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Scanning tunneling potentiometry, charge transport, and Landauer’s resistivity dipole from the
quantum to the classical transport regime
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Using the nonequilibrium Keldysh formalism, we investigate the spatial relation between the electrochemical
potential measured in scanning tunneling potentiometry, and local current patterns over the entire range from the
quantum to the classical transport regime. These quantities show similar spatial patterns near the quantum limit
but are related by Ohm’s law only in the classical regime. We demonstrate that defects induce a Landauer residual
resistivity dipole in the electrochemical potential with the concomitant spatial current pattern representing the
field lines of the dipole.
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I. INTRODUCTION

Visualizing charge transport at the nanoscale is not only
of great fundamental interest to understand and explore
the crossover from quantum to classical transport, but also
important for the continued miniaturization of electronic
circuits. While spatial imaging of charge currents at the
mesoscale has been achieved using scanning probe microscopy
[1–10], scanning tunneling potentiometry [11–14] (STP) [see
Fig. 1(a)] has been employed to gain insight into the nature
of charge transport at much smaller length scales down to
the nanometer scale [15–18]. This has led to the observation
of Landauer’s residual resistivity dipoles [19,20] near step
edges [15,17,18]. The question, however, arises as to whether
one can gain direct insight into the spatial form of the
current density—or, more generally, the current patterns—
from the electrochemical potential. While in the limit of
classical, diffusive transport the relation between these two
quantities is established by Ohm’s law, most materials of
interest possess sufficiently long mean free paths such that
they lie between the classical and quantum transport limits.
In this regime, the relation between the local electrochemical
potential and the current density is unknown, and identifying it
is therefore crucial for visualizing the spatial flow of currents
at the nanometer scale.

In this article, we provide this missing link by identifying
the relation between the spatial form of the electrochemical
potential μe(r) as determined via STP and the spatial current
pattern Ir,r′ over the entire range from the quantum to the
classical transport regime. Using the Keldysh Green’s function
formalism [21–23], we demonstrate that near the quantum
limit, the spatial form of μe(r) is similar to that of Ir,r′ ,
such that the electrochemical potential can be employed to
spatially image the current pattern. On the other hand, we
show that Ohm’s law can only be used in the classical limit to
directly deduce the local current density Ir,r′ from the spatial
form of μe(r). Moreover, we demonstrate that the evolution of
μe(r) between the quantum and classical limit is reflected in
changes of an effective Fermi distribution function. We show
that defects induce a Landauer’s residual resistivity dipole in
μe(r) and that the concomitant spatial form of Ir,r′ is that of
field lines associated with the presence of a dipole. Finally,
we demonstrate that μe(r) changes sharply at interfaces or
step edges accompanied by large-scale spatial oscillations.

These results identify the relation between the electrochemical
potential and the local flow of charges over the entire range
from quantum to classical transport.

II. THEORETICAL FORMALISM

To investigate the form of the local electrochemical po-
tential μe(r), its relation to the spatial current pattern, and
its evolution from the quantum to the classical limit, we
consider a network of electronic sites that are connected by
hopping elements as shown in Fig. 1(b) [24–29]. These sites
can represent atoms, molecules, or quantum dots; for the
present purpose we assume that they possess only a single
electronic level. The network is coupled to two leads and
described by the Hamiltonian H = H0 + Hdef + Hph + Hc +
Htun + Htip + Hlead, where

H0 =
∑
r,r′,σ

(−t − μδr,r′ )c†rσ cr′σ

Hdef = U0

∑
R,σ

c
†
R,σ cR,σ

Hph = g
∑
r,σ

c†rσ crσ (a†
r + ar) + ω0

∑
r,σ

a†
rar

Hc = −tc
∑
j,σ

(
c
†
Rj ,σ

dRj ,σ + c
†
Lj ,σ

dLj ,σ + H.c.
)

Htun = −ttip
∑

σ

(c†rσ fσ + f †
σ crσ ). (1)

Here, c
†
rσ (cr′σ ) creates (annihilates) an electron with spin σ at

site r in the network, −t is the electronic hopping between
nearest-neighbor sites, and μ is the chemical potential. Hdef

describes the electronic scattering off nonmagnetic defects
located at sites R, and Hph represents the interaction of the
electrons with local Einstein phonon modes of energy ω0. Hc

describes the coupling of the network to the left and right
leads, and Htun represents the tunneling of an electron from
the tip to a site r in the network. Finally, Htip and Hlead describe
the electronic structure of the tip and the leads, respectively.
Below, we assume the wide-band limit for both with a constant
density of states N0 = 1/t . Moreover, we set μ = 0, yielding
the Fermi surface shown in the inset of Fig. 1(c). We had
previously shown [29] that by increasing g, one can tune
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FIG. 1. (a) Schematic representation of STP: when the STP tip is
above at site r of the network, its potential V (r) is adjusted such that
there is a zero net current flowing between the tip and the network. (b)
Network of electronic sites that are connected by electronic hopping
(solid black lines) and coupled to two narrow leads. (c) μ(r) along
the middle row of the network in (b) for different values of ζ . Inset:
Fermi surface of the network.

the network’s transport properties from the quantum to the
classical limit. Here, the quantum limit, g = 0, describes a
fully coherent system with an infinitely large elastic mean free
path, ξ = ∞, while the classical limit is obtained for g → ∞
with ξ ≈ a0 (a0 is the lattice constant). To investigate the
crossover from quantum to classical transport, we employ the
high-temperature approximation kBT � h̄ω0 [29,30], where
the strength of the electron-phonon interaction is characterized
by a single parameter, ζ = 2g2kBT /(h̄ω0), with ζ = 0 and
ζ → ∞ corresponding to the quantum and classical transport
limits, respectively.

When different chemical potentials μL,R are applied to
the left and right leads, a nonzero current flows through the
network. The resulting spatial current pattern Ir,r′ inside the
network can be computed using the nonequilibrium Keldysh
Green’s function formalism [21–23,29]. At the same time, the
current between the STP tip and a site r in the network in the
weak tunneling limit is given by [28]

Itip(r) = −2
gse

h̄
N0t

2
tip

∫ ∞

−∞

dω

2π

{
ImG<(r,r,ω)

2

+ n
tip
F [ω − eV (r)]ImGr (r,r,ω)

}
, (2)

where G<,r (r,r,ω) are the full local lesser and retarded Green’s
functions, n

tip
F is the Fermi distribution function of the tip, and

V (r) is the potential in the tip with respect to the network (for
a detailed discussion of G<(r,r,ω), see Ref. [29]). To obtain
the electrochemical potential, μe(r) = eV (r) via STP, V (r) is
adjusted at every site r such that Itip(r) = 0.

III. RESULTS

In Fig. 1(c), we present the evolution of μe(r) along the
center row of the network in Fig. 1(b) with increasing ζ . In the
noninteracting quantum limit, ζ = 0, the chemical potential
abruptly changes at the lead-network interface and is nearly
constant inside the network. This interface resistance limits the
network’s conductance to the quantum of conductance [29].
With increasing ζ , the resulting electronic dephasing leads
not only to a varying μe(r) inside the network, but also to an
evolution in its spatial form, as shown in Figs. 2(a)–2(c). To
investigate the relation between μe(r) and the corresponding
spatial current pattern, Ir,r′ , we plot the latter in Figs. 2(d)–2(f)
(for details of its calculation, see Ref. [29]). For large ζ ,
the spatial forms of μe(r) [Fig. 2(c) for ζ = 500t2] and of
Ir,r′ are that of a classical resistor network [31], for which
μe(r) is shown in Fig. 2(g). In this case, μe(r) and Ir,r′ (both
obtained within the Keldysh formalism) are related by Ohm’s
law, Ir,r′ = σ (r,r′)[μe(r) − μe(r′)], with the link conductivity
between two neighboring sites being constant, i.e., σ (r,r′) =
σ0. In the opposite limit of small ζ , i.e., near the quantum limit,
μe(r) [Fig. 2(a)] shows a spatial form that is very similar to that
of Ir,r′ [Fig. 2(d)], implying that μe(r) can be used to spatially
image regions of large current density. However, neither in this
limit, nor in the crossover region between quantum and classi-
cal transport [as exemplified by ζ = 0.5t2, Figs. 2(b) and 2(e)]
are μe(r) and Ir,r′ related by Ohm’s law with a constant σ0. To
demonstrate this, we present in Fig. 2(h) a spatial plot of Ir,r′

obtained from μe(r) in Fig. 2(b) [for intermediate ζ = 0.5t2]
using Ohm’s law with a constant σ0. Not only does the resulting
Ir,r′ not obey the continuity equation, but its spatial form is also
qualitatively different from that of the actual current pattern
shown in Fig. 2(e). We therefore conclude that the spatial
current pattern Ir,r′ can only be extracted from μe(r) via Ohm’s
law in the classical transport regime.

Further insight into the nature of the local potential can be
gained by considering a graphical solution of the condition
Itip(r) = 0 from Eq. (2). To this end, we present in Fig. 3(a) a
plot of ImG<,r for site 5 in Fig. 1(b) and ζ = 0.1t2. A closer
analysis of Eq. (2) reveals that V (r) (for which Itip(r) = 0) is
determined by the condition that the area between −ImGr

and ImG</2 for μR < ω < eV (r) (blue area) be equal to
the area under ImG</2 for eV (r) < ω < μL (green area).
To provide a physical interpretation of this result, we define
an effective out-of-equilibrium Fermi distribution function
n̄F in the network via G<(r,r,ω) = −2in̄F (ω)ImGr (r,ω).
In equilibrium, n̄F is the conventional Fermi distribution
function. In Fig. 3(b) we present n̄F at sites 1–4 in Fig. 1(b)
for small ζ = 0.01t2, together with n

tip
F . As the network is

out of equilibrium, n̄F is modified from its equilibrium form
in the energy range μR < ω < μL and varies greatly inside
the network. For μR < ω < eV (r), ntip

F = 1 > n̄F , and these
states carry a current from the tip into the network. On
the other hand, for eV (r) < ω < μL, one has n

tip
F = 0 < n̄F ,

and hence these states carry a current that flows from the
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FIG. 2. Network with Nx = Ny = 11: normalized μe(r)/μmax
e

for (a) ζ = 0.01t2, (b) ζ = 0.5t2, and (c) ζ = 500t2, and (c)–(e)
corresponding normalized current pattern Ir,r′/Imax for T = 0, tc = t ,
and μL,R = ±0.05t . (g) μe(r) in a classical resistor network con-
nected to two narrow leads. (h) Ir,r′ obtained from (b) using Ohm’s
law with constant σ0. μe(r) at sites L,R in (a) and (b) has been divided
by a factor of 15 and 4, respectively, for clarity.

network into the tip. For an appropriately chosen V (r), these
two counterpropagating currents [as represented by the blue
and green areas in Fig. 3(a)] cancel such that Itip(r) = 0, as
previously also pointed out in Ref. [28]. Moreover, while n̄F

exhibits a strong energy dependence between μL and μR for
small ζ , this dependence becomes weaker with increasing ζ ,
until n̄F (r,ω) = n̄0

F (r) is essentially constant for large ζ , as
shown in Fig. 3(c). While the same qualitative evolution occurs
at all sites in the network, n̄0

F (r) in the limit ζ → ∞ depends
on the location inside the network, as shown in Fig. 3(d). At the
same time, ImGr (r,ω) becomes nearly independent of energy

FIG. 3. (a) ImGr,< at site 5 [see Fig. 1(b)] for μL,R = ±0.5t and
ζ = 0.1t2. (b) n̄F for μL,R = ±0.5t and ζ = 0.000 1t2 at sites 1–4 in
Fig. 1(b) and n

tip
F (dashed line). (c) Evolution of n̄F with increasing ζ

at site 1. (d) n̄F in the large ζ limit (ζ = 100t2).

for μR < ω < μL, such that the graphic solution for finding
V (r) discussed above now allows us to directly relate n̄0

F and
μe(r) via

μe(r) = μR + n̄0
F (r)(μL − μR). (3)

The above discussion shows that the spatial dependence of
μe(r) is a truly nonequilibrium phenomenon, as it is spatially
constant and equal to the network’s uniform chemical potential
in equilibrium where μL,R = 0. μe(r) should also not be
interpreted as representing a local equilibrium value, since
the strong dependence of n̄F on energy [see Figs. 3(b) and
3(c)] implies that n̄F cannot be described by an equilibrium
Fermi distribution function with a renormalized temperature
or chemical potential.

We next investigate the behavior of μe around defects, and
to this end consider a network connected to wide leads (see
Fig. 4). In Figs. 4(a) and 4(b) we present the spatial form
of μe(r) and corresponding Ir,r′ near the ballistic quantum
limit for a wide-lead network without a defect. The current
shows a very weak variation in magnitude inside the network,
with the largest changes occurring along the edges, while the
potential exhibits a variation across the network that is much
more uniform than in the narrow-lead case [see Fig. 2(a)]. The
addition of a nonmagnetic defect in the center of the network
leads to significant changes in μe(r) and Ir,r′ [see Figs. 4(c)
and 4(d)] that extend throughout the entire network and are
predominantly confined to the lattice diagonal. This is a direct
consequence of the Fermi surface’s large degree of nesting [see
Fig. 1(c)] and a Fermi velocity along the diagonal direction
in the Brillouin zone. With increasing ζ , the effects induced
by the defect in μe(r) and Ir,r′ are reduced in amplitude [see
Figs. 4(e) and 4(f)] and become spatially more confined to the
immediate vicinity of the defect, indicating the crossover from
nonlocal transport in the quantum limit to local transport in
the classical limit [29].

195162-3



DIRK K. MORR PHYSICAL REVIEW B 95, 195162 (2017)

FIG. 4. Network connected to wide leads with μL,R = ±0.05t .
(a) Normalized μe(r) and (b) Ir,r′ for ζ = 0.01t2. (c)–(f) Normalized
μe(r) and Ir,r′ for a network with a defect of U0 = t located at the
center [as indicated by an open white circle in (c)] and (c, d) ζ =
0.01t2, and (e, f) ζ = 0.2t2. μe(r) at the defect site in (c) has been
divided by a factor of 3 for clarity.

To visualize the formation of a residual resistivity dipole
[19,20], we present in Figs. 5(a) and 5(b) the changes
induced in the electrochemical potential �μe(r) and in the
spatial current pattern �Ir,r′ , respectively, by placing three
defects [see small white circles in Fig. 5(a)] in the center of
the network.

The spatial form of �μe(r) reveals the dipole nature of the
induced changes, with an enhancement (suppression) of μe(r)
towards the lead with the higher (lower) chemical potential,
thus demonstrating the existence of a defect-induced residual
resistivity dipole. Interestingly enough, the spatial form of
�Ir,r′ [see Fig. 5(b)] is that of field lines associated with the
presence of a dipole. This becomes particulary evident when
we indicate the regions with the largest �μe(r) (see white
ellipses next to the defects) in the plot of �Ir,r′ . We therefore
conclude that the relation between the defect-induced changes
in μe(r) and Ir,r′ is that of dipole charges and their associated
field lines. Finally, to explore the form of μe(r) near interfaces
or step edges, we apply different chemical potentials to the left
(μ = +t) and right (μ = −t) parts of a network. The resulting

FIG. 5. Network connected to wide leads with three defects
[as indicated by open white circles in (a)] of scattering strength
U0 = 3t . (a) Normalized �μe(r) and (b) �Ir,r′ for ζ = 0.5t2. (c)
Normalized μe(r) for a network with Nx = Ny = 21 and different
chemical potentials in the left (μ = +t) and right (μ = −t) parts
of the network, μL,R = ±0.01t and ζ = 0.1t2. (d) Line cut of μe(r)
along the center row of (c).

μe(r) shown in Figs. 5(c) and 5(d) exhibit not only, as expected,
a sharp drop at the center of the network where the change in
chemical potential occurs, but also spatial oscillations that
extend all the way back to the leads. This is reminiscent of
the spatial oscillations found near step edges in [18]. With
increasing ζ , this sharp drop is smoothed out, leading to more
gradual variations of μe(r) across the network [Fig. 5(d)].

IV. CONCLUSIONS

In summary, we identified the spatial relation between the
electrochemical potential and the current patterns over the
entire range from quantum to classical transport. These two
quantities show similar spatial patterns near the quantum limit
but are related by Ohm’s law only in the classical regime.
We showed that defects induce a Landauer residual resistivity
dipole in μe(r), with the spatial form of the concomitant
�Ir,r′ representing the field lines associated with the dipole.
A similar approach might be used to investigate the relation
between heat currents and local temperature measurements out
of equilibrium [32,33].
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