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Magnetic properties of metals are investigated through electronic structure calculations based on the recently
proposed magnetic-field-containing relativistic tight-binding approximation (MFRTB) method [Phys. Rev. B 91,
075122 (2015)]. It is found that electronic energy bands for a metal immersed in a uniform magnetic field have a
cluster structure in which multiple energy bands lie within a small energy width. Each cluster corresponds to an
energy level that is derived on the basis of the semiclassical approximation. While the cluster is responsible for
the de Haas–van Alphen (dHvA) oscillations, constituent energy bands of the cluster cause additional oscillation
peaks of the magnetization that are not explained by the conventional Lifshitz-Kosevich formula. Also, the energy
width of the cluster leads to the reduction of the amplitude of the dHvA oscillations, which can be observed as
the pseudo Dingle temperature and/or the overestimation of the curvature of the Fermi surface.
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I. INTRODUCTION

Measurements of de Haas–van Alphen (dHvA) oscillations
in metals [1–4] are widely used in investigating the shape of
the Fermi surface, cyclotron effective mass, and relaxation
time for scattering of electrons [5–7]. In order to describe
the dHvA oscillations, we need electronic states of metals
immersed in a uniform magnetic field. For this purpose, there
are conventionally two kinds of methods. One is based on
the effective Hamiltonian that is obtained by replacing the rest
mass of electrons with the effective mass in the Hamiltonian for
a free electron immersed in a uniform magnetic field [5,8,9].
The effects of the periodic potential are taken into account via
the effective mass. Although quantized energy levels (so-called
Landau levels) are obtained within this approximation, we
cannot explain the dependence of the dHvA oscillations
on the direction of the magnetic field [9]. This is due to
an oversimplified argument such that the characteristics of
individual metals are taken into consideration only through
the effective mass [9].

Another method to describe electronic states of metals
immersed in a uniform magnetic field is based on the
semiclassical approximation [4,5,8,9]. Hereafter we will call
this method the “semiclassical approach”. In the semiclassical
approach, instead of directly solving the Schrödinger or Dirac
equation, both the Bohr-Sommerfeld quantization rule that
is obtained within the semiclassical approximation and the
equation of motion for a Bloch electron in the magnetic field
are used in order to get quantized energy levels (semiclassical
energy levels) [4,5,8,9]. This method leads to the usual
description for the dHvA oscillations such that every time
one semiclassical energy level crosses the Fermi energy
with increasing the magnetic field, one oscillation of the
magnetization is produced [5,8,9]. The Lifshitz-Kosevich (LK)
formula [10] is derived by means of semiclassical energy

levels, and is commonly employed in analyzing the dHvA
oscillations [5–10]. On the basis of the LK formula, one
can evaluate the extremal cross-sectional area of the Fermi
surface normal to the magnetic field from the oscillation period
[5–10]. Also, according to the LK formula, the temperature and
magnetic field dependences of the oscillation amplitude give
information on the cyclotron effective mass and relaxation
time for scattering of electrons, respectively [5–10].

Recently, we developed the magnetic-field-containing rela-
tivistic tight-binding approximation method (MFRTB method)
that enables us to directly solve the Dirac equation for
crystalline materials immersed in a uniform magnetic field
[11,12]. This method is a first-principles calculation method
that is applicable to various kinds of realistic materials
immersed in a uniform magnetic field [11]. In the previous
work [11], we applied this method to crystalline silicon
immersed in the magnetic field as the first step toward revealing
the mechanism of the elastic softening and its suppression
observed in boron-doped silicon [13–16]. It is shown that the
energy band structures have an explicit dependence on the
magnetic field, and that a recursive energy spectrum, which is
similar to the Hofstadter butterfly diagram [17], is observed.
Through this application, the MFRTB method is illustrated
to be useful for revealing the electronic structure of materials
immersed in a uniform magnetic field [11].

Following the above-mentioned application, the MFRTB
method is also used to describe the dHvA oscillations [12]. It
is shown that the dHvA oscillations can be reproduced by the
MFRTB method [12]. We also found that the oscillation period
of the conventional LK formula is a good approximation to that
of the MFRTB method in experimentally available magnetic
fields, while in high magnetic fields it deviates from the period
of the MFRTB method [12].

In this paper, we present a detailed description of the
magnetic oscillation phenomena by means of the MFRTB
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method. Especially, we investigate the following noncon-
ventional magnetic oscillation phenomena that cannot be
explained by the semiclassical approach:

(1) additional oscillation peaks of the magnetization be-
yond the conventional dHvA oscillations, and

(2) an unexpected reduction of the oscillation amplitude.
Specifically, we show that additional oscillation peaks are

caused by the characteristic energy band structure of metals
immersed in the magnetic field. It is also revealed from
the analysis of the oscillation amplitude that the oscillation
amplitude is unexpectedly reduced in the high magnetic field
region, where “unexpectedly” means that the reduction of the
oscillation amplitude cannot be explained by the conventional
LK formula. As shown latter, this reduction would lead to the
observation of the “pseudo” Dingle temperature [18] and/or
overestimation of the curvature of the Fermi surface, even
though the relaxation time of electron scattering is very long.

The organization of this paper is as follows. The MFRTB
method is applied to a simple cubic lattice system with s

electrons. In Sec. II, we explain the reason why the MFRTB
method is applied to such a simple system. In Sec. III, a
detailed description of the dHvA oscillations is presented
by using the electronic structure calculated by the MFTRB
method. In Sec. IV, the appearance, origin, and observability
of additional oscillation peaks are discussed on the basis of
a detailed investigation of the electronic structure calculated
by the MFRTB method. In Sec. V, we discuss the limit of the
semiclassical approach through the estimation of the cyclotron
effective mass. The results of the analysis of the oscillation
amplitude are shown in Sec. VI. Finally, concluding remarks
are presented in Sec. VII.

II. APPLICATION OF THE MFRTB METHOD
TO A SIMPLE CUBIC LATTICE SYSTEM

The MFRTB method is applied to a simple cubic lattice
system with s electrons that is immersed in a uniform magnetic
field [12]. In this section, we explain the reason why we apply
the MFRTB method to a hypothetical simple cubic lattice with
s electrons instead of real materials.

As mentioned in Sec. I, we intend to investigate noncon-
ventional oscillation phenomena that cannot be explained by
the semiclassical approach. For this purpose, rigorous results
of the semiclassical approach, such as semiclassical energy
levels and the period and amplitude of the magnetic oscillation,
are indispensable. This is because, by investigating the
discrepancy between such rigorous results of the semiclassical
approach and the corresponding results of the MFRTB method,
we can discuss the origin of the nonconventional oscillation
phenomena.

In order to obtain such rigorous results of the semiclassical
approach, we need rigorous E-k curves for the zero magnetic
field case. This is because rigorous results of the semiclassical
approach are obtained from the extremal cross section of the
Fermi surface, cyclotron effective mass, and curvature of the
Fermi surface, and these are calculated by using the E-k curves
for the zero magnetic field case. For example, if the cyclotron
effective mass was not rigorously calculated, then we could not
obtain semiclassical energy levels rigorously, which causes
a difficulty in associating the energy levels obtained by the

MFRTB method with the semiclassical ones. Accordingly, it
would be difficult to discuss the origin of nonconventional
oscillation phenomena if the cyclotron effective mass was
not rigorously calculated. In this work, as the model system
such that the E-k curves for the zero magnetic field case
can be obtained rigorously, we adopt a simple cubic lattice
system with s electrons. This enables us to accurately discuss
the origin of the nonconventional oscillation phenomena that
cannot be explained by the semiclassical approach.

Thus, we apply the MFRTB method to the simple cubic
lattice with s electrons immersed in the magnetic field.
In calculations that will be shown later, we use the same
relativistic TB parameters as those used in the previous works
[11,12]. Also, the magnitude of the magnetic field is assumed
to be given by

B = h

ea2

p

q
, (1)

where p and q are relatively prime integers, and a denotes the
lattice constant [11,12,17].

III. DESCRIPTION OF THE de HAAS–van ALPHEN
OSCILLATIONS THROUGH THE MFTRB METHOD

In this section, we explain how the dHvA oscillations
are described on the basis of the electronic structure that
is calculated by the MFRTB method. Figure 1 shows the
magnetic field dependences of the total energy and magne-
tization. The horizontal axis of Fig. 1 is (p/q)−1, which is
inversely propositional to B [Eq. (1)]. Oscillations of the total
energy and magnetization are clearly seen in Fig. 1. In order
to describe the oscillatory behavior, we calculate densities of
states (DOSs) for several magnetic fields that are indicated by
(2a)–(2d) in Fig. 1. Resultant DOSs for the magnetic fields
(2a)–(2d) are shown in Figs. 2(a)–2(d), respectively. Peak
positions of the DOS can be classified into two types: one
is that peak positions increase with p/q, and the other is that
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FIG. 1. Dependences of the total energy (blue) and magnetization
(red) on the inverse of the magnitude of the magnetic field in the range
p/q = 0.0594–0.178. Symbols (2a), (2b), (2c), and (2d) indicate the
magnetic fields at which we calculate the DOSs [see Figs. 2(a)–2(d)].
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FIG. 2. Magnetic field dependence of the DOSs for systems immersed in high magnetic fields. (a) DOS for the system immersed in the
magnetic fields (2a) of Fig. 1. (b) DOS for the system immersed in the magnetic fields (2b) of Fig. 1. (c) DOS for the system immersed in the
magnetic fields (2c) of Fig. 1. (d) DOS for the system immersed in the magnetic fields (2d) of Fig. 1.

they decrease with p/q. In Figs. 2(a)–2(d), peak positions
of the former type are denoted by e+ and e−, and those of
the latter type are denoted by h+ and h−, respectively. The
pair of peaks (e+, e−) or (h+, h−) corresponds to the Zeeman
splitting of spin states. The existence of two types of energy
levels can be explained also by the semiclassical approach.
Namely, there exist electron and hole orbitals on the constant
energy surface in k space for the case of a simple cubic lattice
system with s electrons. For the present system, the cyclotron
effective mass for the electron orbital is positive, while that
for the hole orbital is negative. Since the interval between
two energy levels is inversely proportional to the cyclotron
effective mass according to the semiclassical approach [8],
semiclassical energy levels that come from electron (or hole)
orbitals increase (or decrease) with the magnetic field. Thus,
we can associate e+ and e− (h+ and h−) with the semiclassical
energy levels for electron (hole) orbitals.

Next, we explain the relation between magnetic oscillations
(Fig. 1) and DOSs [Figs. 2(a)–2(d)]. It is expected that the
magnetic field dependence of occupied energy levels near the
Fermi energy has a major effect on that of the total energy. In

the case of the magnetic fields (2a), the highest and next highest
occupied energy states are e+ and e−, respectively [Fig. 2(a)].
Therefore, the total energy is expected to increase with p/q

because their peak positions increase with p/q. Indeed, the
total energy increases with p/q as shown in Fig. 1. With the
increase of the magnetic field from (2a) to (2b), the highest
occupied energy states switch from e+ to h−. In this situation,
the highest occupied energy states (h−) decrease with p/q,
while the next highest occupied energy states (e−) oppositely
increase with p/q. The effect of this switch is expected to
appear in the slope of the total energy. As shown in Fig. 1,
the slope of the total energy changes between (2a) and (2b).
This implies that not only the magnetic field dependence of
the highest occupied energy levels but also that of the next
highest occupied energy levels have a major effect on that of
the total energy. Corresponding to the change of the slope of the
total energy, the magnetization exhibits the characteristic peak
between (2a) and (2b) as seen in Fig. 1. When the magnetic
field increases from (2b) to (2c), the highest occupied energy
states switch from h− to e−. Correspondingly, the slope of
the total energy slightly decreases between (2b) and (2c), as
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FIG. 3. Dependences of the total energy (blue) and magnetization

(red) on the inverse of the magnitude of the magnetic field in the range
p/q = 0.130–0.132. Symbols (5a)–(5d) indicate the magnetic fields
at which we calculate the DOSs [see Figs. 5(a)–5(d)].

shown in Fig. 1. Further increase of the magnetic field [(2c)
→ (2d)] leads to a switch of the highest occupied energy states
from e− to h+. This switch results in a change of the slope of
the total energy, which causes the kink in the magnetization
between (2c) and (2d) (Fig. 1). At the magnetic field (2d) both
the highest and next highest occupied energy levels decrease
with p/q, so that the total energy decreases with p/q (Fig. 1).

Thus, every time the energy levels that correspond to the
semiclassical energy level pass over the Fermi energy, a mag-
netic oscillation is produced. Namely, the dHvA oscillations
are produced by the repeated crossing of semiclassical energy
levels to the Fermi energy. This description of the magnetic
oscillation is similar to that by the semiclassical approach [8].

IV. ADDITIONAL OSCILLATION PEAKS

In this section, it is shown that additional oscillation peaks,
which cannot be explained by the LK formula, are observed
in the magnetic field dependence of the magnetization. Also,
the origin and observability of additional oscillation peaks are
discussed.

A. Additional oscillation peak and its origin

Figure 3 shows the magnified view of Fig. 1. It is seen
in Fig. 3 that there exist rugged peaks (additional oscillation
peaks) in the magnetization together with the oscillations that
can be explained by the LK formula. Of course, additional
oscillation peaks cannot be explained by the LK formula.

In order to clarify the origin of additional oscillation peaks,
we calculate energy band structures for four magnetic fields
that are indicated by (5a)–(5d) in Fig. 3. Figure 4 shows the
energy band structure for the case of magnetic field (5d),
which corresponds to the DOS of Fig. 2(d). The horizontal
axis of Fig. 4 denotes the special k points in the magnetic first
Brillouin zone of the simple cubic lattice [12]. In Fig. 4, energy
bands become nearly flat between the Z point (0,0,π/a)
and R point (π/a,0,π/a) as well as between the M point
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p/q=22/167
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eV
)

FIG. 4. Energy band structure for the case of the magnetic field
(5d) that is indicated in Fig. 3. This energy band structure corresponds
to the DOS of Fig. 2(d). Symbols Z, R, M , and � in the horizontal
axis denote special k points in the magnetic first Brillouin zone
[12]. Coordinates of special k points Z, R, M , and � are given
by (0,0,π/a), (π/a,0,π/a), (π/a,π/qa,0), and (0,0,0), respectively.

(π/a,π/aq,0) and � point (0,0,0). There exist two nearly
flat bands around the Fermi energy between the Z point and
R point. These two bands correspond to e− and e+ of Fig. 2(d)
because it is confirmed that their energy levels increase with
p/q. On the other hand, two nearly flat bands around the Fermi
energy between the M point and � point correspond to h− and
h+ of Fig. 2(d). It seems from Fig. 4 that e−, e+, h−, and h+
consist of a lot of nearly flat bands.

In order to clarify effects of these nearly flat bands on the
magnetic oscillation, energy bands around the Fermi energy
are shown in Figs. 5(a)–5(d) for the cases of magnetic fields
(5a)–(5d). Note that Fig. 5(d) is the magnified view of Fig. 4.
A lot of nearly flat bands can be seen in Fig. 5(d) more clearly
than in Fig. 4. In Fig. 5(d), the cluster [19] of nearly flat bands
above the Fermi energy corresponds to the DOS peak e− of
Fig. 2(d), while the cluster of nearly flat bands below the Fermi
energy corresponds to the DOS peak h+ of Fig. 2(d). Thus,
the cluster of nearly flat bands lying within a small energy
width corresponds to the semiclassical energy level. This “fine
energy-level structure” plays a crucial role in appearance of
the additional oscillation peaks that will be mentioned below.

Comparing Fig. 3 with Figs. 5(a)–5(d), we can see that
additional oscillation peaks are produced when energy bands
that are constituents of the cluster cross the Fermi energy.
Roughly speaking, there exist three blocks of energy bands in
the cluster along both Z-R and M-� lines [Figs. 5(a)–5(d)].
This feature of the fine energy-level structure is maintained
during the change of the p/q ratio from 92/709 to 22/167
as shown in Figs. 5(a)–5(d). When the first block crosses the
Fermi energy with the increase of the magnetic field from (5a)
to (5b), the slope of the total energy is expected to change,
similarly to the case of the semiclassical energy level (Sec. III).
Indeed, the kink of the magnetization appears between (5a)
and (5b) as shown in Fig. 3. When the second block crosses
to the Fermi energy, the magnetization has a depressed shape
between (5b) and (5c). This shape is also due to the change
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FIG. 5. Magnetic field dependence of the energy band structure
for the system immersed in a magnetic field. (a) In the case of the
magnetic field (5a) of Fig. 3. (b) In the case of the magnetic field (5b)
of Fig. 3. (c) In the case of the magnetic field (5c) of Fig. 3. (d) In the
case of the magnetic field (5d) of Fig. 3.

of the slope of the total energy. Similarly to the cases of the
first and second blocks, the crossing of the third block to the
Fermi energy leads to a depressed shape of the magnetization
between (5c) and (5d). Thus, additional oscillation peaks
originate from the fine energy-level structure that is revealed
by the MFRTB method. It is should be noted that the crossing
of only one energy band may cause the additional oscillation
peak. If we take the steps of the magnetic field more finely
in the horizontal axis of Fig. 3, then more rugged peaks will
appear in the magnetization.

B. Relation between the fine energy-level structure
and magnetic oscillations

In this subsection, the relation between the fine energy-level
structure and magnetic oscillations is investigated in more
detail. For this aim, we will review the energy band structure
obtained by the MFRTB method [11,12]. In the MFRTB
method, the magnitude of the magnetic field is given by
Eq. (1). As discussed in Ref. [11], the energy band structure
strongly depends on the value of the rational number p/q.
Let us consider energy band structures for two magnetic fields
B ∝ 1/q ′ and B ∝ p/q, the magnitudes of which are nearly
equal to each other, i.e., 1/q ′ ≈ p/q. We have 2q ′ energy
bands in the case of B ∝ 1/q ′, while in the case of B ∝ p/q

we have 2q (≈2pq ′) energy bands that are nearly p times
more than that in the case of B ∝ 1/q ′. This is understood

by the fact that the period of the translation symmetry along
the y direction in the case of B ∝ p/q is nearly p times
longer than that in the case of B ∝ 1/q ′ due to the relation
q ′p ≈ q [11,12]. Namely, due to the folding of the magnetic
first Brillouin zone, p energy gaps may be induced at the
boundaries of the magnetic first Brillouin zone in the case of
B ∝ p/q. Therefore, each energy band in B ∝ 1/q ′ splits into
p energy bands, so that 2q (≈2q ′p) energy bands appears in
the case of B ∝ p/q [11].

Since the energy bands in general overlap each other, it is
expected that the number of allowed bands is approximately
proportional to that of energy bands (2q ′) in the case of
B ∝ 1/q ′, which has been directly confirmed through numer-
ical calculations [11]. Namely, one allowed band consists of
several energy bands. Let us consider again two magnetic
fields cases: B ∝ 1/q ′ and B ∝ p/q with p/q ≈ 1/q ′. Since
the individual energy band in the case of B ∝ 1/q ′ splits into p

energy bands in the case of B ∝ p/q [11], an allowed band in
the case of B ∝ 1/q ′ would split into multiple allowed bands
in the case of B ∝ p/q; the number of multiple allowed bands
would be proportional to p. In the previous paper [11], we refer
such multiple allowed bands as “cluster”. If an allowed band
in the case of B ∝ 1/q ′ consists of w energy bands, then the
corresponding cluster in the case of B ∝ p/q consists of more
energy bands, the number of which would be proportional
to wp.

We take the case of p/q = 22/167 as an example. As
mentioned in Sec. III, energy levels that are denoted as e+,
e−, h+, and h− in Fig. 2(d) correspond to the semiclassical
energy levels. These energy levels correspond to nearly flat
bands in the energy band structure as shown in Fig. 4. It
is confirmed from Fig. 5(d) that the nearly flat bands of e−
consist of 22 (=p) energy bands. The same is true for e+, h+,
and h−. This means that the semiclassical energy levels (e+,
e−, h+, and h−) correspond to the above-mentioned cluster that
contains p energy bands. Thus, it is revealed by the MFRTB
method that the semiclassical energy level splits into multiple
energy bands that form a cluster.

At the end of this subsection, we comment on the difference
between the conventional dHvA oscillations and additional
oscillation peaks on the basis of the above-mentioned knowl-
edge about the energy band structure. The constituent energy
bands of the cluster have the same magnetic field dependence
as each other. Therefore, the global dependence of the total
energy on the magnetic field (conventional dHvA oscillations)
is determined by the magnetic field dependence of the cluster.
The crossing of constituent energy bands of the cluster to
the Fermi energy has a small but definite influence on the
magnetic field dependence of the total energy, which appears
as the additional oscillation peaks of the magnetization.
Consequently, we can say that the additional oscillation peaks
come from the energy bands that form the cluster while the
conventional dHvA oscillations are produced by the clusters
that correspond to semiclassical energy levels.

C. Observability of additional oscillation peaks

In this subsection, we discuss the observability of additional
oscillation peaks. As mentioned in the previous section,
additional oscillation peaks originate from energy bands that
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are constituents of the cluster. Since the energy width of
the cluster (energy band width) increases with p/q [11,20],
the splitting of energy bands in the cluster would increase
with p/q. It is therefore expected that the observation of
additional oscillation peaks becomes more feasible as p/q

increases. Inversely, as p/q decreases, we need to control
the value of p/q (the magnitude of the magnetic field)
with good accuracy in order to observe additional oscillation
peaks. Therefore, there is a possibility of observing additional
oscillation peaks if we measure the magnetic field dependence
of the magnetization in the high magnetic field region (high
p/q region) with a sufficiently fine step of the magnetic field.

There is another case of observing additional oscillation
peaks. As shown in Fig. 3, additional oscillation peaks
appear around the magnetic field (5c) (p/q = 96/733). In
the present calculations we take 0.543 nm as a, which is
equal to the lattice constant of crystalline silicon, so that
p/q = 96/733 corresponds to B = 1837 T due to Eq. (1).
If we consider the system, the period of which is longer
than a = 0.543 nm, then the magnitude of the magnetic
field becomes smaller for p/q = 96/733. For example, if we
consider the superlattice system with the period 10a, then
p/q = 96/733 corresponds to B = 18.37 T, which is the
experimentally available magnetic field.

More specifically, graphene placed on hexagonal boron
nitride (hBN) [21–24] seems to be one of the suitable systems
for observing additional oscillation peaks. This is because the
slight difference in the lattice constant between the graphene
and hBN leads to the moiré superlattice potential [21–24],
the period of which is as long as about 15 (nm). Indeed,
the characteristic gap structure of the energy spectrum, which
reflects the fine energy level structure and is referred to as
the Hofstadter butterfly diagram, is experimentally observed
in this system [21–24]. Therefore, it is expected that additional
oscillation peaks would be observed in a system with a long
period such as graphene placed on a hBN substrate.

V. CYCLOTRON EFFECTIVE MASS

As mentioned in the previous section, the cluster that
corresponds to the semiclassical energy level has an energy
bandwidth. It is expected that the energy bandwidth may
have an effect on the amplitude of the dHvA oscillations.
This is because it is known that the broadening of the energy
level leads to a reduction of the oscillation amplitude [18].
According to the conventional LK formula, the amplitude
of the dHvA oscillations depends on the cyclotron effective
mass, curvature of the Fermi surface, and relaxation time
for scattering of electrons [10]. Since the MFRTB method
can deal with only zero-temperature systems, it is difficult
to simultaneously analyze contributions of three quantities
to the oscillation amplitude. Therefore, before discussing the
effect of the energy band width of the cluster on the oscillation
amplitude (Sec. VI), in this section, we separately estimate the
cyclotron effective mass alone through the MFRTB method.

First, we explain how to estimate the cyclotron effective
mass. For this purpose, let us start by reviewing the semiclas-
sical approach for a Bloch electron in a magnetic field [8].
In the semiclassical approach, the cyclotron effective mass is

defined by

mc(E,kz) = h̄2

2π

dA(E,kz)

dE
, (2)

where A(E,kz) is the cross-sectional area of the constant
energy surface in a plane normal to the magnetic field.
According to the semiclassical approach, the electron goes
around the edge of the cross section with the frequency
eB/2πmc(E,kz). The quantized energy levels in the semi-
classical approach satisfy the Bohr-Sommerfeld quantization
rule and Bohr’s correspondence principle [8]. According to
Bohr’s correspondence principle, the difference between two
adjacent energy levels is given by Planck’s constant times
the frequency of classical motion at the energy levels [8].
Therefore, if the quantized energy level is denoted as εν(kz),
then Bohr’s correspondence principle is expressed by

(A) εν+1(kz) − εν(kz) = h̄eB

mc(εν(kz),kz)
. (3)

It should be noted that Eq. (3) holds approximately for energy
levels with very high quantum number ν [8]. When we
consider energy levels with very high quantum numbers ν,
εν+1(kz) − εν(kz) is expected to be much less than εν+1(kz)
and εν(kz). In this case, it is expected that both mc(εν+1(kz),kz)
and mc({εν+1(kz) + εν(kz)}/2,kz) are close to mc(εν(kz),kz)
because the difference εν+1(kz) − εν(kz) is much less than
εν+1(kz) and εν(kz). Therefore, we can rewrite Eq. (3) as

(B) εν+1(kz) − εν(kz) = h̄eB

mc(εν+1(kz),kz)
, (4)

(C) εν+1(kz) − εν(kz) = h̄eB

mc({εν+1(kz) + εν(kz)}/2,kz)
. (5)

The DOS obtained by the semiclassical approach has a
sharp peak when the energy is identical to εν(kext

z ), where
kext
z denotes the wave number such that A(E,kz) has

a extremal value, i.e., (∂A(E,kz)/∂kz)kz=kext
z

= 0 [8]. This
means that interval of peak positions of the DOS cor-
responds to h̄eB/mc(εν(kext

z ),kext
z ), h̄eB/mc(εν+1(kext

z ),kext
z )

or h̄eB/mc({εν+1(kext
z ) + εν(kext

z )}/2,kext
z ) depending on

the choice of the expression of Bohr’s correspon-
dence principle [(A), (B), or (C)]. Therefore, we
may reasonably identify the interval of peak posi-
tions of the DOS that is calculated by the MFRTB
method with h̄eB/mc(εν(kext

z ),kext
z ), h̄eB/mc(εν+1(kext

z ),kext
z )

or h̄eB/mc({εν+1(kext
z ) + εν(kext

z )}/2,kext
z ).

Using Eqs. (3)–(5), we estimate three kinds of the cyclotron
effective mass from intervals of peak positions of the DOS that
are calculated by the MFRTB method. Hereafter, we denote
three kinds of cyclotron effective mass by mMFRTB(A)

c (E,kext
z ),

mMFRTB(B)
c (E,kext

z ), and mMFRTB(C)
c (E,kext

z ), corresponding to
Eqs. (3)–(5). It should be noted that if the quantum num-
ber is sufficiently high that Bohr’s correspondence prin-
ciple holds with good accuracy, then mMFRTB(A)

c (E,kext
z ),

mMFRTB(B)
c (E,kext

z ), and mMFRTB(C)
c (E,kext

z ) will be approxi-
mately equal to each other. Inversely, differences between
the three kinds of cyclotron effective masses indicate the
inaccuracy of the semiclassical approach.

In the case of the simple cubic lattice, A(E,kz) has
extremal values at kext

z = π/a and 0 for the electron and
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FIG. 6. Energy dependences of mMFRTB(A)
c (E,kext

z )/m,
mMFRTB(B)

c (E,kext
z )/m, mMFRTB(C)

c (E,kext
z )/m and mc(E,kext

z )/m

for the electron orbital (kext
z = π/a) in the case of

p/q = 1/1427 ≈ 6.998 × 10−4 (B = 9.82 T).

hole orbitals, respectively. Figure 6 shows energy-dependences
of mMFRTB(X)

c (E,kext
z )/m (X = A, B, and C) of the electron

orbital (kext
z = π/a) in the case of p/q = 1/1427 ≈ 6.998 ×

10−4 (B = 9.82 T). For comparison, the rigorous value of
mc(E,kext

z )/m that is calculated from Eq. (2) is also shown
in Fig. 6 by the solid line. It is found that the three kinds of
the cyclotron effective masses mMFRTB(X)

c (E,kext
z )/m (X = A,

B, and C) are in a good agreement with mc(E,kext
z )/m. Also,

mMFRTB(X)
c (E,kext

z )/m (X = A, B, and C) are approximately
equal to each other. The differences between mc(E,kext

z )/m

and mMFRTB(X)
c (E,kext

z )/m (X = A, B, and C) are about
−0.06%, 0.06%, and −0.0002%, respectively. These agree-
ments mean that Bohr’s correspondence principle holds with
good accuracy in the case of p/q = 1/1427.

Figures 7(a) and 7(b) show the magnetic field dependences
of mMFRTB(X)

c (EF ,kext
z ) for the electron orbital (kext

z = π/a)
and hole orbital (kext

z = 0), respectively. Vertical axes of
Figs. 7(a) and 7(b) denote the difference between mc(EF ,kext

z )
and mMFRTB(X)

c (EF ,kext
z ) (kext

z = π/a and 0), which is given by

�mMFRTB(X)
c

(
EF ,kext

z

)
= mMFRTB(X)

c

(
EF ,kext

z

) − mc

(
EF ,kext

z

)
mc

(
EF ,kext

z

) . (6)

It is found from Figs. 7(a) and 7(b) that absolute values of
�mMFRTB(X)

c (EF ,kext
z ) (kext

z = π/a and 0) increase with the
magnetic field for the three cases (X = A, B, C). Also, it is
confirmed from Figs. 7(a) and 7(b) that differences between
three kinds of cyclotron effective masses [mMFRTB(X)

c (EF ,kext
z )

(X = A, B, and C)] also increase with the magnetic field.
These tendencies suggest that the accuracy of semiclassical
energy levels gets worse with increasing magnetic field. This
can be understood by considering the maximum quantum
number. Namely, Bohr’s correspondence principle is valid
for energy levels with very high quantum number [8]. The
maximum quantum number is roughly estimated by the ratio
of EF and h̄eB/mc(EF ,kext

z ). This ratio becomes of the order
of 103 in the case of B ∼ 10 T (p/q ∼ 7 × 10−4), while it is
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FIG. 7. Magnetic field dependences of �mMFRTB(X)
c (EF ,kext

z )
(X = A, B, and C) for (a) the electron orbital (kext

z = π/a) and (b) the
hole orbital (kext

z = 0).

about 10 in the case of B ∼ 103 T (p/q ∼ 7 × 10−2). Thus,
the maximum quantum number increases with B, so that the
accuracy of semiclassical energy levels gradually gets worse
in the high magnetic field.

It should be noted that the absolute value
of �mMFRTB(C)

c (EF ,kext
z ) is smaller than those of

�mMFRTB(A)
c (EF ,kext

z ) and �mMFRTB(B)
c (EF ,kext

z ). Therefore,
we had better use Eq. (5) instead of Eqs. (3) and (4) in order
to estimate the cyclotron effective mass from the DOS that is
obtained by the MFRTB method or by experiments such as
photoelectron spectroscopy.

VI. ANALYSIS OF THE AMPLITUDE OF THE dHvA
OSCILLATIONS

The amplitude of the dHvA oscillations is usually analyzed
on the basis of the LK formula that includes the effect of the
scattering of electrons [5–7]. The effect of the scattering of
electrons is incorporated into the LK formula by treating the
quantized energy level as the broadened energy level with the
width h̄/τ , where τ is a relaxation time [18]. This broadening
leads to a reduction of the oscillation amplitude [18]. In the
present MFRTB method, the scattering of electrons is not taken
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TABLE I. Resultant values of parameters for low p/q regions.

Range of p/q Period (10−4/T) γ A′′(EF ,kext
z ) TD (K)

6.972 × 10−4–7.070 × 10−4 3.85826 0.500 8.6253430 5.38 × 10−7

3.079 × 10−3–3.270 × 10−3 3.85855 0.495 8.6260636 7.61 × 10−7

5.069 × 10−3–5.666 × 10−3 3.85827 0.499 8.6260636 8.63 × 10−7

into consideration. However, the cluster that corresponds to the
semiclassical energy level appears to have an energy width as
mentioned in Sec. IV. Therefore, it is expected that the energy
width of the cluster will cause the reduction of the oscillation
amplitude even though the scattering of electrons is not taken
into consideration. In this section, the oscillation amplitude is
analyzed through the MFRTB method.

A. Analysis method

The LK formula for the total energy density at 0 K is given
by [10]

Etotal =
√

e5

8π7h̄

∑
l=1

∑
kext
z

cos
(
πl

gmc(EF ,kext
z )

2m

)
RDB5/2

l5/2mc

(
EF ,kext

z

)√∣∣A′′(EF ,kext
z

)∣∣
× cos

{
h̄lA

(
EF ,kext

z

)
eB

− 2πlγ + π

4

}
+ EB=0

total − χ

2
B2

(7)

with

RD = exp

(
−2π2 mc

(
EF ,kext

z

)
kBTD

h̄eB
l

)
, (8)

where A′′(EF ,kext
z ) and γ and g denote the curvature of the

Fermi surface, g factor, and phase correction, respectively.
The factor RD is the so-called Dingle factor, and TD denotes
the Dingle temperature, which is defined by TD = h̄/2πkBτ

[18]. In Eq. (7), EB=0
total and −χB2/2 denote the total energy
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FIG. 8. Magnetic field dependences of the total energy (filled
circle) in the p/q range (c), 5.069 × 10−3–5.666 × 10−3. The solid
line and plots denote resultant fitted curves of the LK formula and
calculation results of the MFRTB method, respectively.

density for the zero magnetic field case and magnetization
energy density, respectively, where χ is the susceptibility.

In order to analyze the amplitude of the dHvA oscillations,
we determine values of A′′(EF ,kext

z ), TD , γ , A(EF ,kext
z ), EB=0

total ,
and χ by fitting Eq. (7) to calculation results of the MFRTB
method, where the value of g is fixed at 2.0 because the MFRTB
method is based on the Dirac equation. The method of least
squares is employed in the fitting procedure. As the value of
mc(EF ,kext

z ), we use mMFRTB(C)
c (EF ,kext

z ) that is evaluated in
the previous section [Figs. 7(a) and 7(b)]. Specifically, the
following form is employed in the fitting procedure:

mMFRTB(C)
c

(
EF ,kext

z

) − mc

(
EF ,kext

z

)
mc

(
EF ,kext

z

)
= 3.9467 × 10−11 × B2.7783. (9)

This formula approximately represents both magnetic field
dependences of mMFRTB(C)

c (EF ,π/a) and mMFRTB(C)
c (EF ,0)

that are shown in Figs. 7(a) and 7(b), respectively. Bearing
in mind that both relations A(EF ,0) = A(EF ,π/a) and
A′′(EF ,0) = A′′(EF ,π/a) hold for the case of the simple cubic
lattice, there are six parameters that should be determined
in the fitting procedure, i.e., A(EF ,0) [=A(EF ,π/a)],
TD , A(EF ,0) [=A(EF ,π/a)], γ , EB=0

total , and χ . Values of
A′′(EF ,kext

z ) and TD are related to the oscillation amplitude in
a different manner, and those of A(EF ,kext

z ) and γ determine
the period and the shift of the oscillation, respectively. The
nonoscillatory part of Etotal is determined by values of EB=0

total
and χ . Therefore, it is expected that we may readily determine
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FIG. 9. Magnetic field dependence of the total energy for the
cases of a magnetic field ranging from p/q = 2.878 × 10−2 to
5.703 × 10−2. The solid line and plots denote calculation results of
the LK formula with rigorous values of parameters (Table II) and
those of the MFRTB method, respectively. The inset is the magnified
view of the dependence for the high magnetic field region.
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TABLE II. Rigorous values of parameters in the LK formula. Rigorous values are calculated by using the energy band structure for the
zero magnetic field case.

A(EF ,kext
z ) (m−2) Period (10−4/T) A′′(EF ,kext

z ) TD (K) mc(EF ,kext
z )/m

2.47411 × 1015 3.85826 8.6260636 0 0.10201

these values by fitting Eq. (7) to calculation results of the
MFRTB. In the subsequent subsections, we discuss values
of parameters that are related to the dHvA oscillations, i.e.,
A(EF ,kext

z ), TD , A′′(EF ,kext
z ), and γ .

B. Low p/q region

As mentioned in Sec. III C, the energy width of the cluster
decreases with decreasing p/q. In addition, according to the
discussion of Sec. V, the deviation in the cyclotron effective
mass is also negligible for the low p/q region. Therefore, it
is expected that the LK formula works well for the low p/q

region.
Values of A′′(EF ,kext

z ), TD , γ , A(EF ,kext
z ), EB=0

total , and
χ are determined individually for the following low p/q

regions: (a) 6.972 × 10−4–7.070 × 10−4, (b) 3.079 × 10−3–
3.270 × 10−3, (c) 5.069 × 10−3–5.666 × 10−3. The resultant
values are summarized in Table I. For reference, the resultant
fitted curves (solid lines) and calculation results of the MFRTB
method (plots) are shown in Fig. 8 for the case of the region (c).
As shown in Fig. 8, the LK formula with resultant parameters
(Table I) well reproduces the dHvA oscillations calculated by
the MFRTB method. Oscillation periods obtained for the three
regions are in good agreement with the rigorous value that is
calculated from the energy band structure for the zero magnetic
field case (see Table II). This agreement is consistent with the
result of the previous paper [12]. Values of TD are nearly equal
to zero, which means that a pseudo Dingle temperature does
not appear in these p/q regions. Values of A′′(EF ,kext

z ) are also
in good agreement with the rigorous value that is given in Ta-
ble II. Differences between the rigorous value of A′′(EF ,kext

z )
and fitted values are less than 0.01% for three p/q regions.

The above-mentioned good agreements between resultant
values of fitting parameters and rigorous values are con-
sistent with the good agreement between mc(EF ,kext

z ) and
mMFRTB(X)

c (EF ,kext
z ) that is discussed in Sec. V. This suggests

that the dHvA oscillations observed in these p/q regions can
be well described by the LK formula with good accuracy.

C. High p/q region

Figure 9 shows the magnetic field dependence of the
total energy for the case of p/q ranging from 2.878 × 10−2

to 5.703 × 10−2. In Fig. 9, plots and dashed line denote

calculation results of the MFRTB method and those of the
LK formula with rigorous values of parameters that are given
in Table II [25]. It is found from Fig. 9 that the total energies
of the LK formula deviate from those of the MFRTB method
with increasing p/q. The deviation observed in the high p/q

region implies that the LK formula does not work well in the
high p/q region.

Next, we discuss what kinds of errors will happen if we
incorrectly apply the LK formula to the magnetic oscillation
data for the high p/q region. In a way similar to that in the
previous subsection (Sec. VI B), we determine parameters of
the LK formula by fitting Eq. (7) to calculation results of the
MFRTB method. In the fitting procedure, the value of EB=0

total is
fixed at the averaged value of results that are obtained for the
low p/q cases (Sec. VI B) [25]. We determine parameters of
the LK formula by the following two fitting procedures:

(A) One is that TD , γ , A(EF ,kext
z ), and χ are used as the

fitting parameters while A′′(EF ,kext
z ) is fixed at the rigorous

value given in Table II.
(B) Another procedure is that A′′(EF ,kext

z ), γ , A(EF ,kext
z ),

and χ are employed as the fitting parameters while TD is fixed
at zero.

In the former procedure the deviation of the oscillation
amplitude is attributed to that of TD , while it is attributed
to that of A′′(EF ,kext

z ) in the latter procedure. These fitting
procedures are done for five p/q regions: (a) 6.309 × 10−3–
8.559 × 10−3, (b) 8.565 × 10−3–1.280 × 10−2, (c) 1.2848 ×
10−2–2.850 × 10−2, (d) 2.878 × 10−2–5.703 × 10−2, and
(e) 5.727 × 10−2–2.487 × 10−1.

Resultant values that are determined by the fitting pro-
cedures (A) and (B) are summarized in Tables III and IV,
respectively. It is found from Table III that the pseudo Dingle
temperature increases with p/q and reaches a typical order
of the Dingle temperature [0.1–1 (K)] that is observed in
experiments. The reason why the pseudo Dingle temperature
increases with p/q is that the energy width of the cluster
increases with p/q as mentioned in Sec. IV B. Thus, the
reduction of the oscillation amplitude is caused by the energy
width of the cluster non-negligibly even though τ is very large.

If the reduction of the oscillation amplitude is attributed to
the value of A′′(EF ,kext

z ) instead of the pseudo Dingle temper-
ature, the resultant value of A′′(EF ,kext

z ) gradually increases
with p/q (Table IV). This would cause the overestimation

TABLE III. Values of parameters for high p/q regions. These values are determined by the fitting procedure (A).

Range of p/q Period (10−4/T) γ A′′(EF ,kext
z ) TD (K)

6.309 × 10−3–8.559 × 10−3 3.85845 0.498 8.6260636 1.22 × 10−4

8.565 × 10−3–1.280 × 10−2 3.85870 0.496 8.6260636 1.48 × 10−2

1.2848 × 10−2–2.850 × 10−2 3.86005 0.492 8.6260636 1.32 × 10−1

2.878 × 10−2–5.703 × 10−2 3.86642 0.483 8.6260636 1.05 × 100

5.727 × 10−2–2.487 × 10−1 3.88140 0.469 8.6260636 3.66 × 101
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TABLE IV. Values of parameters for high p/q regions. These values are determined by the fitting procedure (B).

Range of p/q Period (10−4/T) γ A′′(EF ,kext
z ) TD (K)

6.309 × 10−3–8.559 × 10−3 3.85844 0.498 8.6263427 0
8.565 × 10−3–1.280 × 10−2 3.85870 0.496 8.6287488 0
1.2848 × 10−2–2.850 × 10−2 3.86004 0.492 8.6397337 0
2.878 × 10−2–5.703 × 10−2 3.86655 0.483 8.6724848 0
5.727 × 10−2–2.487 × 10−1 3.88505 0.467 9.0602895 0

of the curvature of the Fermi surface A′′(EF ,kext
z ) if the LK

formula was incorrectly utilized in analyzing the oscillation
amplitude for the high p/q region.

In both Tables III and IV, oscillation periods gradually in-
crease with p/q, so that the difference between the oscillation
period and the rigorous one increases with p/q. This p/q

dependence of the period is consistent with the result of the
previous paper [12]. The difference in the period implies that
A(EF ,kext

z ) would be underestimated if the LK formula was
incorrectly applied to the magnetic oscillation data for the high
p/q region. Although the value of γ is close to that for the
free electron case (γ = 0.5) in the low p/q regions (Table I),
it gradually deviates from 0.5 with increasing p/q (Tables III
and IV). This means that the free electron model becomes
unsuitable for the system immersed in the high magnetic field
with high p/q.

It should be mentioned that the above-mentioned reduction
of the oscillation amplitude may be observed experimentally
depending on the system. As mentioned in Sec. IV B, the
energy width of the cluster depends on p/q [11,20]. In the
case of the simple cubic lattice, it is found from Table III
or IV that the pseudo Dingle temperature or overestimation
of A′′(EF ,kext

z ) becomes non-negligible when p/q is more
than 2.878 × 10−2 [regions (d) and (e)]. The rational number
p/q ≈ 2.878 × 10−2 corresponds to 400 T for the system with
a = 0.543 nm. If we consider the system with a period that is
one order of magnitude longer than a, then p/q ≈ 2.878 ×
10−2 corresponds to B ≈ 4 T, which is an experimentally
available magnetic field. For example, since graphene placed
on a hBN substrate has a long period (about 15 nm) of the moiré
superlattice potential [21–24] as mentioned in Sec. IV C, there
is a possibility that the pseudo Dingle temperature and/or the
overestimation of A′′(EF ,kext

z ) are observable experimentally
in a system with a long period, such as a superlattice system.

VII. CONCLUDING REMARKS

The MFRTB method is a first-principles calculation
method for electronic structures of metals immersed in
a magnetic field. On the basis of electronic structures
calculated by the MFRTB method, we investigate magnetic
properties of a simple cubic lattice system with s electrons
that is immersed in a uniform magnetic field. The electronic
structure calculated by the MFRTB method has the following
property that becomes the key point for describing the
magnetic oscillations of metals:

(1) The electronic structure calculated by the MFRTB
method has a fine energy-level structure: The cluster of energy
bands that lie within a small energy width corresponds to the
semiclassical energy level.

With the aid of this knowledge, we obtain the description
for the conventional dHvA oscillations:

(2) Every time the cluster of energy bands that corresponds
to the semiclassical energy level crosses the Fermi energy,
the slope of the total energy with respect to the magnetic
field is changed, which causes the periodic change of the
magnetization.

The fine energy-level structure that is found by the MFRTB
method causes the following phenomena:

(3) When energy bands that are constituents of the cluster
cross the Fermi energy, additional oscillation peaks of the
magnetization emerge together with the conventional dHvA
oscillations.

(4) Due to the energy width of the cluster, an unexpected
reduction of the oscillation amplitude occurs. This reduction
causes the pseudo Dingle temperature and/or the overestima-
tion of the curvature of the Fermi surface.

These phenomena cannot be explained by the semiclassical
approach and are found by means of the MFRTB method. We
also discuss the observability of phenomena (3) and (4), and
we achieve the following result:

(5) There is a possibility that the above-mentioned phe-
nomena (3) and (4) are observable in experiments. For exam-
ple, phenomena (3) and (4) may be observed in some systems
with a long period, such as a superlattice system [21–24].

Thus, beyond the semiclassical approach of the Bloch
electron immersed in a magnetic field, the MFRTB method
provides a first-principles way to describe physical phenomena
observed in a magnetic field. Especially, the MFRTB method
can predict physical phenomena [such as (3) and (4)] that
cannot be described by the semiclassical approach. This
knowledge would provide one of the possible scenarios of
magnetic oscillations.

Finally, we comment on the future lines of the discussion
about the effect of finite temperature on phenomena (3) and (4).
When the effect of finite temperatures is discussed, DOSs that
have already been obtained in the present work can be utilized
in calculating the free energy and magnetization. Then, we
may investigate the temperature dependence of the intensity
of additional oscillation peaks. In addition, by estimating the
pseudo Dingle temperature from the temperature and magnetic
field dependences of the magnetization, we may discuss the
effect of finite temperatures on the unexpected reduction of
the oscillation amplitude.
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