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We study Floquet topological phases in periodically driven systems that are protected by “time glide symmetry”,
a combination of reflection and half time period translation. Time glide symmetry is an analog of glide symmetry
with partial time translation replacing the partial space translation and, hence, is an intrinsically dynamical
symmetry which may be engineered in periodically driven systems by exploiting the controllability of driving.
We present lattice models of time glide symmetric Floquet topological insulators in two and three dimensions.
The topological numbers characterizing those Floquet topological phases are derived from the half-period time-
evolution operator along with time glide operator. Moreover, we classify Floquet topological phases protected by
time glide symmetry in general dimensions using a Clifford algebra approach. The obtained classification table is
similar to that for topological crystalline insulators protected by static reflection symmetry, but shows nontrivial
entries in different combination of symmetries, which clarifies that time glide symmetric Floquet topological
phases are a distinct set of topological phases from topological crystalline insulators. We also classify Floquet
topological phases with “time screw symmetry”, defined as a twofold spatial rotation accompanied by half-period
time translation.
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I. INTRODUCTION

The discovery of topological insulators has revived the
prominence of topology in the frontier studies of electronic
systems [1,2]. A major driving force behind this new wave
of development is the realization that symmetries can lead
to new topologies. For instance, although a two-dimensional
time-reversal-symmetric band insulator necessarily carries a
vanishing Chern number, they can still carry a nontrivial
Z2-valued topological invariant and exhibit the quantum spin
Hall effect. As these novel topological distinctions are only
well defined in the presence of certain symmetries, they
are generally referred to as “symmetry-protected topological
phases” (SPTs), and are now known to exist for both fermionic
and bosonic systems with a variety of different symmetries
[3–5].

Recently, it has been realized that such topological ideas
can also be applied to the study of strongly out-of-equilibrium
dynamics. In particular, much focus has been placed on Floquet
systems, quantum systems coupled to time-periodic classical
drives, as their phases, defined as classes of long-time behavior,
can be systematically studied through the single-period system
evolution [6–9]. General classification results for Floquet
systems of noninteracting fermions with onsite symmetry
groups have been obtained in Ref. [10]. They are found to
be generally classified in the same way as the corresponding
equilibrium systems in the same symmetry class (so-called
tenfold-way classification [11–13]), but with a generalization
that takes into account the absence of the notion of ground
states in a Floquet system.

At a first glance, such similarity between Floquet and
static problems may not be unexpected, as in the presence
of a Floquet band gap one can define an effective Floquet
Hamiltonian and classify it using equilibrium techniques. Yet,
such interpretation does not accurately describe the obtained
Floquet classification, as intrinsically dynamical phases, which
showcase robust topological properties despite a topologically

trivial Floquet Hamiltonian, have been discovered. This is
exemplified by the “anomalous Floquet Anderson insulators”,
which are (2+1)-dimensional [(2+1)D] systems that, despite
vanishing bulk Chern numbers, host protected chiral edge
modes [8,9]. More recently, it has also been realized that
analogous chiral Floquet phases exist for bosonic spin systems,
and their classification is distinct from any previously known
equilibrium phases [14]. Furthermore, periodically driven
systems with strong interactions constrained by symmetries
were shown to host a new class of “Floquet” SPTs. These
Floquet SPTs are characterized by pumping of equilibrium
SPT phases to the surface in each cycle, which were studied
in one dimension [15–18] and also in higher dimensions
[19,20]. These discoveries demonstrate that Floquet systems
are capable of hosting novel topological phases with no
equilibrium counterparts.

So far, studies on topological Floquet phases have focused
on how conventional symmetry classes, which have played a
key role in the classification of equilibrium phases, can lead
to novel topological dynamics. A natural next step forward is
to turn our focus from topology to symmetry: What are the
symmetries that are unique to Floquet systems, and what are
the new phases, if any, that they lead to?

The goal of this work is to initiate the analysis of this
problem. We will focus exclusively on “dynamical symme-
tries” which are unique to Floquet systems [21–23]. Such
symmetries are defined using the discrete time-translation
invariance Floquet systems, and can be understood as the
space-time analogs of nonsymmorphic spatial symmetries. For
instance, we say the system possesses a “time glide” symmetry
if the instantaneous Hamiltonian Ĥ (t) satisfies R̂Ĥ (t)R̂−1 =
Ĥ (t + T/2), where R̂ is a spatial reflection and T denotes
the Floquet period. It is compatible with a Floquet system as
acting it twice gives Ĥ (t) = Ĥ (t + T ), the defining relation of
Floquet problems. Similarly, one can define the “time screw”
symmetry via ĈnĤ (t)Ĉ−1

n = Ĥ (t + T/n), where Ĉn denotes
the n-fold spatial rotation. Generally, a Floquet system will
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be symmetric under a space-time symmetry group featuring
nontrivial combination of spatial and temporal operations,
similar to how crystals are classified by space groups.

Here, we will take a first step towards understanding the
topological consequences of dynamical symmetries in Floquet
systems. Specifically, we will focus on free-fermion problems
symmetric under either a time glide or a time screw squaring to
a discrete time translation. Such systems represent the simplest
setting which demonstrates the existence of new phases arising
from dynamical symmetries. We find that their topological
characterization cannot be readily interpreted as analogs of
equilibrium phases. In particular, Floquet topological phases
with time glide are shown to be distinct from conventional
topological crystalline insulators protected by static reflection
symmetry [24–26].

This paper is organized as follows: In Sec. II, we will first
develop intuition for the definition and consequences of dy-
namical symmetries by studying explicit (2+1)D and (3+1)D
lattice models, where we also present explicit derivation of the
topological invariants characterizing their phases. In Sec. III C,
we will extend the discussions to (d+1)D dimensions, and
obtain the general classification results analogous to the
tenfold-way classification. We will conclude in Sec. IV by
discussing various directions for future works.

II. TIME GLIDE SYMMETRIC FLOQUET
TOPOLOGICAL PHASES

We study noninteracting periodically driven systems with
“time glide symmetry”. The time glide symmetry is an
intrinsically dynamical symmetry which is a combination of
a reflection symmetry and half time period translation, and is
written as

MT H (k,t)M†
T = H

(
Ri(k),t + T

2

)
. (1)

Here, Ri denotes a reflection along the ith direction. Due
to the dynamical nature of the time glide symmetry, the
presence or absence of time glide symmetry can be controlled
by designing suitable drivings. In the following, we show
examples of Floquet topological phases protected by the time
glide symmetry.

A. 2D model of Floquet topological phase with chiral symmetry
and time glide symmetry

First, we consider a two-dimensional (2D) periodically
driven system with chiral symmetry and time glide symmetry
defined on a stack of one-dimensional (1D) chains as follows.
The Hamiltonian is given by

H (t) = Hintra + Hinter, (2)

where Hintra and Hinter denote intrachain and interchain
couplings, respectively, and are given by

Hintra = t
∑
i,j

c
†
i,j+1ci,j + H.c. (3)

FIG. 1. Schematic picture of the 2D model with chiral symmetry
and time glide symmetry. The model consists of a two-step drive,
denoted by A and B. Solid and dotted lines represent static hoppings
with t and t ′, respectively. Blue arrows represent alternating hoppings
with the amplitude it (−it) along (opposite to) the direction of the
arrow.

and

Hinter(t) = t ′
∑
i,j

c
†
2i+2,j c2i+1,j

+ itη(t)
∑
i,j

(c†2i+1,2j+1c2i,2j + c
†
2i+1,2j c2i,2j+1

+ c
†
2i,2j+1c2i+1,2j+2 + c

†
2i,2j+2c2i+1,2j+1) + H.c.,

(4)

with

η(t) =
{

+1 (0 � t < T
2 ),

−1 ( T
2 � t < T ).

(5)

Here, ci,j denotes the annihilation operator of an electron
at the j th site in the ith chain. In the momentum-space
representation, this Hamiltonian reads as

H (k,t) = 2tσx cos
ky

2
+ 2tη(t)σyτy sin

ky

2

+ t ′τx cos kx + t ′τy sin kx, (6)

where Pauli matrices σi,τi act on the sublattice within the
chain and two chains in the unit cell, respectively. Note that
the lattice constant along the y direction is 2. This two-step
drive is schematically illustrated in Fig. 1.

The above Hamiltonian H (t) preserves the chiral symmetry
as

�H (t)� = −H (−t), � = σzτz, (7)

where sites with � = +1 and −1 are illustrated with white and
black dots in Fig. 1. In particular, the driving at a time slice does
not satisfy the chiral symmetry because �HA/B� �= −HA/B ,
where we write HA = H (t) for 0 � t < T/2 and HB = H (t)
for T/2 � t < T . Nonetheless, it satisfies the chiral symmetry
as a whole function of t as �HA� = −HB . In addition to the
chiral symmetry, H (t) preserves the time glide symmetry as

MT H (kx,ky,t)M
†
T = H

(
−kx,ky,t + T

2

)
, MT = τx. (8)
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FIG. 2. Quasienergy spectrum of the 2D model with chiral
symmetry and time glide symmetry. The spectrum is obtained for a
cylinder geometry with the open boundary along the y direction with
Ly = 20 sites and the periodic boundary along the x direction. We
used the parameters t = 1, t ′ = 0.5, � = 2. Note that quasienergies
in the “first Brillouin zone” are E/� ∈ [−0.5,0.5].

In particular, MT HAM
†
T = HB holds.

Periodically driven systems with time-dependent Hamil-
tonian H (t) with a period T are described by Floquet
Hamiltonians HF obtained by Fourier transformation along
the time direction as

(HF )mn = 1

T

∫ T

0
dt ei(m−n)�tH (t) − m�δmn, (9)

where � = 2π/T and m,n are Floquet indices. The eigenval-
ues of Floquet Hamiltonian are called quasienergy and allow us
to capture the dynamics of periodically driven system in terms
of a band picture. The chiral symmetry constrains that the
quasienergy spectrum ε(kx) shows chiral partners at ε(kx) and
−ε(kx). In particular, states at ε = 0,�/2 are special because
they can be chiral partners of themselves, which we call chiral
zero/π modes. Similarly, the time glide symmetry constrains
the spectrum as ε(kx) = ε(−kx).

Figure 2 shows the quasienergy spectrum of the 2D model
H (t), where we adopted periodic boundary condition along
the x direction and the open boundary condition along the y

direction. The spectrum in Fig. 2 shows a bulk band around
ε = 0 and a bulk gap around ε = �/2, where nontrivial edge
states appear. This should be contrasted with equilibrium
topological phases, which have bulk gap with protected edge
states at ε = 0, and therefore it suggests that the system is in
an intrinsically dynamical phase. Moreover, the edges state
appearing in the gap around ε = �/2 is protected by the
combination of chiral symmetry and time glide symmetry
since two-dimensional gapped phases with chiral symmetry
alone (2D systems in class AIII in the tenfold way) do not
support nontrivial phases [10,11]. We describe the topological
property of these edge states characterized by chiral symmetry
and time glide symmetry in the following.

B. Topological characterization of 2D Floquet phase with chiral
symmetry and time glide symmetry

Before we discuss topological invariant with chiral symme-
try and time glide symmetry, we first review the topological
characterization of 1D Floquet topological phases with chiral

symmetry (1D systems in class AIII) [27]. In order to
characterize Floquet topological phases, we study the time-
evolution operator given by

U (k,ti → tf ) = T exp

[
−i

∫ tf

ti

dt ′H (k,t ′)
]

(10)

since the characterization needs the information of micro-
motion during the cycle. By definition, the eigenvalues of
the evolution operator U (k,0 → T ) are e−iε(k)T , where ε(k)
is the quasienergy. (We choose T = 1 for simplicity in the
following discussion.) The chiral symmetry indicates that the
time-evolution operator satisfies

�U (k,0 → T/2)� = U †(k,T /2 → T ). (11)

When we focus on topological characterization for chiral
π modes, we can deform the bulk Floquet bands to the
quasienergy zero [ε(k) = 0]. In this case, the evolution
operator over the cycle becomes trivial U (k,0 → T ) = 1 and,
in particular, the equation U †(k,T /2 → T ) = U (k,0 → T/2)
holds. If we write the half-period evolution as

U (k,0 → T/2) =
(

a b

c d

)
, (12)

in the basis

� =
(

1 0

0 −1

)
, (13)

this indicates b = c = 0. Now, we define the winding number
ν for one parameter family of unitary operators g(k) by

ν[g(k)] = 1

2πi

∫
dk tr

(
g† dg

dk

)
, (14)

where tr denotes a trace over the internal degrees of freedom.
Since ν[U (k,0 → t)] = ν[U (k,0 → 0)] = 0 holds due to the
continuous deformation t → 0, the two winding numbers
of a(k) and d(k) satisfy ν[a] + ν[d] = 0, and are not inde-
pendent. Thus, we can choose the winding number ν[d] as
the topological invariant that characterizes chiral π modes
in 1D class AIII Floquet systems. In general cases with
U (k,0 → T ) �= 1, the topological invariant for chiral π modes
νπ is still given by the winding number as [27]

νπ = ν[d]. (15)

Now, we proceed to the topological characterization of 2D
Floquet phases with chiral symmetry and time glide symmetry.
Since 2D systems in class AIII have no topological number,
we can see that the time glide symmetry plays a crucial role in
characterizing them. In the presence of time glide symmetry
along the x direction, 1D subsystems at kx = 0,π are regarded
as 1D class AIII system with an additional Z2 symmetry
induced by the time glide symmetry. This Z2 symmetry (which
we also denote by MT ) is a global Z2 symmetry combined with
time translation by the half-period, and acts on the Hamiltonian
restricted to the 1D subsystem at kx = 0 as

MT H (0,ky,t)M
−1
T = H

(
0,ky,t + T

2

)
. (16)

We assume that this subsystem does not have nontrivial
winding number ν[d] in order to exclude the possibility
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of weak topological insulators of class AIII, where the flat
band of chiral π mode appears in the quasienergy spectrum.
Instead, we consider topological invariant similar to the
winding number by taking into account the Z2 symmetry
MT . Specifically, under the combination of � and MT , the
Hamiltonian is transformed as

�MT H (0,ky,t)(�MT )−1 = −H (0,ky,T /2 − t), (17)

which looks similar to the action of � in Eq. (7) except that
the center of time reversal is at t = T/4 instead of t = 0.
This indicates that the time-evolution operator satisfies the
condition

�MT U

(
0,−T

4
→ T

4

)
(�MT )−1 = U †

(
0,−T

4
→ T

4

)
.

(18)

Therefore, if we write

U

(
0,−T

4
→ T

4

)
=

(
a′ b′

c′ d ′

)
(19)

in the basis

�MT =
(

1 0

0 −1

)
(20)

in a similar way to Eq. (12), we can define the winding
number ν[d ′] for the 1D subsystem at kx = 0. Similarly, we can
define the winding number ν[d ′] at kx = π . Nonzero winding
numbers ν[d ′] result in the presence of chiral π modes at glide
symmetric points (kx = 0,π ). While the presence of chiral π

mode is not protected away from the glide symmetric points,
the continuity of quasienergy spectrum with kx ensures the
presence of an edge state within the bulk gap. Thus, nonzero
winding numbers ν[d ′] at time glide planes characterize the
nontrivial edge states in the π gap.

The above topological number ν[d ′] characterizing 2D
Floquet topological phases with � and MT requires an-
ticommutation relation between � and MT . To see this,
we show that if [�,MT ] = 0, the winding number vanishes
identically (ν[d ′] = 0): If �MT and MT commute, they can be
simultaneously diagonalized as

�MT =
(

1 0

0 −1

)
, MT =

(
M+

T 0

0 M−
T

)
. (21)

By combining this equation and Eq. (18), we obtain
M−

T d ′(M−
T )−1 = d ′†. Since the winding number satisfies the

relationships ν[g] = ν[g′gg′−1] and ν[g] = −ν[g†], these
lead to ν[d ′] = −ν[d ′] = 0 when [�,MT ] = 0. Thus, the
nonzero winding number requires the anticommutation re-
lation {�,MT } = 0. These structures are concisely captured
through a Clifford algebra analysis, which will be detailed in
Sec. III C.

The anticommutation relationship between the chiral sym-
metry and the time glide symmetry shows that the time
glide symmetric Floquet topological phase is distinct from
conventional topological crystalline insulators (TCIs). It is
known that nontrivial TCIs exist in 2D class AIII with (static)
reflection symmetry [24–26]. A natural question is whether
the time glide symmetric Floquet topological insulators can be
obtained by deforming a conventional TCI with a time glide

symmetric perturbation. The condition {�,MT } = 0 shows
that this is not the case because nontrivial TCIs require the
commutation relationship [�,Rx] = 0 (Rx being a reflection
symmetry along the x direction). Thus, perturbing a TCI by
relaxing static Rx into dynamical MT cannot result in a time
glide symmetric Floquet topological phase, which clarifies
these two phases are distinct sets of topological phases.

Finally, we explicitly calculate the winding number ν[d ′]
for the 2D model given by Eq. (2). We focus on the mirror
invariant subspaces at kx = 0, or kx = π (which give the same
topological numbers as we will see below). Since we can
deform the interlayer hopping t ′ to zero without closing the
bulk gap, we can focus on two chains coupled with complex
hoppings described by

H (ky,t) = σx cos
ky

2
+ η(t)σyτy sin

ky

2
, (22)

where we also set 2t = 1 for simplicity. In this case, the
time-evolution operator U (−T/4 → T/4) can be obtained by
setting T = 2π as

U (−T/4 → T/4)

= exp

[
−i

T

4

(
σx cos

ky

2
− σyτy sin

ky

2

)]

× exp

[
−i

T

4

(
σx cos

ky

2
+ σyτy sin

ky

2

)]
= − cos(ky) − i sin(ky)σzτy. (23)

Since �MT = σzτy , the topological number for the mirror
invariant subspace is given by

ν[d ′] = ν[−e−iky ⊗ 12] = −2, (24)

where 12 denotes a 2 × 2 identity matrix in the σzτy = −1
sector. This nonzero topological number defined with time
glide symmetry protects the twofold degeneracy at E = �/2
in the mirror invariant subspace and, hence, the gap closings
at kx = 0,π shown in Fig. 2.

C. 3D model of class A and time glide

Next, we present a 3D model that supports a Floquet
topological phase protected by the time glide symmetry. We
focus on an insulating phase with charge U(1) symmetry which
belongs to the symmetry class A in the AZ classification. The
3D model we study is defined on a stack of the honeycomb
lattice and is described by the time-dependent Hamiltonian
H (t) = Hintra(t) + Hinter(t) which is given as follows. First,
the intralayer part of the Hamiltonian Hintra is given by the
four-step driving by the Haldane model [28] and staggered
potential for honeycomb lattice as

Hintra(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

HA

(
0 � t < T

4

)
,

HB

(
T
4 � t < T

2

)
,

HC

(
T
2 � t < 3T

4

)
,

HD

(
3T
4 � t < T

)
(25)
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with

HA = t0
∑

m,〈i,j〉
c
†
m,icm,j + t0

∑
m,〈〈i,j〉〉

(−1)mei�ij c
†
m,icm,j , (26)

HC = −t0
∑

m,〈i,j〉
c
†
m,icm,j + t0

∑
m,〈〈i,j〉〉

(−1)mei�ij c
†
m,icm,j ,

(27)

HB = HD = �
∑
m,i

ηic
†
m,icm,i , (28)

where cm,i is the annihilation operator of an electron with the
layer index m and the site index ith within the honeycomb
lattice, 〈i,j 〉 denotes the nearest-neighbor sites i and j ,
〈〈i,j 〉〉 denotes the next-nearest-neighbor sites, the phase factor
ei�ij = ±i according to the direction of arrows in Fig. 3, and
ηi = ±1 for two distinct sublattices of the honeycomb lattice.
Next, the interlayer part of the Hamiltonian is given by

Hinter

=
{∑

m,i[tint + (−1)iδtint]c
†
m+1,icm,i + H.c.

(
0 � t < T

2

)
,∑

m,i[tint − (−1)iδtint]c
†
m+1,icm,i + H.c.

(
T
2 � t < T

)
.

(29)

In the momentum space (where kx and ky are measured along
the directions specified in Fig. 3), the Hamiltonian is written
in the 4 × 4 form as

Hintra =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t0dH · σ
(
0 � t < T

4

)
,

�σz

(
T
4 � t < T

2

)
,

t0σz(dH · σ )σz

(
T
2 � t < 3T

4

)
,

�σz

(
3T
4 � t < T

)
(30)

with dH = (1 + cos kx + cos ky, sin kx + sin ky,[−2 sin kx +
2 sin ky + 2 sin(kx − ky)]τz), and

Hinter =
{

tint cos kz

2 τx + δtint sin kz

2 τy

(
0 � t < T

2

)
,

tint cos kz

2 τx − δtint sin kz

2 τy

(
T
2 � t < T

)
,

(31)

where σi and τi are Pauli matrices acting on sublattice and layer
degrees of freedom. This model has a time glide symmetry

FIG. 3. Schematic picture of the 3D model with time glide
symmetry. The model consists of a four-step drive, denoted by A,
B, C, and D. Solid and dotted lines represent static hoppings with t

and t ′, respectively. Blue arrows represent alternating hoppings with
the amplitude it (−it) along (opposite to) the direction of the arrow.

with x–y plane as the mirror plane. More explicitly, one finds
MT H (t)M−1

T = H (t + T/2), with the time glide operator
given in this 4 × 4 representation by

MT = σze
−i(1−τz)kz/2. (32)

The quasienergy spectrum for the above 3D model is shown
in Fig. 4. We consider the system with the open boundary
condition along the y direction and the periodic boundary
condition along the x and z directions. The quasienergy
spectrum shows the bulk gap around ±�/2 and there appears a
surface state. The inset of Fig. 4 shows a blowup of the surface
state and shows that a Dirac fermion with linear dispersion is

FIG. 4. Quasienergy spectrum of the 3D model with time glide symmetry. We consider a slab model which has periodic boundaries along
the x and z directions and open boundary along the y direction. (a) Quasienergy spectrum at kz = 0 which is time glide symmetric plane.
(b) Energy dispersion of the surface state that appears within the π gap. We used the parameters t0 = 0.25, tint = 0.04, δtint = 0.02, � =
1, � = 1, and Ly = 30.
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realized at the surface around (kx,kz) = (π,π ). We note that the
gapless point is located at one of the mirror invariant planes
with MT at kz = 0,π . While 3D systems in the symmetry
class A do not possess any topological number according to
the tenfold-way classification [11–13], this Dirac surface state
is protected by the time glide symmetry, as we now explain.

The topological number for the 3D systems with time
glide symmetry is defined by focusing on the mirror invariant
plane. In the case of time glide along the z direction in the
above, we focus on the mirror invariant plane at k0

z = 0,π

and the restricted 2D Hamiltonian having global Z2 symmetry
combined with half time translation

MT H
(
kx,ky,k

0
z ,t

)
(MT )−1 = H

(
kx,ky,k

0
z ,t + T/2

)
. (33)

Topological numbers are defined for this effective 2D system
as follows.

We define a topological number of a 2D system with global
Z2 symmetry gT combined with half time translation. First, we
notice that the time evolution for the full period is described
by that for the half-period as

U (kx,ky,0 → T ) = gT UhgT Uh, (34)

Uh(kx,ky) = U

(
kx,ky,0 → T

2

)
. (35)

Here, we used a representation for a order-two unitary sym-
metry gT such that gT = g−1

T . Since the Floquet Hamiltonian
is obtained from the time-evolution operator, the quasienergy
spectrum is determined by eigenvalues of Uh as

HF (kx,ky) = i

T
ln U (kx,ky,0 → T ) = i

T
ln[(gT Uh)2]. (36)

(For simplicity, we choose T = 1 hereafter.) Now, we assume
that the bulk quasienergy spectrum has a gap at E = π . In this
case, we can continuously deform the quasienergy to E = 0
for the entire BZ. This means the eigenvalues of gT Uh are
adiabatically connected to ±1 without closing the gap at E =
π . For trivial time evolution Uh = 1, eigenvalues of gT Uh are
given by those of gT . Let us focus on two-band system and the
time-evolution operators belong to U(2) [where we may drop
the U(1) part for simplicity, without loss of generality, and
focus on the SU(2) part]. Suppose that gT has two eigenvalues
+1 and −1 (e.g., gT = σz). If the eigenvalues of gT Uh are both
+1 or both −1, the system is topologically distinct from trivial
time evolution. This is because deforming Uh to 1 requires that
one of the eigenvalues of gT Uh continuously changes from
−1 to +1 (or from +1 to −1) as a U(1) variable, and in this
process the eigenvalue of gT Uh passes ±i where the bulk π gap
of U (kx,ky,0 → T ) is closed. Thus, the system is nontrivial
if passing the points Uh = ±igT cannot be avoided in the
deformation into the trivial evolution Uh = 1. This situation
is achieved when Uh as an SU(2) operator wraps around the
points either igT or −igT . This prevents trivialization of Uh

into 1. In the case of general number of bands, this obstruction
is described by the Chern number for gT Uh as follows. First,
we consider time-evolution operators after spectral flattening
U (kx,ky,0 → T ) = 1. This is possible because we can find
gT symmetric deformation of U (t) to U (T ) = (gT Uh)2 = 1.
In this case, Eq. (35) indicates that the half time evolution

FIG. 5. Schematic picture of the topological number at the mirror
invariant plane. Time-evolution operators for Hintra for each layer
belong to SU(2) which is described by S3. The sphere S3 is illustrated
by two solid balls whose surfaces are identified. Nontrivial topological
phase is characterized by the wrapping of ±igT by the half time
evolution operator Uh. Since closing of the gap at E = π takes place at
Uh = ±igT , the topological number is defined as a wrapping number
around these points. After spectral flattening, Uh is deformed within
a disk (S2) containing 1, − 1 and the blue dotted circle, and this
wrapping number coincides with the Chern number defined for gT Uh.

satisfies

gT Uh = (gT Uh)†, (37)

and the operator gT Uh becomes Hermitian. Since the Hermi-
tian operator gT Uh(kx,ky) has two parameters in the 2D system
and eigenvalues of gT Uh(kx,ky) are ±1 (having a spectral gap),
we can define a Chern number for gT Uh. This Chern number
coincides with the wrapping number defined in the above for
the two-band system since the Chern number of gT Uh means
a nontrivial wrapping around the identity operator and, hence,
nontrivial wrapping of Uh(kx,ky) around gT . (We note that igT

is replaced with gT here because the energy gap is located at
E = 0 rather than E = π .)

Finally, we show that the 3D model with time glide
symmetry has a nontrivial topological number defined in the
above. We focus on the mirror invariant plane at k0

z = 0,π .
Since we can deform the interlayer coupling Hinter to zero
without closing the bulk gap, we consider the case of no
interlayer coupling tint = δtint = 0. In this case, the Chern
number of gT Uh in the mirror invariant plane can be obtained
by computing those for two kinds of decoupled layers τz = ±1.
Let us focus on the layer 1 with τz = +1, where we have a
two-band system and we can deduce the topological number
from wrapping number of igT by Uh within U(2). Since the
intralayer Hamiltonian Hintra is traceless (i.e., consisting of
sums of three Pauli matrices), the half time evolution Uh

belongs to the SU(2) part (which can be visualized by S3 as in
Fig. 5), and we can reduce the topological characterization of
Uh to whether Uh winds around the point iσz = igT in SU(2).
The half time evolution for Eq. (25) is written as

Uh = exp(−iHBT /4) exp(−iHAT/4). (38)

The first step of the driving exp(−iHAT/4) wraps around
the identity element 1. This is because HA = dH · σ is the
Hamiltonian of the Haldane model which has a nonzero Chern
number; the vector dH wraps around the origin and, hence,
its exponential map exp(−iHAT/4) winds around the identity
element 1 when the magnitude t0T/4 is small which is the case
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for the parameters in Fig. 4. By setting �T/4 = π/2, the next
step leads to the factor exp(−iHBT /4) = −iσz which maps
the identity element 1 to the point −iσz. Thus, exp(−iHAT/4)
wrapping around 1 is mapped to Uh wrapping around −iσz,
which ensures a topologically nontrivial configuration with
global Z2 symmetry gT with half time translation. Once we
perform the spectral flattening for the Floquet operator U (T ),
the Chern number of σzUh is nonzero, say 1 in this case. In
a similar way, the layer 2 (τz = −1) gives the Chern number
−1 for σzUh. At the mirror invariant plane kz = 0, these two
contributions add up because of MT = σz and give zero Chern
number. In contrast, at the mirror invariant plane kz = π , the
difference of these two contributions is the topological number
because of MT = σzτz, which gives the nonzero Chern number
2. This is consistent with the band structure in Fig. 4 where
the gapless surface state appears at kz = π where the bulk
topological number with the glide symmetry becomes nonzero.

III. CLASSIFICATION OF FLOQUET
TOPOLOGICAL PHASES

Having provided concrete examples for time-protected
Floquet topological phases in 2D and 3D, we now classify
noninteracting Floquet topological phases with time glide
symmetry in all symmetry classes in arbitrary dimensions. To
this end, we use classification theory of topological insulators
based on Clifford algebras [25] and apply it to Floquet
topological phases. We also consider topological phases
realized with a “time screw” symmetry, which corresponds
to a twofold rotation together with a half-period translation.

A. Tenfold-way classification of Floquet topological phases

Before proceeding to the classification theory of Floquet
topological phases with time glide symmetry, we review
the tenfold-way classification theory for Floquet topological
phases [10], which serves as a basis for studying the cases with
time glide symmetry. Topological characterization of Floquet
topological phases involves data of time-evolution operators
for whole period, i.e., U (t) with t ∈ [0,T ), rather than just
Floquet operator U (t = T ) (or, equivalently, the Floquet
Hamiltonian HF ). In order to study topological properties
of the family of unitary operators U (t), we instead study an
effective Hamiltonian that is made of U (t) which enables us
to apply classification techniques developed for equilibrium
topological phases [11–13,25], as we will explain below.

We consider the symmetrized time-evolution operator

US(k,t) = T exp

[
−i

∫ T +t
2

T −t
2

dt ′H (k,t ′)

]

≡ lim
N→∞

N∏
n=0

[
1 − i

t

N
H

(
k,

T − t

2
+ nt

N

)]
, (39)

where T denotes the time ordering. This family of uni-
tary operator US(k,t) encodes topological data of Floquet
topological phases [and has topological data equivalent to
usual time-evolution operators U (k,t)]. This unitary operator
satisfies US(k, − t) = U

†
S(k,t). In addition, we assume that

the operator US(k,t) satisfies US(k,0) = US(k,T ) = 1 for

the Floquet period T by an appropriate deformation of the
time-dependent Hamiltonian. This condition is equivalent to
considering spectral-flattened Floquet Hamiltonian HF = 0,
and it is satisfied if we require the existence of a gap in the
quasienergy spectrum around �/2.

Instead of studying the unitary operator US(k,t) itself, we
consider a Hamiltonian given by

HS(k,t) =
(

0 US(k,t)

U
†
S(k,t) 0

)
, (40)

which satisfies H 2
S = 1. This Hamiltonian is smoothly defined

for (k,t) ∈ T d × S1 and encodes the topological nature of the
periodically driven system.

The symmetry constraints for the original time-dependent
Hamiltonian H (k,t) result in those for HS(k,t). We consider
time-reversal, particle-hole, and chiral symmetries (denoted
by T ,C,�, respectively) according to the tenfold-way classifi-
cation of topological insulators:

T H (k,t)T −1 = H (−k,−t), (41)

CH (k,t)C−1 = −H (−k,t), (42)

�H (k,t)�−1 = −H (k,−t), (43)

where T ,C are antiunitary ({T ,i} = {C,i} = 0) and � is
unitary ([�,i] = 0). We assume that T , C, and � commute with
each other, if they are present, without loss of generality. Note
that the chiral symmetry changes the sign of t (to −t) because
it is given by T C when both T and C exist. Accordingly, the
time-evolution operator satisfies

T US(k,t)T −1 = T

N∏
n=0

[
1 − i

t

N
H

(
k,

T − t

2
+ nt

N

)]
T −1

=
N∏

n=0

[
1 + i

t

N
H

(
−k,

−T + t

2
− nt

N

)]

=
N∏

n=0

[
1 − i

−t

N
H

(
−k,

T − (−t)

2
+ −nt

N

)]

= US(−k, − t) = U †(−k,t), (44)

CUS(k,t)C−1 = C

N∏
n=0

[
1 − i

t

N
H

(
k,

T − t

2
+ nt

N

)]
C−1

=
N∏

n=0

[
1 − i

t

N
H

(
−k,

T − t

2
+ nt

N

)]

= US(−k,t), (45)

�US(k,t)�−1 = �

N∏
n=0

[
1 − i

t

N
H

(
k,

T − t

2
+ nt

N

)]
�−1

=
N∏

n=0

[
1 + i

t

N
H

(
k,

−T + t

2
− nt

N

)]
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TABLE I. The tenfold-way classification for noninteracting Floquet topological phases. Two complex and eight real symmetry classes
are characterized by the presence or the absence of time-reversal symmetry (T ), particle-hole symmetry (C), and chiral symmetry (�). Their
presence is complemented by the sign multiplying the identity in T 2 = ±1 or C2 = ±1, and by 1 for �. Their absence is indicated by 0. For
each spatial dimension d , nontrivial topological phases are characterized by Z,Z2 topological numbers. For symmetry classes without PHS or
chiral symmetry, n denotes the number of gaps in the quasienergy spectrum.

Class T C � d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A 0 0 0 Zn 0 Zn 0 Zn 0 Zn 0
AIII 0 0 1 0 Z2 0 Z2 0 Z2 0 Z2

AI +1 0 0 Zn 0 0 0 Zn 0 Zn
2 Zn

2

BDI +1 +1 1 Z2
2 Z2 0 0 0 Z2 0 Z2

2

D 0 +1 0 Z2
2 Z2

2 Z2 0 0 0 Z2 0
DIII −1 +1 1 0 Z2

2 Z2
2 Z2 0 0 0 Z2

AII −1 0 0 Zn 0 Zn
2 Zn

2 Zn 0 0 0
CII −1 −1 1 0 Z2 0 Z2

2 Z2
2 Z2 0 0

C 0 −1 0 0 0 Z2 0 Z2
2 Z2

2 Z2 0
CI +1 −1 1 0 0 0 Z2 0 Z2

2 Z2
2 Z2

=
N∏

n=0

[
1 + i

t

N
H

(
k,

T − t

2
+ (N − n)t

N

)]

= U
†
S(k,t), (46)

These relations lead to symmetry constraints for HS given by

T ′HS(k,t)T ′−1 = HS(−k,t), T ′ = T ⊗ σx (47)

C ′HS(k,t)C ′−1 = HS(−k,t), C ′ = C ⊗ σ0 (48)

�′HS(k,t)�′−1 = HS(k,t), �′ = � ⊗ σx (49)

where σi are Pauli matrices acting on 2 × 2 matrix degrees
of freedom of HS . In addition, HS satisfies an inherent chiral
symmetry as

�̃HS(k,t)�̃−1 = −HS(k,t), �̃ = 1 ⊗ σz. (50)

Classification of Floquet topological phases is obtained
by studying topological characters of HS(k,t). The effective
Hamiltonian HS(k,t) can be classified in a similar manner
to equilibrium topological phases. Specifically, we can map
the classification problem of HS(k,t) to that for (d + 1)D TIs
or line defects in dD systems as detailed in Appendix. The
obtained classification table is shown in Table I. It shows that
Floquet topological phases share the same topological classi-
fication with equilibrium topological phases. One remarkable
feature is that topological numbers can be defined for each
energy gap in the quasienergy spectrum. When particle-hole
symmetry (PHS) or chiral symmetry is present, we focus on
gaps including quasienergy 0 and π which are particle-hole
symmetric, hence, we can define two topological numbers.

B. Classification with Clifford algebras

The above tenfold-way classification of noninteracting
Floquet topological phases can be derived systematically by
using the Clifford algebras, which we rederive below. This will
then serve as a starting point for the incorporation of the time
glide and time screw symmetries.

We again consider the effective Hamiltonians HS(k,t) in
Eq. (40) and topologically characterize them by considering
representative Dirac Hamiltonians (which can be achieved by
a suitable deformation) [12,25,29]. In this approach, we study
how many distinct sets of gapped Dirac Hamiltonians exist that
cannot be adiabatically deformed with each other under the
symmetry constraints. Specifically, we study the Hamiltonian
HS(k,t) in the Dirac form written as

HS(k1, . . . ,kd,t) = k1γ1 + · · · + kdγd + tγt + γ0, (51)

where γi are gamma matrices anticommuting with each other,
in particular, γ0 denotes the Dirac mass term. The symmetry
constraints are written as

{γi,�̃} = 0, [γi,�
′] = 0, (52)

{γi,T
′}i=1,...,d = 0, [γi,T

′]i=t,0 = 0, (53)

{γi,C
′}i=1,...,d = 0, [γi,C

′]i=t,0 = 0, (54)

and

{T ′,�̃} = [C ′,�̃] = {�′,�̃} = 0, (55)

with

{T ′,i} = {C ′,i} = [�′,i] = 0, [T ′,C ′] = 0. (56)

These symmetry constraints are concisely described in terms
of Clifford algebras in Table II. Clifford algebra is an algebra
generated by generators anticommuting with each other.
Specifically, complex Clifford algebra Clq is generated over
complex numbers C by q anticommuting generators {ei} that
satisfy

{ei,ej } = 2δij . (57)

These are essentially algebras formed by gamma ma-
trices. Real Clifford algebra Clp,q is generated over
real numbers R by p + q anticommuting generators
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TABLE II. Clifford algebras characterizing the Floquet topological phases. Clifford algebras consist of mass and kinetic gamma matrices
and symmetry operators. The space of possible Dirac masses V is obtained from the extension problem of the Clifford algebra with respect to
the mass term γ0. The zeroth homotopy group of V gives the Abelian group that characterizes Floquet topological phases. In the last column,
we show Abelian groups π0(V ) for the cases of zero-dimensional systems. The periodic structure with the dimensions follows from the shift
in the space of Dirac masses V with d .

Class Clifford algebras Extension problem Space of masses V π0(V )d=0

A {γ0,γ1, . . . ,γd ,γt ,�̃} Cld+2 → Cld+3 Cd Z
AIII {γ0,γ1, . . . ,γd ,γt ,�̃,�̃�′} Cld+3 → Cld+4 Cd+1 0

AI {iγ0,iγt ; T ′,iT ′,γ1, . . . ,γd ,�̃} Cl1,d+3 → Cl2,d+3 R−d Z
BDI {iγ0,iγt ,�̃�′; T ′,iT ′,γ1, . . . ,γd ,�̃} Cl2,d+3 → Cl3,d+3 R1−d Z2

D {iγ0,iγt ,i�̃; C ′,iC ′,γ1, . . . ,γd} Cl2,d+2 → Cl3,d+2 R2−d Z2

DIII {iγ0,iγt ,T
′,iT ′; γ1, . . . ,γd ,�̃,�̃�′} Cl3,d+2 → Cl4,d+2 R3−d 0

AII {iγ0,iγt ,T
′,iT ′; γ1, . . . ,γd ,�̃} Cl3,d+1 → Cl4,d+1 R4−d Z

CII {iγ0,iγt ,�̃�′,T ′,iT ′; γ1, . . . ,γd ,�̃} Cl4,d+1 → Cl5,d+1 R5−d 0
C {iγ0,iγt ,i�̃,C ′,iC ′; γ1, . . . ,γd} Cl4,d → Cl5,d R6−d 0
CI {iγ0,iγt ; T ′,iT ′γ1, . . . ,γd ,�̃,�̃�′} Cl1,d+4 → Cl2,d+4 R−1−d 0

{e1, . . . ,ep; ep+1, . . . ,ep+q} that satisfy

{ei,ej } = 0 (i �= j ), (58)

e2
i =

{−1 (1 � i � p),

+1 (p + 1 � i � p + q).
(59)

Real Clifford algebras are considered to be algebras formed by
gamma matrices in a similar way to complex Clifford algebras,
but they can also accommodate symmetry operators such as T

and C that involve complex conjugation.
Now, the Clifford algebra is used to deduce topological

classification as follows. First, we fix the representation of
kinetic terms γ1, . . . ,γd and symmetry operators T ,C,�. In
this case, distinct gapped Dirac Hamiltonians have one-to-one
correspondence to distinct Dirac mass terms γ0; disconnected
components of the space of possible Dirac mass terms
correspond to distinct topological phases [13,25]. This space of
Dirac mass term can be obtained from “the extension problem”
of Clifford algebras which is summarized in Table II. Namely,
we fix representations of the Clifford algebras Clq and Clp,q

that is generated by kinetic terms and symmetry operators, and
extends it by adding the generator involving the mass term γ0.
All possible extensions form a space V as

Clq → Clq+1, V = Cq, (60)

Clp,q → Clp,q+1, V = Rq−p, (61)

Clp,q → Clp+1,q , V = Rp−q+2, (62)

where Cq and Rq are symmetric spaces that appear in complex
and real K theory (for details, see Ref. [25]). Thus, the zeroth
homotopy groups for spaces Cq,Rq associated with extension
problems give the Abelian groups that characterize topological
phases. The relevant extension problems and spaces of Dirac
masses are shown in Table II. This reproduces the classification
of Floquet topological phases in tenfold way as shown in
Table I.

C. Classification of time glide symmetric Floquet
topological phases

In this section, we classify Floquet topological phases with
time glide symmetry by using Clifford algebra approach.
Recall the time glide in the x1 direction is represented by a
unitary operator MT satisfying

MT H (k1,k2, . . . ,kd,t)M
−1
T = H

(
−k1,k2, . . . ,kd,t + T

2

)
.

(63)

We assume M2
T = 1 without loss of generality. This constrains

the symmetrized time-evolution operator U (k,t) as

MT U (k,t)M−1
T = MT T exp

[
−i

∫ T +t
2

T −t
2

dt ′H (k,t ′)

]
M−1

T

= T exp

[
−i

∫ +t
2

−t
2

dt ′H (R̂k,t ′)

]

=
(
T exp

[
−i

∫ 2T −t
2

+t
2

dt ′H (R̂k,t ′)

])†

= U †(R̂k,T − t) (64)

with R̂(k1,k2, . . . ,kd ) = (−k1,k2, . . . ,kd ), where we used

T exp [−i
∫ 2T −t

2
−t
2

dt ′H (R̂k,t ′)] = 1 (triviality of the full period

evolution). Thus, we have an additional symmetry constraint
onto the effective Hamiltonian HS(k,t) given by

M ′
T HS(k1,k2, . . . ,kd,t)M

′−1
T = HS(−k1,k2, . . . ,kd,−t),

M ′
T = MT ⊗ σx. (65)

Inclusion of the time glide symmetry modifies the Clif-
ford algebras characterizing Floquet topological phases as
summarized in Table III. First, Eq. (65) indicates commu-
tation/anticommutation relationships between the time glide
operator M ′

T and gamma matrices as

[γ0,M
′
T ] = [γi,M

′
T ] = 0 (66)
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TABLE III. Clifford algebras characterizing the Floquet topological phases with time glide symmetry. Commutation/anticommutation
relationships between time glide operator and generic symmetry operators are specified by η� for complex classes and (ηT ,ηC) for real classes,
where the entry 0 indicates the absence of such symmetry in the symmetry class. Addition of time glide operator modifies the Clifford algebras
as shown in the third column. (Here, γi is the shorthand notation for kinetic gamma matrices γ1, . . . ,γd .) The extension problem of the Clifford
algebra with respect to the mass term γ0 gives the space of Dirac masses V shown in the last column.

Class η� or (ηT ,ηC) Clifford algebras Extension problem Space of masses V

A 0 {γ0,γi,γt ,�̃,γ1γt �̃M ′
T } Cld+3 → Cld+4 Cd+1

AIII + {γ0,γi,γt ,�̃,�̃�′} ⊗ {γ1γt�
′M ′

T } Cld+3 ⊗ Cl1 → Cld+4 ⊗ Cl1 Cd+1 × Cd+1

AIII − {γ0,γi,γt ,�̃,�̃�′,γ1γt �̃M ′
T } Cld+4 → Cld+5 Cd

AI (+,0) {iγ0,iγt ,iγ1γt �̃M ′
T ; T ′,iT ′,γi,�̃} Cl2,d+3 → Cl3,d+3 R1−d

AI (−,0) {iγ0,iγt ; T ′,iT ′,γi,�̃,iγ1γt �̃M ′
T } Cl1,d+4 → Cl2,d+4 R−1−d

BDI (+,+) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃} ⊗ {; iγ1γt�
′M ′

T } Cl2,d+3 ⊗ Cl0,1 → Cl3,d+3 ⊗ Cl0,1 R1−d × R1−d

BDI (+,−) {iγ0,iγt ,�̃�′,iγ1γt �̃M ′
T ; T ′,iT ′,γi,�̃} Cl3,d+3 → Cl4,d+3 R2−d

BDI (−,+) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃,γ1γt�
′M ′

T } Cl2,d+4 → Cl3,d+4 R−d

BDI (−,−) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃} ⊗ {γ1γt�
′M ′

T ; } Cl2,d+3 ⊗ Cl1,0 → Cl3,d+3 ⊗ Cl1,0 C1+d

D (0,+) {iγ0,iγt ,i�̃; C ′,iC ′,γi,γ1γt �̃M ′
T } Cl2,d+3 → Cl3,d+3 R1−d

D (0,−) {iγ0,iγt ,i�̃,iγ1γt �̃M ′
T ; C ′,iC ′,γi} Cl3,d+2 → Cl4,d+2 R3−d

DIII (+,+) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′} ⊗ {iγ1γt�

′M ′
T ; } Cl3,d+2 ⊗ Cl1,0 → Cl4,d+2 ⊗ Cl1,0 C1+d

DIII (+,−) {iγ0,iγt ,T
′,iT ′,iγ1γt �̃M ′

T ; γi,�̃,�̃�′} Cl4,d+2 → Cl5,d+2 R4−d

DIII (−,+) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′,γ1γt�

′M ′
T } Cl3,d+3 → Cl4,d+3 R2−d

DIII (−,−) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′} ⊗ {; γ1γt�

′M ′
T } Cl3,d+2 ⊗ Cl0,1 → Cl4,d+2 ⊗ Cl0,1 R3−d × R3−d

AII (+,0) {iγ0,iγt ,T
′,iT ′,iγ1γt �̃M ′

T ; γi,�̃} Cl4,d+1 → Cl5,d+1 R5−d

AII (−,0) {iγ0,iγt ,T
′,iT ′; γi,�̃,iγ1γt �̃M ′

T } Cl3,d+2 → Cl4,d+2 R3−d

CII (+,+) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃} ⊗ {; iγ1γt�

′M ′
T } Cl4,d+1 ⊗ Cl0,1 → Cl5,d+1 ⊗ Cl0,1 R5−d × R5−d

CII (+,−) {iγ0,iγt ,T
′,iT ′,�̃�′,iγ1γt �̃M ′

T ; γi,�̃} Cl5,d+1 → Cl6,d+1 R6−d

CII (−,+) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃,γ1γt�

′M ′
T } Cl4,d+2 → Cl5,d+2 R4−d

CII (−,−) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃} ⊗ {γ1γt�

′M ′
T ; } Cl4,d+1 ⊗ Cl1,0 → Cl5,d+1 ⊗ Cl1,0 C1+d

C (0,+) {iγ0,iγt ,C
′,iC ′,i�̃; γi,γ1γt �̃M ′

T } Cl4,d+1 → Cl5,d+1 R5−d

C (0,−) {iγ0,iγt ,C
′,iC ′,i�̃,iγ1γt �̃M ′

T ; γi} Cl5,d → Cl6,d R7−d

CI (+,+) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′} ⊗ {iγ1γt�

′M ′
T ; } Cl1,d+4 ⊗ Cl1,0 → Cl2,d+4 ⊗ Cl1,0 C1+d

CI (+,−) {iγ0,iγt ,iγ1γt �̃M ′
T ; γi,T

′,iT ′,�̃,�̃�′} Cl2,d+4 → Cl3,d+4 R−d

CI (−,+) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′,γ1γt�

′M ′
T } Cl1,d+5 → Cl2,d+5 R−2−d

CI (−,−) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′} ⊗ {; γ1γt�

′M ′
T } Cl1,d+4 ⊗ Cl0,1 → Cl2,d+4 ⊗ Cl0,1 R−1−d × R−1−d

for i = 2, . . . ,d and

{γ1,M
′
T } = {γt ,M

′
T } = 0. (67)

In addition, M ′
T anticommutes with the intrinsic chiral operator

�̃ = σz. Therefore, the operator γ1γt �̃M ′
T anticommutes with

the gamma matrices and �̃ and gives a candidate of an
additional generator in the Clifford algebras. Indeed, in the case
of class A, this is the additional generator. Namely, in class A,
the time glide symmetry reserves one additional gamma matrix
for the operator γ1γt �̃M ′

T which is equivalent to raising the
spatial dimension by one. Thus, time glide symmetric Floquet
topological phases in class A possess integer topological
numbers in odd dimensions, and are trivial otherwise. Next, the
form of the additional generator including MT in the Clifford
algebras depends on commutation/anticommutation relation
between the time glide operator M ′

T and other symmetry
operators if present. Specifically, in the case of class AIII,
the relationship between � and MT is given by

MT � = η��MT , (68)

where η� = ±1 denotes commutation and anticommutation
relations, respectively. In the case of η� = +1, the operator
γ1γt�

′M ′
T commutes with every original generator. This

indicates that the energy eigenstates of the effective Dirac
Hamiltonian are simultaneously eigenstates of γ1γt�

′M ′
T and,

hence, are decomposed into two sectors with γ1γt�
′M ′

T = ±1.
Thus, time glide symmetric Floquet topological phases in
class AIII with η� = +1 are characterized by two topological
numbers of class AIII for each sector. In the case of
η� = −1, the operator γ1γt �̃M ′

T anticommutes with every
original generator. Thus, the time glide symmetry requires
one additional gamma matrix for γ1γt �̃M ′

T which is equiv-
alent to raising the spatial dimension by one for original
Floquet topological phases in class AIII. Namely, time glide
symmetric Floquet topological phases in class AIII with
η� = −1 possess integer and trivial topological numbers in
even and odd spatial dimensions, respectively. We note that this
classification theory with Clifford algebras is indeed consistent
with discussions in Sec. II; the Clifford algebra analysis gives
integer topological numbers for 2D class AIII (η� = −1) and
3D class A systems with time glide symmetry as expected from
explicit constructions of integer topological numbers presented
in Sec. II.

In a similar way, we can classify Floquet topological phases
with time glide symmetry in the real classes. The forms
of relevant Clifford algebras are determined by commuta-
tion/anticommutation relationships between T , C, and MT
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TABLE IV. Classification of Floquet topological phases with time glide symmetry. The time glide operator MT is characterized by
commutation/anticommutation relations with other symmetry operators as MT T = ηT T MT ,MT C = ηCCMT , and MT � = η��MT .

ηT ,ηC,η� Class Cq or Rq d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A Cd+3 0 Z 0 Z 0 Z 0 Z
η� = + AIII Cd+3 × Cd+3 0 Z2 0 Z2 0 Z2 0 Z2

η� = − AIII Cd+4 Z 0 Z 0 Z 0 Z 0

AI R1−d Z2 Z 0 0 0 Z 0 Z2

BDI R2−d Z2 Z2 Z 0 0 0 Z 0
ηT = + (AI,AII) D R3−d 0 Z2 Z2 Z 0 0 0 Z
ηC = − (D,C) DIII R4−d Z 0 Z2 Z2 Z 0 0 0
(ηT ,ηC) = (+,−) (BDI,DIII,CII,CI) AII R5−d 0 Z 0 Z2 Z2 Z 0 0

CII R6−d 0 0 Z 0 Z2 Z2 Z 0
C R7−d 0 0 0 Z 0 Z2 Z2 Z
CI R−d Z 0 0 0 Z 0 Z2 Z2

AI R−1−d 0 0 0 Z 0 Z2 Z2 Z
BDI R−d Z 0 0 0 Z 0 Z2 Z2

ηT = − (AI,AII) D R1−d Z2 Z 0 0 0 Z 0 Z2

ηC = + (D,C) DIII R2−d Z2 Z2 Z 0 0 0 Z 0
(ηT ,ηC) = (−,+) (BDI,DIII,CII,CI) AII R3−d 0 Z2 Z2 Z 0 0 0 Z

CII R4−d Z 0 Z2 Z2 Z 0 0 0
C R5−d 0 Z 0 Z2 Z2 Z 0 0
CI R6−d 0 0 Z 0 Z2 Z2 Z 0

(ηT ,ηC) = (+,+) BDI R1−d × R1−d Z2
2 Z2 0 0 0 Z2 0 Z2

2

(ηT ,ηC) = (−,−) DIII R3−d × R3−d 0 Z2
2 Z2

2 Z2 0 0 0 Z2

(ηT ,ηC) = (+,+) CII R5−d × R5−d 0 Z2 0 Z2
2 Z2

2 Z2 0 0
(ηT ,ηC) = (−,−) CI R7−d × R7−d 0 0 0 Z2 0 Z2

2 Z2
2 Z2

(ηT ,ηC) = (−,−) BDI, CII C1−d × C1−d 0 Z2 0 Z2 0 Z2 0 Z2

(ηT ,ηC) = (+,+) DIII, CI C1−d × C1−d 0 Z2 0 Z2 0 Z2 0 Z2

described by (ηT ,ηC) as

MT T = ηT T MT , MCC = ηCCMC. (69)

In this case, depending on the combination (ηT ,ηC), either one
of γ1γt �̃M ′

T , iγ1γt �̃M ′
T , γ1γt�

′M ′
T , iγ1γt�

′M ′
T commute or

anticommute with all the original generators and gives the
additional generator of the Clifford algebras. The explicit
forms of the Clifford algebras are summarized in Table III.

Finally, we present the result of classification of Floquet
topological phases with time glide symmetry in Table IV. This
is obtained by taking zeroth homotopy group of the space
of Dirac masses V shown in Table III. The classification
table shows a periodic structure with respect to the spatial
dimensions. There are four types of changes from original
classification table for tenfold way. i.e., (i) shift of the spatial
dimensions by +1, (ii) shift of the spatial dimension by
−1, (iii) doubling of topological numbers due to the block
diagonalization, and (iv) reduction of real symmetry classes to
complex symmetry classes due to the block diagonalization.
These phenomena are also found in classification theory of
topological crystalline insulators (TCIs) in the equilibrium,
and indeed the obtained classification table for time glide
symmetry resembles that for TCIs [24–26]. However, the clas-
sification result for time glide symmetric Floquet topological
phases is different from that for TCIs. For example, if we
look at class AIII, the doubling of topological number and
the shift of the spatial dimension take place for η� = +1 and
−1, respectively, which are opposite for the classification of

TCIs. This suggests that the time glide symmetric Floquet
topological phases are intrinsically nonequilibrium topological
phases and are not adiabatically connected to equilibrium
topological phases.

D. Classification of time screw symmetric
Floquet topological phases

In a similar manner to the time glide symmetry, we can
define “time screw symmetry” which is a combination of the
C2 rotation and the half-period time translation. In this section,
we classify time screw symmetric Floquet topological phases
by using Clifford algebras. The classification is performed in
a similar way to that for time glide symmetry.

The time screw symmetry in the (x1,x2) plane is represented
by a unitary operator C2T that satisfies

C2T H (k1,k2,k3, . . . ,kd,t)C
−1
2T

= H

(
−k1,−k2,k3, . . . ,kd,t + T

2

)
. (70)

Accordingly, the time screw symmetry constrains the sym-
metrized time-evolution operator U (k,t) as

C2T U (k1,k2,k3, . . . ,kd,t)C
−1
2T

= U †(−k1,−k2,k3, . . . ,kd,T − t) (71)
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TABLE V. Clifford algebras characterizing the Floquet topological phases with time screw symmetry. Commutation/anticommutation
relationships between time screw operator and generic symmetry operators are specified by η� for complex classes and (ηT ,ηC) for real classes,
where the entry 0 indicates the absence of such symmetry in the symmetry class. Addition of time screw operator modifies the Clifford algebras
as shown in the third column. (Here, γi is the shorthand notation for kinetic gamma matrices γ1, . . . ,γd .) The extension problem of the Clifford
algebra with respect to the mass term γ0 gives the space of Dirac masses V shown in the last column.

Class η� or (ηT ,ηC) Clifford algebras Extension problem Space of masses V

A 0 {γ0,γi,γt ,�̃} ⊗ {γ1γ2γt �̃C ′
2T } Cld+2 ⊗ Cl1 → Cld+3 ⊗ Cl1 Cd × Cd

AIII + {γ0,γi,γt ,�̃,�̃�′,γ1γ2γt�
′C ′

2T } Cld+4 → Cld+5 Cd

AIII − {γ0,γi,γt ,�̃,�̃�′} ⊗ {γ1γ2γt �̃C ′
2T } Cld+3 ⊗ Cl1 → Cld+4 ⊗ Cl1 Cd+1 × Cd+1

AI (+,0) {iγ0,iγt ; T ′,iT ′,γi,�̃} ⊗ {iγ1γ2γt �̃C ′
2T ; } Cl1,d+3 ⊗ Cl1,0 → Cl2,d+3 ⊗ Cl1,0 Cd

AI (−,0) {iγ0,iγt ; T ′,iT ′,γi,�̃} ⊗ {; γ1γ2γt �̃C ′
2T } Cl1,d+3 ⊗ Cl0,1 → Cl2,d+3 ⊗ Cl0,1 R−d × R−d

BDI (+,+) {iγ0,iγt ,�̃�′,iγ1γ2γt�
′C ′

2T ; T ′,iT ′,γi,�̃} Cl3,d+3 → Cl4,d+3 R2−d

BDI (+,−) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃} ⊗ {iγ1γ2γt �̃C ′
2T ; } Cl2,d+3 ⊗ Cl1,0 → Cl3,d+3 ⊗ Cl1,0 C1+d

BDI (−,+) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃} ⊗ {γ1γ2γt �̃C ′
2T ; } Cl2,d+3 ⊗ Cl0,1 → Cl3,d+3 ⊗ Cl0,1 R1−d × R1−d

BDI (−,−) {iγ0,iγt ,�̃�′; T ′,iT ′,γi,�̃,γ1γ2γt�
′C ′

2T } Cl2,d+4 → Cl3,d+4 R−d

D (0,+) {iγ0,iγt ,i�̃; C ′,iC ′,γi} ⊗ {; γ1γ2γt �̃C ′
2T } Cl2,d+2 ⊗ Cl0,1 → Cl3,d+2 ⊗ Cl0,1 R2−d × R2−d

D (0,−) {iγ0,iγt ,i�̃; C ′,iC ′,γi} ⊗ {iγ1γ2γt �̃C ′
2T ; } Cl2,d+2 ⊗ Cl1,0 → Cl3,d+2 ⊗ Cl1,0 Cd

DIII (+,+) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′,iγ1γ2γt�

′C ′
2T } Cl3,d+3 → Cl4,d+3 R2−d

DIII (+,−) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′} ⊗ {iγ1γ2γt �̃C ′

2T ; } Cl3,d+2 ⊗ Cl1,0 → Cl4,d+2 ⊗ Cl1,0 C1+d

DIII (−,+) {iγ0,iγt ,T
′,iT ′; γi,�̃,�̃�′} ⊗ {γ1γ2γt �̃C ′

2T ; } Cl3,d+2 ⊗ Cl0,1 → Cl4,d+2 ⊗ Cl0,1 R3−d × R3−d

DIII (−,−) {iγ0,iγt ,T
′,iT ′,γ1γ2γt�

′C ′
2T ; γi,�̃,�̃�′} Cl4,d+2 → Cl5,d+2 R4−d

AII (+,0) {iγ0,iγt ,T
′,iT ′; γi,�̃} ⊗ {iγ1γ2γt �̃C ′

2T ; } Cl3,d+1 ⊗ Cl1,0 → Cl4,d+1 ⊗ Cl1,0 Cd

AII (−,0) {iγ0,iγt ,T
′,iT ′; γi,�̃} ⊗ {; γ1γ2γt �̃C ′

2T } Cl3,d+1 ⊗ Cl0,1 → Cl4,d+1 ⊗ Cl0,1 R4−d × R4−d

CII (+,+) {iγ0,iγt ,T
′,iT ′,�̃�′,iγ1γ2γt�

′C ′
2T ; γi,�̃} Cl5,d+1 → Cl6,d+1 R6−d

CII (+,−) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃} ⊗ {iγ1γ2γt �̃C ′

2T ; } Cl4,d+1 ⊗ Cl1,0 → Cl5,d+1 ⊗ Cl1,0 C1+d

CII (−,+) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃} ⊗ {γ1γ2γt �̃C ′

2T ; } Cl4,d+1 ⊗ Cl0,1 → Cl5,d+1 ⊗ Cl0,1 R5−d × R5−d

CII (−,−) {iγ0,iγt ,T
′,iT ′,�̃�′; γi,�̃,γ1γ2γt�

′C ′
2T } Cl4,d+2 → Cl5,d+2 R4−d

C (0,+) {iγ0,iγt ,C
′,iC ′,i�̃; γi} ⊗ {; γ1γ2γt �̃C ′

2T } Cl4,d ⊗ Cl0,1 → Cl5,d ⊗ Cl0,1 R6−d × R6−d

C (0,−) {iγ0,iγt ,C
′,iC ′,i�̃; γi} ⊗ {iγ1γ2γt �̃C ′

2T ; } Cl4,d ⊗ Cl1,0 → Cl5,d ⊗ Cl1,0 Cd

CI (+,+) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′,iγ1γ2γt�

′C ′
2T } Cl1,d+5 → Cl2,d+5 R−2−d

CI (+,−) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′} ⊗ {iγ1γ2γt �̃C ′

2T ; } Cl1,d+4 ⊗ Cl1,0 → Cl2,d+4 ⊗ Cl1,0 C1+d

CI (−,+) {iγ0,iγt ; γi,T
′,iT ′,�̃,�̃�′} ⊗ {γ1γ2γt �̃C ′

2T ; } Cl1,d+4 ⊗ Cl0,1 → Cl2,d+4 ⊗ Cl0,1 R−1−d × R−1−d

CI (−,−) {iγ0,iγt ,γ1γ2γt�
′C ′

2T ; γi,T
′,iT ′,�̃,�̃�′} Cl2,d+4 → Cl3,d+4 R−d

and, hence, the effective Hamiltonian HS(k,t) made of the
time-evolution operator in Eq. (40) is constrained as

C ′
2T HS(k1,k2,k3, . . . ,kd,t)(C

′
2T )−1

= HS(−k1, − k2,k3, . . . ,kd, − t), (72)

with

C ′
2T = C2T ⊗ σx. (73)

We obtain Clifford algebras associated with time screw
symmetric Floquet topological phases by assuming that the
effective Hamiltonian HS has a Dirac form. In this case,
Eq. (72) gives commutation/anticommutation relationships
between the time screw operator and gamma matrices as

[γ0,C
′
2T ] = [γi,C

′
2T ] = 0 (74)

for i = 3, . . . ,d, and

{γ1,C
′
2T } = {γ2,C

′
2T } = {γt ,C

′
2T } = 0. (75)

In addition, C ′
2T anticommutes with the intrinsic chiral opera-

tor �̃ = σz. First, the Clifford algebras for complex symmetry
classes are obtained as follows. In the symmetry class A, the
operator γ1γ2γt �̃C ′

2T commutes with every original generator
of the Clifford algebra. Thus, time screw symmetry doubles
the topological number of Floquet topological phases in class

A. In the symmetry class AIII, we have two cases

C2T � = η��C2T , (76)

with η� = ±1. In the case of η� = +1, the operator
γ1γ2γt�

′C ′
2T is the additional generator that anticommutes

with every generator and effectively shifts the dimension
by 1. In the case of η� = −1, the operator γ1γ2γt �̃C ′

2T is
the additional generator that commutes with every gener-
ator and doubles the topological number due to the block
diagonalization with respect to γ1γ2γt �̃C ′

2T . Second, the real
symmetry classes are characterized by time-reversal symmetry
and particle-hole symmetry, and their relationships with C2T

govern time screw symmetric Floquet topological phases. The
commutation/anticommutation relationships between C2T and
generic symmetry operators T ,C are specified by (ηT ,ηC) as

C2T T = ηT T C2T , C2T C = ηCCC2T . (77)

The additional generator for the Clifford algebra that is made
from the time screw operator is given by either one of
γ1γ2γt �̃C ′

2T , iγ1γ2γt �̃C ′
2T , γ1γ2γt�

′C ′
2T , and iγ1γ2γt�

′C ′
2T

which commutes or anticommutes with all the original gen-
erators. The explicit forms of the Clifford algebras associated
with time screw symmetric Floquet topological phases are
listed in Table V.
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TABLE VI. Classification of Floquet topological phases with time screw symmetry. The time screw operator MT is characterized by
commutation/anticommutation relations with other symmetry operators as C2T T = ηT T C2T , C2T C = ηCCC2T , and C2T � = η��C2T .

ηT ,ηC,η� Class Cq or Rq d = 0 d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

A Cd+2 × Cd+2 Z2 0 Z2 0 Z2 0 Z2 0
η� = + AIII Cd+4 Z 0 Z 0 Z 0 Z 0
η� = − AIII Cd+3 × Cd+3 0 Z2 0 Z2 0 Z2 0 Z2

ηT = + (AI,AII), ηC = − (D,C) AI, AII, D, C Cd × Cd Z2 0 Z2 0 Z2 0 Z2 0
(ηT ,ηC) = (+,−) (BDI,DIII,CII,CI) BDI, DIII, CII, CI Cd+1 × Cd+1 0 Z2 0 Z2 0 Z2 0 Z2

AI R−d × R−d Z2 0 0 0 Z2 0 Z2
2 Z2

2

BDI R1−d × R1−d Z2
2 Z2 0 0 0 Z2 0 Z2

2

ηT = − (AI,AII) D R2−d × R2−d Z2
2 Z2

2 Z2 0 0 0 Z2 0
ηC = + (D,C) DIII R3−d × R3−d 0 Z2

2 Z2
2 Z2 0 0 0 Z2

(ηT ,ηC) = (−,+) (BDI,DIII,CII,CI) AII R4−d × R4−d Z2 0 Z2
2 Z2

2 Z2 0 0 0
CII R5−d × R5−d 0 Z2 0 Z2

2 Z2
2 Z2 0 0

C R6−d × R6−d 0 0 Z2 0 Z2
2 Z2

2 Z2 0
CI R7−d × R7−d 0 0 0 Z2 0 Z2

2 Z2
2 Z2

(ηT ,ηC) = (+,+) BDI R2−d Z2 Z2 Z 0 0 0 Z 0
(ηT ,ηC) = (−,−) DIII R4−d Z 0 Z2 Z2 Z 0 0 0
(ηT ,ηC) = (+,+) CII R6−d 0 0 Z 0 Z2 Z2 Z 0
(ηT ,ηC) = (−,−) CI R−d Z 0 0 0 Z 0 Z2 Z2

(ηT ,ηC) = (−,−) BDI R−d Z 0 0 0 Z 0 Z2 Z2

(ηT ,ηC) = (+,+) DIII R2−d Z2 Z2 Z 0 0 0 Z 0
(ηT ,ηC) = (−,−) CII R4−d Z 0 Z2 Z2 Z 0 0 0
(ηT ,ηC) = (+,+) CI R6−d 0 0 Z 0 Z2 Z2 Z 0

Finally, the classification of Floquet topological phases
with time screw symmetry is summarized in Table VI, which
is obtained by taking zeroth homotopy groups of the space
of Dirac masses V shown in Table V. The classification
table again shows a periodic structure with respect to the
spatial dimension d. Real symmetry classes having either
T or C (classes AI, D, AII, C) show either reduction to
complex classes or doubling of topological numbers due to the
block diagonalization with respect to the additional generator
involving C2T . Real symmetry classes having both T and C

(classes BDI, DIII, CII, CI) exhibit four types of changes from
the original tenfold-way classification in a similar manner to
the case of time glide symmetry.

IV. DISCUSSIONS

We have shown that the time glide symmetry, which is
an intrinsically dynamical symmetry, can host a novel class
of Floquet topological phases. The lattice models with time
glide symmetry that we presented can be engineered in
periodically driven systems such as cold atoms. Namely, the
2D model consisting of a stack of driven Su-Schrieffer-Heeger
model would be realizable by designing superlattice potential
that shows alternating hopping amplitude and by employing
synthetic gauge fields for imaginary hoppings. The 3D model
consisting of a stack of Haldane models on the honeycomb
lattice may also become feasible in a near future because the
Haldane model has been recently realized in cold atoms by
shaking the lattice potential [30].

In equilibrium systems, topological crystalline insulators
(TCIs) have been studied actively as representative topological
materials where gapless surface states are protected by spatial

symmetry [24–26,31,32]. Since static reflection symmetry
also serves as time glide symmetry in Floquet systems, a
natural question would be whether the time glide symmetric
Floquet topological phases are different topological phases
from TCIs or Floquet versions of them. In the following, we
show that these two are indeed distinct sets of topological
phases. (i) First, the 2D class AIII model for a time glide
symmetric Floquet topological phase presented in Sec. II A
cannot be a TCI. In order to have nontrivial time glide
Floquet phase, we need anticommutation relation of chiral
symmetry and time glide ({�,MT } = 0). This is in contrast
to topological crystalline insulators in 2D class AIII which
require commutation relation [�,R] = 0 (since we need to
define 1D winding number with � in each subspace of
R = ±1). (ii) In general, the classification of time glide
Floquet topological phases in Table IV shows that they are
different from TCIs in the cases with particle-hole symmetry
C (D and C) or with chiral symmetry � (AIII, BDI, DIII, CII,
CI). In these cases, commutation/anticommutation between
C and MT /R, or � and MT /R, are opposite in obtaining
nontrivial phases. (For comparison, the classification table for
TCIs is found in Ref. [25] as Table VI.) (iii) Classes A, AI,
AII do not show difference in the classification for time glide
Floquet topological phases and TCIs. However, at least, those
in 3D class A are distinct from TCIs, as discussed in Sec. II C.
Namely, the way topological numbers are defined is different.
In characterizing time glide Floquet topological phases, we
use half-period unitary U (0 → T/2) as a function of kx and
ky and see wrapping of a special point as shown in Fig. 5. On
the other hand, characterization of a Floquet version of TCI
involves U (kx,ky,t) as a function of three parameters which
belong to a nontrivial element of π3[U (N )] = Z. Since we
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can consider a case where half-period unitary is nontrivial but
full-period unitary is trivial in π3[U (N )], time glide Floquet
topological phases and TCIs are generally different in 3D
class A. These considerations indicate that time glide Floquet
topological phases and TCIs are distinct sets of topological
phases in general.

While we focused on time glide symmetry MT and twofold
time screw symmetry C2T in this paper, we can consider
more general time-nonsymmorphic symmetries and Floquet
topological phases protected by them. For example, we can
consider time screw symmetry having C3 symmetry which
does not square to 1. We expect that such non-order-two
symmetries also support some nontrivial Floquet topological
phases. However, these general nonsymmorphic space-time
symmetries cannot be directly incorporated into the Clifford
algebra approach, which is naturally suited of order-two
symmetries. Thus, Floquet topological phases protected by
general time-nonsymmorphic symmetries are left for future
studies. Since twisted equivariant K theory is proposed to be a
framework for classifying equilibrium topological phases with
crystalline symmetries [33], twisted equivariant K theory may
be applicable to Floquet topological phases.

We studied effects of dynamical symmetry on crystals
under periodic driving. Recently, it has been proposed in
Ref. [34] that even crystal structure itself can be extended
to a dynamical space-time pattern of atoms, which is called
“choreographic crystals”. In choreographic crystals, atoms
move in a symmetric way with respect to each other within
a period, like orbiting satellites. These space-time patterns of
atoms were studied by extending group theory to dynamical
motions. It would be an interesting future problem to classify
these choreographic crystals and also study topological phases
realized by electrons sitting on these space-time patterns.

Periodic driving can cause catastrophic heating of the
topological phases in a long time when interactions are present
in the system. Therefore, we will primarily be concerned
with systems that are well approximated as noninteracting
and clean. In fact, even in the presence of relatively weak
interactions, heating may only set in at extremely long times
[35], allowing for a broad pre-thermalization window. This
heating effect can be entirely avoided when the bulk is
many-body localized [36–38]. Although including disorder
usually breaks reflection symmetry and it is not so natural to
combine time glide symmetry with disorder, it would still be
useful to consider effects of disorder that statistically preserve
time glide symmetry, having in mind that some disordered
TCIs that preserve reflection symmetry on average support
stable gapless surface states [39,40]. It was shown that systems
with Abelian symmetry group can be localized by suitable
local randomness while those with non-Abelian symmetry
cannot be localized [41]. In our case, the criterion will be
whether the reflection symmetric subsystem can be localized or
not when we introduce reflection symmetric random potential.
At the reflection symmetric subsystem, time glide MT reduces
to global Z2 symmetry, where we can apply the condition in
Ref. [41]. Topological phases in 2D class AIII in Sec. II A
requires {�,MT } = 0 and cannot be localized while that in 3D
class A in Sec. II C can be localized. In any case, these Floquet
topological phases are stable under well-controlled systems
when interactions are absent. Furthermore, along this line,

we may consider global Z2 symmetry with half-period time
translation as a future problem because such global symmetry
makes it easier to localize the bulk. For example, nontrivial
entries in tenfold way with such symmetry commuting with
other onsite symmetries host nontrivial Floquet topological
phases.

Finally, we note effects of interactions onto time glide sym-
metric Floquet topological phases. Recently, interacting Flo-
quet topological phases have been actively studied [15,17,18].
In particular, Floquet topological phases show a breakdown of
noninteracting topological phases with interactions which is
different from equilibrium cases. This arises from the presence
of Floquet evolution operator acting like an effective symmetry
operation [18]. Therefore, it will be interesting to consider
such interacting Floquet topological phases with time glide
symmetry.
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APPENDIX: TENFOLD-WAY CLASSIFICATION
OF FLOQUET TOPOLOGICAL PHASES

We review tenfold-way classification of noninteracting
Floquet topological phases obtained in Ref. [10]. We con-
sider topological characterization of a time-evolution operator
US(k,t). Instead of studying US(k,t) itself, we study the
effective Hamiltonian HS in Eq. (40) defined with US(k,t)
because we can apply classification procedure for equilibrium
topological phases. First, we study complex symmetry classes
(class A and class AIII):

(1) Class A: The Hamiltonian HS obeys the inherent chiral
symmetry �̃. The Floquet topological phase is mapped to a TI
in (d + 1)D class AIII.

(2) Class AIII: The Hamiltonian HS obeys the inherent
chiral symmetry �̃ and a unitary symmetry �′. If there is a
commuting unitary symmetry, the tenfold-way classification
should be performed for the Hamiltonian after block diago-
nalization. The block-diagonalized Hamiltonian with respect
to �′ = ±1 has no symmetry due to {�′,�̃}. The Floquet
topological phase is mapped to a TI in (d + 1)D class A.

Next, we study real symmetry classes with either T or C

(class AI, class AII, class D, and class C). Since these TRS
and PHS act on t in a trivial way, the Hamiltonian HS(k,t)
is interpreted as one-parameter family (parametrized by t)
of d-dimensional Hamiltonians characterizing a topological
defect [29]:

(1) Class AI: The Hamiltonian HS obeys the inherent chiral
symmetry �̃ and the TRS T ′ squaring to +1. Combining these
two leads to an effective PHS �̃T ′ squaring to −T 2 = −1.
Thus, the Floquet topological phase is mapped to a 1D
topological defect in a dD class CI system which is further
mapped to (d − 1)D TI in class CI.

(2) Class AII: The Hamiltonian HS obeys the inherent
chiral symmetry �̃ and the TRS T ′ squaring to −1. Combining
these two leads to an effective PHS �̃T ′ squaring to −T 2 =
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+1. Thus, the Floquet topological phase is mapped to a 1D
topological defect in a dD class DIII system which is further
mapped to (d − 1)D TI in class DIII.

(3) Class D: The Hamiltonian HS obeys the inherent
chiral symmetry �̃ and the time-reversal symmetry (TRS) C ′
squaring to +1. Combining these two leads to an effective
PHS �̃C ′ squaring to C2 = +1. Thus, the Floquet topological
phase is mapped to a 1D topological defect in a dD class BDI
system which is further mapped to (d − 1)D TI in class BDI.

(4) Class C: The Hamiltonian HS obeys the inherent chiral
symmetry �̃ and the TRS T ′ squaring to −1. Combining these
two leads to an effective PHS �̃T ′ squaring to −T 2 = +1.
Thus, the Floquet topological phase is mapped to a 1D
topological defect in a dD class DIII system which is further
mapped to (d − 1)D TI in class DIII.

Finally, we study real symmetry classes with both T and
C (class BDI, class DIII, class CII, and class CI). Since the
chiral symmetry � = T C results in a commuting unitary
symmetry �′ for HS , we focus on the block-diagonalized
Hamiltonian and remaining symmetries to deduce the clas-
sification. The inherent chiral symmetry �̃ is no longer a
symmetry for the block-diagonalized Hamiltonian because
{�′,�̃} = 0. When �2 = (T C)2 = +1 (in class BDI and
class CII), T ′ and C ′ remain as symmetries for the block-
diagonalized Hamiltonian with �′ = ±1. Since T ′ and C ′
are equivalent after block diagonalization because T ′ = �̃C ′,
only one symmetry, say T ′, remains as a symmetry after
block diagonalization. When �2 = (T C)2 = −1 (in class BDI
and class CII), T ′ and C ′ are not symmetries for the block-
diagonalized Hamiltonian with �′ = ±i (complex conjugation
in T ′ and C ′ exchanges two sectors �′ = ±i). Instead, �̃T ′

remains as a PHS for for the block-diagonalized Hamiltonian
with �′ = ±1:

(1) Class BDI: The block-diagonalized Hamiltonian HS

obeys the TRS T ′ squaring to +1. Thus, the Floquet topolog-
ical phase is mapped to a 1D topological defect in a dD class
AI system which is further mapped to (d − 1)D TI in class AI.

(2) Class DIII: The block-diagonalized Hamiltonian HS

obeys the PHS �̃T ′ squaring to −T 2 = +1. Thus, the Floquet
topological phase is mapped to a 1D topological defect in a
dD class D system which is further mapped to (d − 1)D TI in
class D.

(3) Class CII: The block-diagonalized Hamiltonian HS

obeys the TRS T ′ squaring to −1. Thus, the Floquet topo-
logical phase is mapped to a 1D topological defect in a dD
class AII system which is further mapped to (d − 1)D TI in
class AII.

(4) Class CI: The block-diagonalized Hamiltonian HS

obeys the PHS �̃T ′ squaring to −T 2 = −1. Thus, the Floquet
topological phase is mapped to a 1D topological defect in a
dD class C system which is further mapped to (d − 1)D TI in
class C.

To summarize, noninteracting Floquet topological phases in
the d-dimensional space share the same topological classifica-
tion as equilibrium topological phases in the same symmetry
class. Corresponding topological number can be defined for
each gap in the quasienergy spectrum for symmetry classes
without PHS or chiral symmetry; a system with n gaps is
characterized by n topological numbers in those classes. For
classes with PHS or chiral symmetry, two topological numbers
are defined corresponding to 0 gap and π gap. The result is
summarized in Table I.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057
(2011).

[3] X. Chen, Z.-C. Gu, and X.-G. Wen, Phys. Rev. B 83, 035107
(2011).

[4] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119
(2012).

[5] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,
155114 (2013).

[6] T. Oka and H. Aoki, Phys. Rev. B 79, 081406 (2009).
[7] T. Kitagawa, E. Berg, M. Rudner, and E. Demler, Phys. Rev. B

82, 235114 (2010).
[8] M. S. Rudner, N. H. Lindner, E. Berg, and M. Levin, Phys. Rev.

X 3, 031005 (2013).
[9] P. Titum, E. Berg, M. S. Rudner, G. Refael, and N. H. Lindner,

Phys. Rev. X 6, 021013 (2016).
[10] R. Roy and F. Harper, arXiv:1603.06944.
[11] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig,

Phys. Rev. B 78, 195125 (2008).
[12] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New

J. Phys. 12, 065010 (2010).
[13] A. Kitaev, AIP Conf. Proc. 1134, 22 (2009).
[14] H. C. Po, L. Fidkowski, T. Morimoto, A. C. Potter, and A.

Vishwanath, Phys. Rev. X 6, 041070 (2016).

[15] C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93, 245145
(2016).

[16] C. W. von Keyserlingk and S. L. Sondhi, Phys. Rev. B 93, 245146
(2016).

[17] D. V. Else and C. Nayak, Phys. Rev. B 93, 201103 (2016).
[18] A. C. Potter, T. Morimoto, and A. Vishwanath, Phys. Rev. X 6,

041001 (2016).
[19] A. C. Potter and T. Morimoto, Phys. Rev. B 95, 155126 (2017).
[20] R. Roy and F. Harper, Phys. Rev. B 95, 195128 (2017).
[21] O. E. Alon, V. Averbukh, and N. Moiseyev, Phys. Rev. Lett. 80,

3743 (1998).
[22] F. Ceccherini, D. Bauer, and F. Cornolti, J. Phys. B: At., Mol.

Opt. Phys. 34, 5017 (2001).
[23] B. M. Fregoso, Y. H. Wang, N. Gedik, and V. Galitski, Phys.

Rev. B 88, 155129 (2013).
[24] C.-K. Chiu, H. Yao, and S. Ryu, Phys. Rev. B 88, 075142 (2013).
[25] T. Morimoto and A. Furusaki, Phys. Rev. B 88, 125129 (2013).
[26] K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014).
[27] J. K. Asbóth, B. Tarasinski, and P. Delplace, Phys. Rev. B 90,

125143 (2014).
[28] F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
[29] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120 (2010).
[30] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,

D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).
[31] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

195155-15

https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.83.035107
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.79.081406
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevB.82.235114
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.3.031005
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
https://doi.org/10.1103/PhysRevX.6.021013
http://arxiv.org/abs/arXiv:1603.06944
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1103/PhysRevB.78.195125
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1063/1.3149495
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevX.6.041070
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245145
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.245146
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevB.93.201103
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevX.6.041001
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.155126
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevB.95.195128
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1103/PhysRevLett.80.3743
https://doi.org/10.1088/0953-4075/34/24/305
https://doi.org/10.1088/0953-4075/34/24/305
https://doi.org/10.1088/0953-4075/34/24/305
https://doi.org/10.1088/0953-4075/34/24/305
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.155129
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.075142
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.88.125129
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.165114
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1103/PhysRevB.90.125143
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802
https://doi.org/10.1103/PhysRevLett.106.106802


TAKAHIRO MORIMOTO, HOI CHUN PO, AND ASHVIN VISHWANATH PHYSICAL REVIEW B 95, 195155 (2017)

[32] T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat.
Commun. 3, 982 (2012).

[33] D. S. Freed and G. W. Moore, Ann. Henri Poincaré 14, 1927
(2013).

[34] L. Boyle, J. Y. Khoo, and K. Smith, Phys. Rev. Lett. 116, 015503
(2016).

[35] D. A. Abanin, W. De Roeck, W. W. Ho, and F. Huveneers, Phys.
Rev. B 95, 014112 (2017).

[36] Y. Bahri, R. Vosk, E. Altman, and A. Vishwanath, Nat. Commun.
6, 7341 (2015).

[37] A. Chandran, V. Khemani, C. R. Laumann, and S. L. Sondhi,
Phys. Rev. B 89, 144201 (2014).

[38] D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.
Sondhi, Phys. Rev. B 88, 014206 (2013).

[39] I. C. Fulga, B. van Heck, J. M. Edge, and A. R. Akhmerov, Phys.
Rev. B 89, 155424 (2014).

[40] T. Morimoto and A. Furusaki, Phys. Rev. B 89, 035117
(2014).

[41] A. C. Potter and R. Vasseur, Phys. Rev. B 94, 224206
(2016).

195155-16

https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1038/ncomms1969
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1007/s00023-013-0236-x
https://doi.org/10.1103/PhysRevLett.116.015503
https://doi.org/10.1103/PhysRevLett.116.015503
https://doi.org/10.1103/PhysRevLett.116.015503
https://doi.org/10.1103/PhysRevLett.116.015503
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1103/PhysRevB.95.014112
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1038/ncomms8341
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.89.144201
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.88.014206
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.89.155424
https://doi.org/10.1103/PhysRevB.89.035117
https://doi.org/10.1103/PhysRevB.89.035117
https://doi.org/10.1103/PhysRevB.89.035117
https://doi.org/10.1103/PhysRevB.89.035117
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206
https://doi.org/10.1103/PhysRevB.94.224206



