy patterns as
defined above manifestly encode only changes in angular
momentum at fixed particle number. Obtaining the absolute
angular momentum of a CF state described by a given CF
occupancy pattern requires additional information about the
number of flux quanta each composite fermion carries. In
contrast, the total angular momentum of the associated (root)
state is manifest in dominance patterns. The set of rules
governing the composition of valid dominance patterns can
thus be interpreted as a set of minimal rules to construct
the quantity N (N,L) from certain local building blocks (see
discussion above Theorem 1 and caption of Table I). The
fact that this then reproduces edge mode counting is the
property that one expects a good GPP to have. We thus
find that the present Hamiltonian does not only fully fall
into the “zero mode paradigm” expected of special quantum
Hall parent Hamiltonians, but is also linked to a GPP which
facilitates the pertinent counting. It should be clear that our
arguments leading from FQH Hamiltonians admitting zero
modes to GPPs governing dominance patterns have a very
general character. If such a Hamiltonian satisfies the zero
mode paradigm, the implied GPP must then reproduce edge
mode counting from local rules as demonstrated above. We
will argue below that this general connection between the
existence of zero modes and GPPs imposes useful constraints
on settings in which “good” (zero mode paradigm) parent
Hamiltonians may be constructed. We caution, however, that
there are modified versions of this paradigm, as, e.g., realized
in the parent Hamiltonian of the anti-Pfaffian state [44,45].
Here, the equivalent of zero mode counting would describe an
edge with a ν = 1 integer quantum Hall state, as opposed to
vacuum.

We note that the quantity N (N,L) is in principle robust
to sufficiently weak rotationally invariant perturbations. Here,
“weak” means sufficiently small compared to the gap separat-
ing low-energy modes from the rest of the spectrum at given
L. Under such conditions, N (N,L) may thus even survive
some degree of edge reconstruction. However, it is clear that
this quantity is directly meaningful only in exceptionally clean
systems. The more robust features of edge mode counting can
be probed experimentally in momentum-resolved tunneling
[46–51].

V. ZERO MODE GENERATORS

While results from the preceding section establish the full
zero mode structure of the Jain-2/5 state parent Hamiltonian,
we mention here an alternative approach more in line with
our general philosophy of working with the operator algebras
of the second-quantized problem. Such an approach has been
carried out earlier by some of us [27,36,37] for the Laughlin
states and their parent Hamiltonians. One attractive feature of
this approach is its resulting in a “microscopic bosonization
dictionary,” where operators present in the effective edge
theory are identified with second-quantized microscopic oper-
ators that interact with the microscopic Hamiltonian in exactly
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the way expected from the effective theory. Another motivation
to consider this route is the fact that, in the single Landau-level
example of Refs. [27,36,37], Read’s order parameter of the
Laughlin state [52] appeared naturally (in a fully second-
quantized form). Clearly, an analogous construction for the

Jain-2/5 state would be of great interest. Here, we will report
some preliminary results regarding this approach, leaving
details for future work.

We begin by identifying four sets of single-particle “zero
mode generators”:

P
(1)
d =

+∞∑
r=−1

√
(r + d)!

(r + 1)!
c
†
0,r+dc1,r d � 1 (23)

P
(2)
d =

+∞∑
r=0

√
(r + d)!

r!
c
†
0,r+dc0,r +

+∞∑
r=−1

√
(r + d + 1)!

(r + 1)!
c
†
1,r+dc1,r d � 0 (24)

P
(3)
d =

+∞∑
r=−1

(
(r + d + 1)

√
(r + d)!

(r + 1)!
c
†
0,r+dc1,r +

√
(r + d + 1)!

(r + 1)!
c
†
1,r+dc1,r

)
d � 0 (25)

P
(4)
d =

+∞∑
r=0

(√
(r + d + 1)!

r!
c
†
1,r+dc0,r + (r + d + 1)

√
(r + d)!

r!
c
†
0,r+dc0,r

)

−
+∞∑

r=−1

(
(r + 1)

√
(r + d + 1)!

(r + 1)!
c
†
1,r+dc1,r + (r + 1)(r + d + 1)

√
(r + d)!

(r + 1)!
c
†
0,r+dc1,r

)
, d � −1. (26)

These generalize the single set of zero mode generators iden-
tified for the n = 1 (Laughlin-state) case earlier [27,36,37].
Their algebraic properties can be summarized as follows.
Details will be published elsewhere [53]. By themselves, the
P

(i)
d form a graded Lie algebra, where the grading is furnished

by the label d. Explicitly, this means that [P (i)
d ,P

(j )
d ′ ] is a

linear combination of P
(k)
d+d ′ , k = 1 . . . 4. This graded Lie

algebra can be extended by the T
(i)
R or, alternatively, the

operators appearing on the left-hand side of Eq. (15) defining
the zero mode condition, where the grading is now provided
by the label −2R. While commutators between different T

(i)
R

of course vanish, commutators of the form [T (i)
R ,P

(j )
d ] give

linear combinations of T
(k)
R−d/2, k = 1 . . . 4. This last property

justifies the term “zero mode generators.” It ensures that,
when any P

(i)
d acts on a zero mode |ψ〉 (and does not give

zero), it generates another zero mode because all commutators
[T (i)

R ,P
(j )
d ] vanish inside the zero mode subspace [27]. Note

also that P
(i)
d increases the angular momentum of the zero

mode by d. It is thus clear that the P
(i)
d have properties that

are similar to those of the mode operators b
†
i,d (i = 0,1)in the

effective edge theory. This leads to the obvious question why
we found more than two sets of P

(i)
d operators. Although we

must carefully distinguish between electron and CF occupancy
numbers, it is clear that the operator P

(1)
d gradually depopulates

the first excited Landau level. This will also reduce the number
of CFs in the first excited Landau level. Note that the operator
is nilpotent (for fixed particle number): a sufficiently large
power of P

(1)
d will certainly annihilate the state. We may thus

interpret P (1)
d as an operator that creates edge excitations of the

kind generated by the operators b
†
i,d in the effective edge theory,

but at the same time lowers the quantum number N1 − N0. To
identify zero mode operators that, like the operators b

†
i,d create

independent branches of edge excitations that do not affect
N1 − N0, we must find two commuting linear combinations
of the P

(i)
d that are not nilpotent. These criteria are satisfied

by dP
(1)
d + P

(2)
d and P

(3)
d . The other two linear combinations

of the P
(i)
d operators will correspond to operators in the edge

theory that do change the quantum number N1 − N0 (or else
are not independent of the former). We have indeed shown
that P

(4)
0 can be used to connect one of the two degenerate

lowest angular momentum zero modes at even particle number
(see Sec. IV) to the other [53]. These considerations make it
feasible that by acting with combinations of products of the
operators P

(i)
d on a lowest angular momentum zero mode,

we can generate all zero modes at fixed particle number.
We leave this as a conjecture for future work. Moreover, in
Ref. [36] we have succeeded in constructing a microscopic
operator that, when acting on the smallest angular momentum
zero modes in the n = 1 (Laughlin) case, leads to the corre-
sponding zero mode with the total particle number increased
by 1. This can be interpreted as a microscopic realization of the
operator of the edge theory that raises the quantity N0 + N1.
It is here where the connection with the order parameter
of the Laughlin state can be made. We will also leave the
generalization of this operator to the present situation as an
interesting problem for future work.

VI. SECOND QUANTIZATION ON THE SPHERE

In this section, we wish to make contact with previous
studies that seem to have focused on the sphere [7,32]. One
question that has been addressed by earlier works is the
uniqueness of the ground state whenever the number of flux
quanta is chosen to be 2s = 5/2N − S where S = 4 is the
topological shift of the Jain-2/5 state. This requires the particle
number N to be even. We have seen above that for even N
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FIG. 2. Same as Fig. 1, but for the sphere, where the first
excited LL has one more orbital at both maximum and minimum
Lz, for both electrons and composite fermions. Shown (bottom line)
is the resulting unique dominance pattern for a sphere satisfying
2s = 5

2 N − 4, where 2s is the number of flux quanta penetrating the
sphere.

there generally is no unique ground state in the disk geometry.
However, the statement is nonetheless correct on the sphere.
While earlier confirmations of this uniqueness seem to have
rested at least in part on numerics for finite particle number, the
methods established above suggest several routes to establish
this fact analytically. Indeed, the statement becomes immediate
once Lemmas 1–6 have been translated to the sphere. For this
we will also have to briefly discuss the second-quantized form
of the n = 2 Hamiltonian on the sphere, which we also believe
to be of benefit for future reference.

We first remind the reader that a sphere threaded by 2s

flux quanta has a Landau-level structure where the ith Landau
level has 2(s + i) + 1 orbitals [5]. Moreover, the ith Landau-
level transforms under rotations according to the spin sn =
s + i representation of SU(2). Working with eigenstates of
the z component of angular momentum, basis states within

a given Landau level thus vary from Lz = −s − i to s + i.
Specializing to n = 2, this means that not only the smallest
possible Lz is unique to the first excited Landau level (as is
Lz = −1 in the disk geometry), but so is the largest Lz. The
situation is depicted in Fig. 2. We see that boundary conditions
on the left end are then exactly the same as on the right. When
the filling factor is given by 2s = 5/2N − 4, the application
of Lemmas 1–6 then leads to a unique dominance pattern. By
Theorem 1, this in turn yields the uniqueness, as a zero mode,
of the corresponding Jain-2/5 state on the sphere. Likewise,
there cannot be any zero modes for 2s < 5/2N − 4, due to
the impossibility to construct permissible dominance patterns
under such conditions.

To establish the above, we now turn to the second-quantized
presentation of n = 2 Hamiltonian on the sphere. We will work
with the stereographic projection of the sphere introduced in
this context in Ref. [9]:

z = tan
θ

2
e−iφ , (27)

where θ and φ are the usual polar and azimuthal angles on
the sphere, respectively. With this, the rotationally invari-
ant volume element on the sphere becomes sin θ dθd φ =√

g(z)dz dz̄ with g(z) = (1 + zz̄)−4. The rotationally invariant
analog of Eq. (1) is then

H = Pn

∂z1∂z̄1δ(z1 − z2)δ(z̄1 − z̄2)√
g(z1)g(z2)

Pn. (28)

Moreover, using the gauge A = − 2s
e

cot θ êφ , the relevant
lowest and first excited Landau-level single-particle states have
wave functions

η0,m(z) = N0,m zs−mG0(z,z̄), η1,m(z) = N1,m [(1 + s + m)zz̄ − (1 + s − m)]zs−mG1(z,z̄), (29)

where the normalization factors are

N0,m =
√

(2s + 1)!/[(s + m)!(s − m)!], N1,m =
√

(2s + 3)!/[2(1 + s)(1 + s + m)!(1 + s − m)!]

and furthermore Gn(z,z̄) = z̄s/2/[zs/2(1 + zz̄)s+n].
In studying the effect of Eq. (28) on two-particle states of well-defined total angular momentum L, one easily observes that

H annihilates all states with L < 2s − 1. This is so because all such states are proportional to at least a third power of (z1 − z2).
(By rotational invariance, it is sufficient to observe that all states with total Lz < 2s − 1 have this property when either z1 or
z2 are sent to the North pole at z = 0.) It further turns out that for two fermions in the lowest two Landau levels, there are two
representations with L = 2s + 1, one representation with L = 2s, and three representations with L = 2s − 1, as one easily finds
by focusing on highest weight states with L = Lz. The corresponding six highest weight states are, respectively,

|1〉 = c
†
0,sc

†
1,s+1|0〉, |2〉 = c

†
0,sc

†
0,s−1|0〉, |3〉 =

(√
s

1 + 2s
c
†
0,sc

†
1,s −

√
1 + s

1 + 2s
c
†
0,s−1c

†
1,s+1

)
|0〉,

|4〉 = c
†
1,s+1c

†
1,s |0〉, |5〉 =

⎛
⎝

√
2s − 1

2(1 + 4s)
c
†
0,sc

†
1,s−1 −

√
(4s2 − 1)

2s(1 + 4s)
c
†
0,s−1c

†
1,s +

√
(1 + 2s)(1 + s)

2s(1 + 4s)
c
†
0,s−2c

†
1,s+1

⎞
⎠|0〉,

|6〉 =
(√

1 + s

1 + 4s
c
†
1,s+1c

†
1,s−2 −

√
3s

1 + 4s
c
†
1,sc

†
1,s−1

)
|0〉. (30)

There is an obvious correspondence between the above six states and the six states identified in Eqs. (11) for the disk geometry.
Hence, we expect that there are still two zero modes contained in the subspace spanned by these six states, as happened in the disk
geometry. Taking into account the lower Lz descendants of these states, this will then lead to four nonzero energy two-particle
states for given Lz = 2R, except for extremal values of Lz. Working first at the highest level, one finds that there are two zero
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modes among the L = 2s − 1 states |1〉, |5〉, and |6〉, and nonzero energy eigenstates correspond to the linear combinations

|1̃〉 =
√

2

(17s2 + 6s + 1)1/4
√

s + 1

×
⎛
⎝

√
(s + 1)

√
17s2 + 6s + 1 − (s2 + 4s + 1)

2
|1〉 + s

√
(2s + 1)(2s + 3)√

(s + 1)
√

17s2 + 6s + 1 − (s2 + 4s + 1)
|4〉

⎞
⎠, (31a)

|2̃〉 = −
√

s(2s + 1)(4s + 1)

(s + 1)
√

6(6s − 1)
|2〉 +

√
(2s + 1)(2s − 1)(2s + 3)

(s + 1)
√

3(6s − 1)
|5〉 +

√
s(2s + 3)

(s + 1)
√

2(6s − 1)
|6〉, (31b)

|4̃〉 =
√

2

(17s2 + 6s + 1)1/4
√

s + 1

×
⎛
⎝−

√
(s + 1)

√
17s2 + 6s + 1 + (s2 + 4s + 1)

2
|1〉 + s

√
(2s + 1)(2s + 3)√

(s + 1)
√

17s2 + 6s + 1 + (s2 + 4s + 1)
|4〉

⎞
⎠, (31c)

and |3̃〉 = |3〉, with L = 2s − 1, 2s + 1, 2s + 1, and 2s, respectively. This implies the following form of the n = 2 Hamiltonian
on the sphere:

H = 1

4π

∑
R∈{−s−1,−s− 1

2 ,... ,s+1}

(
6(2s + 1)(6s − 1)

(16s2 − 1)
T

(2)†
R T

(2)
R + 2(2s + 3)

4s + 1
T

(3)†
R T

(3)
R

+ 2(2s + 3)(−√
17s2 + 6s + 1 + 5s + 2)

(4s + 1)(4s + 3)
T

(4)†
R T

(4)
R + 2(2s + 3)(

√
17s2 + 6s + 1 + 5s + 2)

(4s + 1)(4s + 3)
T

(1)†
R T

(1)
R

)
, (32)

where we have also made explicit the eigenvalues corresponding to the eigenstates in Eq. (31), and introduced two-particle
projection operators T

(i)†
R T

(i)
R onto two-particle states T

(i)†
R |0〉 that, at the appropriate highest weight value of Lz, correspond to

the states |j̃ 〉, j = 1 . . . 4.
To be more explicit, we first define similar operators Q

(i)†
R that correspond in the same manner to the two-particle states |j 〉,

j = 1 . . . 6 [Eq. (30)]:

Q
(1)
R =

∑
x

〈s,R + x; s + 1,R − x|2s + 1,2R〉c1,R−xc0,R+x,

Q
(2)
R = 1√

2

∑
x

〈s,R + x; s,R − x|2s − 1,2R〉c0,R−xc0,R+x,

Q
(3)
R =

∑
x

〈s,R + x; s + 1,R − x|2s,2R〉c1,R−xc0,R+x,

Q
(4)
R = 1√

2

∑
x

〈s + 1,R + x; s + 1,R − x|2s + 1,2R〉c1,R−xc1,R+x,

Q
(5)
R =

∑
x

〈s,R + x; s + 1,R − x|2s − 1,2R〉c1,R−xc0,R+x,

Q
(6)
R = 1√

2

∑
x

〈s + 1,R + x; s + 1,R − x|2s − 1,2R〉c1,R−xc1,R+x . (33)

Here, 〈j1,m1; j2,m2|j,m〉 is a Clebsch-Gordan coefficient.
From Eq. (33), we then form operators T

(i)
R in a manner exactly

as shown in Eq. (31). We observe that the zero mode condition
can still be cast in the form of Eq. (15). It is further worth
noting that in the limit s → ∞, Eq. (32) recovers the form of
Eq. (13) for the infinite disk geometry.

We are now in a perfect position to transcribe Lemmas
1–6 to the situation on the sphere. Upon reviewing the logic
underlying the proofs of these lemmas, one finds that these

hold generically for Hamiltonians of the form Eqs. (13) and
(32), provided that certain coefficients at distances |x| � 1 are
nonzero in the Q operators, in this case Eq. (33), as well
as certain determinants involving these coefficients, which
describe the linear relations used in the proofs of the lemmas.
For the sphere, the relevant Clebsch-Gordan coefficients at
j1 − j2 − j � 3 can be obtained from a standard sum [54,55]
that never has more than four terms, which especially for small
|x| � 1 are similar and can be combined into manageable
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closed forms. One thus verifies that the coefficients of Eq. (33)
satisfy all the above-mentioned nonvanishing conditions for
Lemmas 1–6 to hold. As a result, the only details about
these lemmas that must be modified are the precise ratios
in Lemma 5. Here, we state this modified version:

Lemma 5 (sphere). If x0x appears in root patterns of a zero
mode |ψ0〉, then the proportions of coefficients of root patterns
having !0!, !01, and 10! with all other occupancies the same
are 2

√
2s + 3:

√
(s − j + 2)(s + j ):−√

(s + j + 2)(s − j ),
where j is the angular momentum of the “0” in x0x.

Again, we note that one recovers the proportions stated
earlier for the disk geometry upon taking the limit s,j → ∞
with s − j finite.

Of course, the new Lemma 5 does not change the zero
mode counting on the sphere in terms of dominance patterns,
for which the only relevant modification is the boundary
condition discussed initially and in Fig. 2. As explained, the
above in particular confirms that the Jain-2/5 state satisfying
2s = 5/2N − 4 is the unique zero mode at this particular
filling factor, with no zero modes existing at larger filling
factor.

VII. DISCUSSION

In the above we have established a description in terms
of dominance patterns for the zero modes of the parent
Hamiltonian of the unprojected Jain-2/5 state. In doing so, we
have further developed techniques to extract rules governing
such patterns directly from a Hamiltonian principle. We
found that, like in other examples [12,15] where additional
degrees of freedom beyond guiding centers are present,
dominance patterns are not necessarily product states, but are
subject to rules requiring simple entanglement under various
circumstances. These rules may be thought of as further
generalizations of conventional GPPs describing product
states. The rules we found are nonetheless sufficiently simple
to serve in zero mode counting, and we have in fact proven
that this procedure correctly gives the dimension of the zero
mode space at given angular momentum and particle number.
We have established this for both the disk and spherical
geometries, and demonstrated that zero mode counting at
fixed angular momentum and particle number, but with no
restriction on quantum numbers describing relative occupancy
of CF Landau levels or associated “winding numbers” in the
effective edge theory, is in agreement with the mode counting
of the conformal field theory describing the edge physics.

The general approach followed in this paper emphasizes the
study of FQH parent Hamiltonians using second-quantized
methods in a context in which traditionally first-quantized
language has been given preference. Indeed, only recently
the second-quantized presentation of FQH Hamiltonians has
become a subject of interest in its own right [27,36,37,56]. For
one thing, it can be argued that this approach more readily gives
access to spectral properties at finite energies [57]. For another,
the second-quantized approach seems to be effective also in
unraveling the zero mode structure of special Hamiltonians,
as the present example demonstrates. We emphasize again
that few examples seem to have been studied systematically
in this regard where the wave function is not described by
holomorphic polynomials, i.e., is not contained within the

lowest Landau level. The advantage of our approach is that
it directly ties the zero mode structure to a GPP for dominance
patterns. Such close ties between GPPs and Hamiltonians
satisfying a zero mode paradigm may in fact explain why
parent Hamiltonians have not been found in certain settings.
For example, in the case of Jain states that are projected onto
the lowest Landau level, the methods presented here strongly
suggest that a parent Hamiltonian satisfying the zero mode
paradigm would also lead to a GPP consistent with the effective
edge theory. That is, to a set of rules governing the fusion of
certain local building blocks on a one-dimensional lattice that
leads to a densest possible state at the correct filling factor,
and yields the correct zero mode counting at larger angular
momenta. We conjecture that such a GPP is not possible for
the Jain-2/5 state if the particles subject to the GPP have only
the angular momentum (or guiding center) degrees of freedom
of a single Landau level, with no additional degrees of freedom
present (such as spin, Landau-level indices, etc., . . .). More
generally, we conjecture that this is true for any state with an
edge theory rich enough to comprise at least two branches of
noninteracting chiral bosons: it appears that a “plain vanilla,”
single-component GPP cannot be combinatorially rich enough
to account for such edge theories. On the other hand, how such
GPPs are possible when additional degrees of freedom are
present was seen here for the case of additional Landau-level
degrees of freedom. Similar, but distinct GPPs are implicit in
Ref. [15] for, e.g., the (two-component) Halperin (332) state,
which has filling factor 2/5 but a different topological shift
than the Jain-2/5 state. We leave the proof of this conjecture
as a challenge for future work.

It may be worth noting that, despite our emphasis on
edge physics, there is no sharp distinction between edge
and (quasihole type) bulk excitations from the point of view
of dominance patterns. This is of course expected in any
microscopic theory, and is a consequence of the holographic
principle. General bulk excitations in Abelian FQH states can
be organized into a “lattice of excitations” [58], which is
two dimensional in the present case, and accommodates both
charged and neutral excitations. It is quite clear, e.g., that de-
fects of the form . . . x0x00!00x0x. . . , . . . x0x00100x0x. . . ,
represent excitations of the same charge 1/5, but differ by a
neutral excitation. They would then have the same statistics
[58]. The results of this paper also lay the basis to study such
properties of bulk excitations, in particular pertaining to their
statistics, in terms of dominance patterns using the coherent
state method of earlier works [26,59,60].

We point out that our results also rigorously imply certain
properties of the lowest LL projected Jain-2/5 state, and, more
generally, CF states of the form (18). On the sphere, e.g., all
Slater determinants contributing to the projected Jain-2/5 state
must be obtainable via inward squeezing from the dominance
pattern 100x0x00x0x. . . x0x001. This pattern, of course, does
by itself not appear in the projected Jain-2/5 state, as the first
and last occupied orbitals belong to the first excited LL. The
projected Jain-2/5 state was studied from this point of view
before in Ref. [30], where a different dominance pattern was
identified that becomes “nonexpandable” in our terminology
after projection. The general pattern . . . !0!00!0!00!0! . . . has
also appeared in a thin torus study of the lowest LL projected
Coulomb interaction [19].
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While we have focused on the case of the Jain-2/5 parent
Hamiltonian for definiteness, the validity of our approach is
certainly not limited to this case or those presented earlier
along similar lines [27,36,37]. In particular, generalization to
more than two-body Hamiltonians is certainly possible. An
obvious direction for future exploration is the case of larger n

in Eq. (1), especially n = 3, which leads to physics at ν = 1
2

[31]. Filling factors of the form 1
2 +integer have traditionally

been fruitful ground for a great wealth of proposals of Abelian,
non-Abelian, and gapless states [1,32,61–64], and are recently
again actively investigated from a particle-hole symmetric
point of view [65], the latter having inspired interesting new
wave functions [66]. Even beyond the realm of FQH physics,
attractive features of frustration-free lattice Hamiltonians that
are not necessarily finite ranged but feature a “center-of-mass-
conservation” symmetry have long been advertised [13,67].
We are hopeful that the methods developed here will make
major contributions to the general study of such Hamiltonians,
the general n case of Eq. (1) being a particular example.

VIII. CONCLUSION

In this paper, we have further developed a method to extract
GPPs governing zero modes of a FQH parent Hamiltonian
directly from its second-quantized form. In particular, we have
demonstrated that such principles apply to states involving
higher Landau levels, and provided an in-depth analysis of the
zero mode structure of the Jain-2/5 state parent Hamiltonian
and its realization through certain dominance patterns. As in
earlier works focusing on single Landau-level physics, we have
identified single-particle operators that generate zero modes.
Our approach does, somewhat uncharacteristically, emphasize
the second-quantized presentation of parent Hamiltonians,
which we developed in detail for the Jain-2/5 state for

the disk and sphere geometries. The cylinder geometry can
be treated similarly, with implications for the torus. This
represents one route to a presentation of the physics that
manifestly exposes the dynamics of the guiding centers and
retains dynamical momenta only to the extent that they
have not been eliminated by Landau-level projection. These
aspects seem to be much in keeping with a line of thought
recently put forth by Haldane [68]. A powerful strategy in
exploring correlated electron physics is to stabilize special
wave functions associated to certain fixed points in the phase
diagram via local Hamiltonians. For the phases described by
Jain states, lowest Landau-level projected versions of Jain
states, or manifestly projected hierarchy states, are sometimes
thought to be the proper fixed-point wave functions since they
are compatible with the strong field limit. We have presented
arguments here as to why a local parent Hamiltonian for these
states may not be possible, at least not if we want it to fall within
the usual zero mode paradigm. It is then reassuring that the
existing parent Hamiltonian for the unprojected Jain-2/5 state
does fall into this paradigm, as we argued in great detail. The
Hamiltonian studied here is the n = 2 special case of a family
of Trugman-Kivelson interactions projected onto n Landau
levels. We expect that the methodology developed here will be
of great value to shed light on the case of larger n. We leave
this as an interesting problem for the future.
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