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Based on the density matrix renormalization group (DMRG), strongly correlated quantum many-body systems
at finite temperatures can be simulated by sampling over a certain class of pure matrix product states (MPS)
called minimally entangled typical thermal states (METTS). When a system features symmetries, these can be
utilized to substantially reduce MPS computation costs. It is conceptually straightforward to simulate canonical
ensembles using symmetric METTS. In practice, it is important to alternate between different symmetric collapse
bases to decrease autocorrelations in the Markov chain of METTS. To this purpose, we introduce symmetric
Fourier and Haar-random block bases that are efficiently mixing. We also show how grand-canonical ensembles
can be simulated efficiently with symmetric METTS. We demonstrate these approaches for spin-1/2 XXZ

chains and discuss how the choice of the collapse bases influences autocorrelations as well as the distribution of
measurement values and, hence, convergence speeds.
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I. INTRODUCTION

The density matrix renormalization group (DMRG) is a
powerful numerical technique for the simulation of one-
dimensional (1D) strongly correlated quantum systems [1–3].
Its concise formulation in terms of matrix product states
(MPS) [4–6] provides a framework for the efficient computa-
tion of ground states and the real-time evolution of pure states.
Three quite different approaches were developed that extend it
to the simulation of finite-temperature properties. The histor-
ically first was the quantum transfer-matrix renormalization
group [7–10] which has some technical complications such
as the non-Hermiticity of the quantum transfer matrix. The
second one relies on a purification of the mixed state [11–13]
that can be encoded in matrix product form [14,15]. These
matrix product purifications (MPP) were successfully applied
to calculate, for example, finite-temperature correlation and
response functions of quantum spin chains [16–18]. As, e.g.,
described in Ref. [19], the employed MPPs are in one-to-one
relation with matrix product density operators (MPDO) [20].
However, MPP computations remain challenging, because
the simulation on an enlarged Hilbert space can lead to a
considerable growth of entanglement, making them costly at
low temperatures. More recently, an alternative approach was
developed that avoids the purification and hence the enlarged
Hilbert space. Instead, one samples over a cleverly chosen
set of pure quantum states, called minimally entangled typical
thermal states (METTS) [21,22]. The efficiency of the METTS
algorithm is limited by the statistical error induced by the
sampling [23].

In this paper, we describe and demonstrate how symmetries
can be utilized to improve the efficiency of the METTS
algorithm. Recently, it was shown in Ref. [24] how grand-
canonical METTS simulations of response functions can be
made substantially more efficient by switching to symmetric
states just before the real-time evolution. However, the actual
METTS sampling was unmodified, i.e., symmetries were not
employed in the imaginary-time evolution and transitions.

Here, we discuss symmetric METTS algorithms for both
canonical and grand-canonical ensembles. If the system and its

environment exchange energy and there is a conserved quantity
Q̂, the equilibrium state of the system is given by the (here,
unnormalized) canonical ensemble

�̂c
β,Q := e−βĤQ on HQ (1)

with ĤQ being the projection of the Hamiltonian onto the
quantum number Q subspace HQ of the full Hilbert space
H = ⊕

Q HQ. Similarly, if system and environment also

exchange the quantity associated with Q̂, the equilibrium state
is the grand-canonical ensemble

�̂
gc
β,α = e−β(Ĥ+αQ̂). (2)

Here, the Lagrange multiplier α fixes the expectation value
of Q̂. In more complex cases with multiple conserved
quantities Q̂(j ), one can also consider ensembles like
exp[−β(ĤQ(1) + α2Q̂

(2))].
The transitions in the Markov chain of METTS samples

are determined by projective measurements with respect to
a collapse basis that can be freely chosen. This choice
strongly affects the statistical properties of the resulting sam-
ples [22,23]. In this work, we introduce novel collapse bases
for symmetric METTS simulations. To be able to conserve
global quantum numbers Q and to increase efficiency, we
go beyond bases of single-site product states and carry out the
projective measurements on blocks of several sites. We discuss
the influence of the collapse basis choice on the convergence
of the algorithm and introduce Fourier and Haar-random block
bases which are, as we call it, efficiently mixing.

The structure of this paper is as follows. In Sec. II
we review how symmetries can be utilized in the matrix
product state representation to achieve a significant speedup
in the simulations. We briefly summarize the original METTS
algorithm without the use of symmetries in Sec. III. In
Sec. IV, we discuss how to use symmetries in the simulation
of canonical ensembles. We go on to introduce maximally
and efficiently mixing (symmetric) collapse bases in Sec. V
and summarize the factors influencing convergence speeds
in Sec. VI. Section VII applies the techniques to spin-1/2
XXZ chains in the canonical ensemble. A symmetric METTS
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algorithm for the simulation of grand-canonical ensembles is
introduced and demonstrated in Sec. VIII. We summarize and
conclude in Sec. IX.

II. SYMMETRIES IN MATRIX PRODUCT STATES

Let us consider a lattice system with L sites and orthonor-
mal on-site basis states {|σi〉 | σi = 1, . . . ,d}. Matrix product
states (MPS) for the system have the form

|ψ〉 =
∑

σ

A
σ1
1 A

σ2
2 · · · AσL

L |σ 〉, (3)

with σ := (σ1, . . . ,σL) and Di−1 × Di matrices A
σi

i . The Di

are also called bond dimensions, and we require D0 = DL = 1
such that the matrix product yields a scalar coefficient.

We are concerned with states |ψ〉 that are eigenstates of a
conserved quantity Q̂. For simplicity, we restrict our consid-
erations to a single Abelian symmetry such as conservation of
total particle number or magnetization. However, everything
generalizes in a very similar manner to the cases of multiple
conserved quantities and non-Abelian symmetries [25,26]. For
the latter, one exploits that dependencies inside each multiplet
are given by Clebsch-Gordan coefficients as exemplified by
the Wigner-Eckart theorem.

For an Abelian symmetry, the conserved quantity may have
the form Q̂ = ∑

i q̂i with q̂i |σi〉 = q(σi)|σi〉 [27]. We can
construct an MPS (3) with quantum number Q by imposing
selection rules on the tensor elements [Aσi

i ]ai ,bi
. Specifically,

one assigns quantum numbers q(ai) and q(bi) to the matrix
indices and imposes selection rules like

[
A

σi

i

]
ai ,bi

�= 0 only if q(ai) + q(σi) = q(bi). (4)

q(σi)

q(bi)q(ai)

Setting q(a1) = 0 and q(bL) = Q, this ensures that
Q̂|ψ〉 = Q|ψ〉.

Explicitly enforcing these conditions by decomposing the
tensors into symmetry blocks leads to a significant speedup and
improved accuracy of the MPS algorithms. The numerically
most costly operations are typically singular value decompo-
sitions (SVD) of the tensors in the MPS. These then reduce to
cheaper SVDs of the symmetry blocks.

III. MINIMALLY ENTANGLED TYPICAL
THERMAL STATES

The strategy employed in the minimally entangled typical
thermal states (METTS) algorithm [21] is to decompose the
thermal density matrix �̂β := exp(−βK̂), with K̂ = ĤQ or
K̂ = Ĥ − αQ̂, into a sum of projectors

�̂β =
∑

n

Pn|φn〉〈φn|,

with METTS

|φn〉 := 1√
Pn

e−βK̂/2|n〉, Pn := 〈n|e−βK̂ |n〉.

Here, B := {|n〉} is an appropriate orthonormal basis for the
full system with 〈n|n′〉 = δn,n′ . As discussed later, we choose
block product states. Block product states may be entangled
within blocks of a certain number of lattice sites but not
across the block boundaries. Correspondingly, the MPS bond
dimensions Di are 1 at the block boundaries.

As described in Refs. [21–23], one can efficiently generate
a Markov chain

φn → φn′ → φn′′ → . . .

of METTS in MPS form according to their (unnormalized)
probabilities Pn by repeated imaginary-time evolution steps
|n〉 → |φn〉 and projective measurements |φn〉 → |n′〉. The
evolution step can be executed with time-dependent DMRG
(tDRMG) [28,29]. The transition probabilities pn→n′ =
|〈n′|φn〉|2 obey detailed balance

Pnpn→n′ = |〈n′|e−βK̂/2|n〉|2 = Pn′pn′→n. (5)

Thermal expectation values 〈Ô〉β = Tr(�̂βÔ)/ Tr(�̂β) can then
be computed by averaging 〈φnν |Ô|φnν 〉 over the Markov chain.
If the states |n〉 are (block) product states, the projective
measurements can be executed in a sweep through the lattice
by doing local projective measurements [21–23].

In the following, we discuss how symmetries can be
utilized in METTS simulations for canonical and grand-
canonical ensembles, i.e., how the conservation of Q̂ = ∑

i q̂i

eigenvalues can be used to substantially reduce computation
costs. Please note that Ref. [24] shows how to produce
symmetric METTS for the grand-canonical ensemble for the
evaluation of time-dependent quantities (study of quenches or
response functions). To this purpose, nonsymmetric METTS,
which are not Q̂ eigenstates, have been generated. Symmetric
METTS are then obtained from these in subsequent symmetric
collapses. While this does not provide any computational
advantage for the imaginary-time evolution and the evaluation
of static quantities, it can make subsequent real-time evolutions
of the METTS, in which the symmetries are exploited, much
more efficient [24]. What is described in the following offers
an efficient way to already utilize symmetries during the
imaginary-time evolution.

IV. SYMMETRIES FOR THE CANONICAL ENSEMBLE

Conceptually, it is straightforward to simulate canonical
ensembles (1) using symmetric METTS. One simply needs
to restrict the initial state and the collapse basis {|n〉} to the
correct symmetry sector. In particular, one should work with
an orthonormal basis

{|n〉 | Q̂|n〉 = Q|n〉} (6)

of HQ. If these states are (block) product states, they can be
easily encoded as symmetric MPS (3) with small bond dimen-
sions, where matrix elements obey the constraint (4). As the
Hamiltonian ĤQ commutes with Q̂, the symmetry constraints
on the MPS also hold during the imaginary-time evolution
|n〉 → |φn〉. Now, the projective measurements |φn〉 → |n′〉
need to be done such that also |n′〉 has quantum number Q. If
we use a symmetric collapse basis (i.e., every basis state is a
Q̂ eigenstate), we always stay in the same symmetry sector as
transition probabilities pn→n′ = |〈n′|φn〉|2, in the projective
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measurements, vanish for states |n′〉 with quantum number
Q′ �= Q. Inside the symmetry sector with quantum number
Q, detailed balance is fulfilled as in Eq. (5).

In practice, using the same symmetric collapse basis (6)
for every transition in the Markov chain can however be very
inefficient, because it often leads to strong autocorrelations
between subsequent METTS samples. This is obvious for
infinite temperature, where we would be stuck in the initial
state of the Markov chain. To arrive at an efficient algorithm,
one needs to alternate between different symmetric bases. To
this purpose, we introduce new symmetric collapse bases and
discuss their properties in the following (Sec. V).

After completion of this work, we noticed Ref. [30]. To
our knowledge it is the only previous work trying to simulate
canonical ensembles with METTS. In particular, a canonical
ensemble for the Bose-Hubbard model in the gapped Mott
regime was simulated, using only the {n̂i} eigenbasis, i.e.,
Fock states. Because of the strong autocorrelations, only every
200th METTS sample was included in the final ensemble.

V. EFFICIENT COLLAPSE BASES

It is possible and often advantageous to switch between
different collapse bases in order to decrease autocorrelation
times in the Markov chain. For example, one can do projective
measurements using a basis {|n〉} for all odd iteration steps
and a second basis {|ñ〉} for all even iteration steps. Detailed
balance is still fulfilled in every second iteration step, as

Pn
∑

ñ pn→ñpñ→n′ = Pn′
∑

ñ pn′→ñpñ→n, (7)

where |n〉 and |n′〉 are from basis 1 and |ñ〉 is from basis 2.
A simple example is to collapse alternatingly to {Ŝz

i }
and {Ŝx

i } eigenstates, respectively, for a spin-1/2 system
as described in Ref. [22]. For a general system with a
d-dimensional local state space (e.g., the Bose-Hubbard model
with a maximum of nmax = d − 1 particles per site), one can
generate Haar-random collapse bases [31] for each iteration
step and lattice site [23]. Note that in both cases, these
measurements break the symmetry associated with the con-
servation of total magnetization Ŝz

tot = ∑
i Ŝ

z
i or total particle

number N̂tot = ∑
i n̂i , respectively, because the basis states are

not symmetry eigenstates. Such METTS computations hence
simulate the grand-canonical ensemble and symmetries can in
general not be utilized.

A. Maximally mixing bases

If we use a single collapse basis {|n〉} such as {Ŝz
i }

eigenstates for a spin system or {n̂i} eigenstates for a system
of bosons or fermions, there is no dynamics at all at infinite
temperature (β = 0). Starting from an arbitrary initial state
|n〉, transitions to all other basis states are impossible such that
the METTS simulation is stuck in the state |n〉.

Having the METTS dynamics at high temperatures in
mind, we can minimize autocorrelation times by switch-
ing between collapse bases {|n〉} and {|ñ〉} for which the
distribution of overlaps |〈ñ|n〉| is as flat as possible. In
other words, we want that all overlaps |〈ñ|n〉| are as
small as possible. This guarantees that, at least at high
temperatures, transitions to many states are possible and

of similar probability. For β = 0 and a Hilbert space of
dimension D [32], an optimal combination of bases yields
transition probabilities pn→ñ = |〈ñ|n〉|2 = 1/D ∀n,ñ [33] and
also p

(2)
n→n′ := ∑

ñ pn→ñpñ→n′ = 1/D ∀n,n′ . More generally,
we call a sequence of K bases maximally mixing, if p

(K)
n→n′ =

1/D ∀n,n′ at infinite temperature, where p(K) are the transition
probabilities after K steps, i.e., when having cycled once
through all K collapse bases.

One example of maximally mixing bases are the bases
{|σ 〉} and {|σ̃ 〉} of {Ŝz

i } and {Ŝx
i } eigenstates for a spin-1/2

system [22]. Here, |σi〉 ∈ {|↑〉,|↓〉} and |σ̃i〉 = 1√
2
(|↑〉 ± |↓〉).

Unfortunately, this choice of bases is not applicable if we want
to exploit the conservation of the total magnetization.

We may call a sequence of K bases efficiently mixing if, at
infinite temperature, there are many nonzero K-step transition
probabilities p

(K)
n→n′ of comparable (small) amplitude for every

n, and if the transitions grant ergodicity. In the following,
we give specific examples for maximally mixing or at least
efficiently mixing collapse bases that are also applicable for
symmetric METTS, i.e., when global quantum numbers are
conserved.

B. Symmetric collapse bases with efficient mixing

Inspired by the discrete Fourier transform, one can construct
maximally mixing bases for any D-dimensional Hilbert space.
With a first orthonormal basis {|x〉 | x = 1, . . . ,D}, we can
choose a second basis as

|k̃〉 := 1√
D

D∑
x=1

e2πikx/D|x〉 for k = 1, . . . ,D, (8)

which we call the Fourier basis with respect to {|x〉}. As
|〈k̃|x〉|2 = 1/D ∀x,k we have indeed p

(1)
x→k̃

= 1/D and also

p
(2)
x→x ′ = 1/D ∀x,x ′ at infinite temperature. Note that we are

free to reorder the states |x〉. Hence, permutations can be used
to construct different versions of the Fourier basis.

In principle, we could use this approach to construct
global symmetric collapse bases that are maximally mixing.
Let us discuss this using the example of a spin system.
Given an orthonormal basis {|σ 〉} of {Ŝz

i } eigenstates for the
magnetization M subspace HM , we can identify the states |σ 〉
with |x〉, where x = 1, . . . , dimHM , and obtain their Fourier
basis {|k̃〉} according to Eq. (8). These two bases of HM are
maximally mixing. We call the METTS scheme in which
one alternates between collapses in this Fourier basis and the
{Ŝz

i } eigenbasis “SF-Sz” (symmetric Fourier w.r.t. Ŝz
i ). It is

illustrated in Fig. 1.
However, such a global Fourier transform is technically

infeasible because the basis states |k̃〉 are in general highly en-
tangled. On average, their entanglement entropy is extensive,
causing exponentially growing computation costs. To avoid
this problem while retaining the efficient mixing property, we
divide the lattice into blocks of b lattice sites. For each of
these blocks, we have an {Ŝz

i } eigenbasis and can construct
a Fourier basis for each symmetry sector of that block.
This is scheme “SFb-Sz” in Fig. 1. For a spin-1/2 system
with magnetization conservation, the 2b-dimensional Hilbert
space of a b-site block is decomposed into b + 1 symmetry
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Sz

SF-Sz

SF4-Sz

SF4

SWAP

SWAP2

SWAP8

FIG. 1. Illustration of collapse bases. The top depicts the original
collapse basis using the {Ŝz

i } eigenbasis on each site (Sz). Below,
we alternate between the Sz basis and its global symmetric Fourier
transform (8) (SF-Sz). These are maximally mixing. In practice, we
approximate the SF-Sz scheme by restricting the basis construction to
blocks of b sites, which are shifted by b/2 lattice sites for every second
block collapse (SFb-Sz). Alternatively, a Haar-random symmetric
basis can be chosen on these blocks (SRb-Sz). One can also omit the
Sz collapse in every second step and only use the Fourier basis, again
shifting blocks in every second collapse (SFb). The swap collapse
randomly partitions the lattice into pairs of sites, where, on each
pair, the eigenstates of the swap operator (9) are chosen. The overall
collapse basis is the tensor product of these. Again, we approximate
the ideal swap collapse by restricting the pairing to blocks of b sites
(SWAPb), where we shift by b/2 sites in every second collapse.

sectors with magnetizations −b/2,−b/2 + 1, . . . ,+b/2 and
corresponding subspace dimensions

(
b

0

)
,
(
b

1

)
, . . . ,

(
b

b

)
. For each

of these subspaces, we construct collapse bases according to
Eq. (8) with |x〉 referring in this case to the {Ŝz

i } eigenstates of
some fixed magnetization on the block (in some ordering).
These bases are maximally mixing within each symmetry
sector, but there are no transitions between different symmetry
sectors of a block. Finally, in order to achieve ergodicity
also at infinite temperature and to enhance the dynamics of

fluctuations in general, we can shift blocks in every second
block collapse by b/2 sites as illustrated in Fig. 1.

It is instructive to shortly discuss the nature of the resulting
METTS dynamics for an example. The simplest case is a
spin-1/2 system in the symmetry sector with a single up-spin,
M = −L/2 + 1. First, consider infinite temperature, β = 0.
With global maximally mixing bases such as the symmetric
Fourier Ŝz

i bases (SF-Sz), every second collapse, the up-spin
jumps with equal probability to any new site. In the corre-
sponding block scheme SFb-Sz, the up-spin does a random
walk (diffusive) whose average step size is proportional to
the block size b. In contrast, for zero temperature (β → ∞),
every METTS is equal to the ground state inHM , for which, for
Hamiltonians of interest, the up-spin is delocalized. So, at low
temperatures, the change in position of the up-spin after each
Sz collapse is not caused by the mixing property of the bases
but mainly by the delocalization due to the imaginary-time
evolution.

Several variations of the above construction of efficiently
mixing symmetric bases are conceivable. One is to use Haar-
random collapse bases instead of the Fourier bases. So, instead
of applying Eq. (8) to obtain the second basis, one can draw
a Haar-random basis for each symmetry sector of each b-site
block. While such collapse bases, for the same block size b,
perform very similarly at high temperatures, their efficiencies
at finite temperatures may be quite different and will in general
also depend on the system parameters. For the spin systems, we
call the corresponding symmetric METTS schemes “SRb-Sz”.

For both the SFb-Sz and SRb-Sz bases, where blocks are
shifted in every second collapse, we noticed that in practice,
the intermediate Sz collapses for every second sample are
not really necessary. They actually result in somewhat slower
convergence in our exemplary benchmark simulations. This
can again be understood by considering the overlaps of
the different basis states. We denote the schemes where Sz
collapses are omitted by SFb and SRb.

The symmetric Fourier and random block bases naturally
have nonsymmetric counterparts that can be applied in sim-
ulations of grand-canonical ensembles without symmetries.
One simply omits the partitioning of the Hilbert space into
symmetry sectors and uses Eq. (8) or the Haar-random choice
in the full b-site Hilbert space. Such non-symmetric Fourier
block bases are always maximally mixing.

Let us briefly mention another variation that we pursued
for the construction of efficiently mixing symmetric collapse
bases. It is based on the swap operator that acts on a pair of
lattice sites and swaps their quantum states. For two spins-1/2,
it is

SWAP = |↑↑〉〈↑↑| + |↑↓〉〈↓↑| + |↓↑〉〈↑↓| + |↓↓〉〈↓↓|.
Let SWAPi,j act on sites i and j of the lattice. As
[SWAPi,j ,Ŝ

z
tot] = 0, we can use a symmetric eigenbasis of

the swap operator,

{|↑↑〉, 1√
2

(|↑↓〉 + |↓↑〉), 1√
2

(|↑↓〉 − |↓↑〉),|↓↓〉}, (9)

as a collapse basis on pairs of sites. Ideally, we would randomly
select arbitrary pairs of lattice sites (i,j ) and choose the swap
eigenbasis (9) on each of these pairs, forming the global
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collapse basis as their tensor product (“SWAP” in Fig. 1).
To avoid extensive entanglement, we again restrict the random
pairing of sites to blocks of b lattice sites (“SWAPb” in Fig. 1).
As before, we also shift the blocks by b/2 lattice sites in every
second collapse. For block size b = 2, the symmetric Fourier
basis coincides with the swap basis.

VI. FACTORS INFLUENCING CONVERGENCE SPEEDS

Clearly, the model and the system parameters strongly
affect the convergence of observables in the METTS sampling
algorithm. For a given system, we can significantly influence
the convergence properties by the choice of the collapse
bases. This influence is mediated by two key mechanisms.
First, the choice of the collapse bases {|n(κ)〉} (κ = 1, . . . ,K)
determines the METTS ensembles {|φ(κ)

n 〉} from which we
sample. If we could draw independent samples without any
autocorrelations, the statistical error of an observable 〈Ô〉
would solely depend on the distribution of its measurement
values {〈φ(κ)

n |Ô|φ(κ)
n 〉} and their corresponding probabilities

P
(κ)
n in the METTS ensemble. Second, the collapse bases

influence the strength of autocorrelations between METTS
samples.

To see the interplay of collapse bases and observables,
consider, e.g., the operator Ŝ+

0 Ŝ−
3 in a spin-1/2 system with

spin-flip symmetry. At high temperatures (β → 0), every
METTS sample equals its corresponding basis state up to
corrections of order β, i.e., |φn〉 = |n〉 + O(β). Now, if we
collapse into states |n〉 that are eigenstates of Ŝz

0 and Ŝz
3,

we have 〈n|Ŝ+
0 Ŝ−

3 |n〉 = 0 ∀n and, hence, 〈φn|Ŝ+
0 Ŝ−

3 |φn〉 =
O(β). The distribution of measurement values in this METTS
ensemble is peaked around the expectation value 〈Ŝ+

0 Ŝ−
3 〉 =

O(β), leading to small statistical errors. If, however, we choose
basis states |m〉 that are eigenstates of Ŝx

0 and Ŝx
3 , we have

〈m|Ŝ+
0 Ŝ−

3 |m〉 = ± 1
4 ∀m, and 〈φm|Ŝ+

0 Ŝ−
3 |φm〉 = ± 1

4 + O(β)
with probabilities 1

2 , leading to large statistical errors. Note
that if our observable of interest happened to be, say, Ŝz

0, the
effect would be exactly reversed. Hence, there is no generally
optimal choice of collapse bases as the answer also depends on
the observables of interest. At low temperatures, the METTS
become similar to the ground state of the system and, provided
it is nondegenerate, the distribution of measurement values is
strongly peaked around the ground state expectation value for
any collapse basis.

For the effect of autocorrelations, consider first the naïve
way of simulating canonical ensembles by using the same
symmetry eigenbasis {|n〉} for every collapse (e.g., “Sz” in
Fig. 1). At infinite temperature, as discussed previously, the
Markov chain cannot leave its initial state because pn→n′ =
|〈n′|φn〉|2 = δn,n′ . For small values of β, the probability
that two subsequent samples are equal is still high because
|〈n′|φn〉|2 = δn,n′ + O(β). Thus, the collapse may occasion-
ally induce a few transitions, but autocorrelations between
subsequent samples remain high. One obtains slow diffusive
dynamics in the Markov chain (left panel in Fig. 2). This can be
resolved by using a sequence of efficiently mixing bases. For
a spin-1/2 system with magnetization conservation, we can,
e.g., alternate between Sz collapses and the corresponding
symmetric Fourier or Haar-random block bases. The larger we

Sz SR2-Sz SR8-Sz
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↑
↓

FIG. 2. METTS sampling for the canonical ensemble of an
isotropic spin-1/2 Heisenberg antiferromagnet at inverse temperature
β = 1, zero magnetization, and with system size L = 64. The
figure illustrates the effect of different symmetric collapse bases: Sz
collapses only (left), and alternating Sz and symmetric Haar-random
collapses (SRb-Sz) with block sizes b = 2 (center) and b = 8
(right). The panels show the {Ŝz

i } eigenstates after Sz collapses.
Thermalization of the Markov chains was ensured by discarding the
first 1000 samples.

choose the blocks, the faster the Markov chain explores the
state space due to reduced autocorrelations (center and right
panel in Fig. 2).

The influence of the system parameters becomes more im-
portant at lower temperatures. As the temperature is decreased,
the METTS |φn〉 get closer and closer to the ground state.
Typically, deviations from the ground state are localized if the
system is gapped and delocalized if the system is critical. For
our block collapse bases, localized deviations then lead again
to diffusive dynamics in the METTS and autocorrelations may
considerably depend on specifics of the chosen bases. Delocal-
ized deviations generally lead to short autocorrelation times.

VII. RESULTS FOR X X Z CHAINS IN
THE CANONICAL ENSEMBLE

In the following, we demonstrate the influence of the
collapse bases on convergence speeds for spin-1/2 XXZ

chains [34–36] with Hamiltonian

Ĥ =
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝ

y

i Ŝ
y

i+1 + �Ŝz
i Ŝ

z
i+1

)
, (10)

with varying values of the anisotropy parameter �. We
focus on symmetric METTS computations for the canonical
ensemble (CE) with zero magnetization and also compare
the convergence speeds to those of nonsymmetric simulations
of the grand-canonical ensemble (GCE) with 〈Ŝz

tot〉 = 0. The
convergence behavior for different temperatures, observables,
and collapse bases is shown in Fig. 3. It demonstrates how our
novel collapse bases can significantly improve the convergence
in practice.

The statistical error of the METTS sampling is quantified
as follows. First, we apply the purification approach [14],
which has been adapted to also describe canonical ensembles
and utilize symmetries [15,37], to compute reference values
of observables. For these simulations, we use the same
system parameters, ensemble, and system size as for the
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Ŝ
+ 0
Ŝ
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FIG. 3. Convergence of METTS for different symmetry-conserving collapse bases in the CE. We study spin-1/2 XXZ chains with L = 64
sites and zero magnetization at the isotropic point [left two columns, anisotropy parameter � = 1 in Eq. (10)] and in the gapped phase (� = 3)
for different inverse temperatures β. The considered observables are the energy per site 〈Ĥ /L〉 (top), the correlator 〈Ŝ+

0 Ŝ−
1 〉 (center), and the

correlator 〈Ŝ+
0 Ŝ−

3 〉 (bottom), where site i = 0 refers to the center of the lattice. For the collapse bases, we compare the {Ŝz
i } eigenbasis on

each site (Sz), the symmetric Fourier (SFb), and the symmetric random (SRb) bases on blocks of b sites. As a reference, we also show the
convergence for alternating {Ŝx

i } and {Ŝz
i } eigenbases (Sx-Sz) in a simulation of the GCE. Numbers in the lower left corners of the panels state

the quasiexact values of the observables in the CE.

corresponding METTS computation and set a very low
DMRG truncation threshold such that we can regard the
obtained reference values as quasiexact. For the error of N

METTS (ErrorN in Figs. 3, 4, and 7), we generate several sets
of N subsequent samples and take the root mean square of
the average (absolute) deviations of the observable from the
quasiexact reference data in each set [38]. For the METTS
simulations, the DMRG truncation weight ε and the Trotter
time step �τ were chosen such that the corresponding errors
are negligible compared to the statistical error. See, e.g.,
Ref. [23] for details or Ref. [3] for a general review.

In Fig. 3, the first two columns show results for the isotropic
antiferromagnet [� = 1 in Eq. (10)] at inverse temperatures
β = 2 and 8, and the third column shows results for � = 3
in the gapped Néel phase at inverse temperature β = 8. The
rows correspond to different observables: the energy per site
〈Ĥ /L〉 and the correlators 〈Ŝ+

0 Ŝ−
1 〉 and 〈Ŝ+

0 Ŝ−
3 〉. Site i = 0

is located at the center of the lattice, i.e., correlators are
evaluated near the center to minimize finite-size effects [39]. At
high temperatures (β = 2), using only the Sz collapse leads
to strong autocorrelations that slow down the convergence
for all three observables shown here. This problem can
be alleviated by choosing the efficiently mixing symmetric
Fourier or symmetric Haar-random collapse bases. In many
cases, the symmetric Fourier bases work slightly better than
the symmetric random bases. Errors reduce with increasing
block sizes b. Larger block sizes typically also increase
computation costs per sample. For the correlator 〈Ŝ+

0 Ŝ−
3 〉,

the simple Sz collapse leads, for the chosen temperatures,
to relatively small statistical errors. This can be attributed
to the fact that the distribution of measurement values is
peaked around the (small) expectation values 〈Ŝ+

0 Ŝ−
3 〉, while

it is broader for our block bases SFb and SRb. Still, the
latter reduce autocorrelations between samples: The curves
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FIG. 4. Influence of collapse bases on the convergence in the GCE
without symmetries for the antiferromagnetic spin-1/2 Heisenberg
chain [� = 1 in Eq. (10)] at inverse temperature β = 1. We show
METTS errors for the energy per site 〈Ĥ /L〉 as a function of the
number of samples N . The curves compare nonsymmetric Haar-
random collapse bases (Rb) on blocks of b = 1, 2, 4, and 8 sites.

corresponding to the block bases roughly follow the 1/
√

N

convergence, while the Sz curves start rather flat, which is
due to the autocorrelations. In the combination of both effects,
the block bases typically outperform the simple Sz collapse,
sometimes reducing errors by an order of magnitude.

For the critical system at low temperatures (center column
in Fig. 3), the METTS errors are relatively independent of the
chosen collapse bases. Our interpretation is that, in this case,
the METTS are similar to the ground state with deviations
from it being delocalized such that the particular choice of
the collapse bases in the blocks is not as decisive. For the
gapped phase at low temperatures (right column in Fig. 3),
however, the METTS errors vary significantly for the different
bases. Our interpretation is that, in this case, deviations
from the ground state are much more localized such that
the distributions of measurement values and autocorrelations
depend considerably on the basis choice. For both values of
�, the Fourier bases (SFb) provide the best results.

To compare convergence speeds, Fig. 3 also shows METTS
errors for a simulation of the GCE using the nonsymmetric
METTS algorithm, where one alternates between the {Ŝz

i }
and {Ŝx

i } collapse bases. The comparability is of course
somewhat limited as the CE and GCE are not equivalent
for our finite systems. Overall, the statistical errors in the
simulation of the CE with our symmetric collapse bases are
comparable to and sometimes considerably smaller than those
of the GCE simulation using the Sx-Sz bases. Hence, beyond
cases where one specifically wants or needs to study the
CE, simulating the CE with symmetries can be an efficient
variant of the METTS algorithm when one is interested in
the thermodynamic limit. This is possible because, as we
learn from statistical mechanics, the different equilibrium
ensembles such as the CE (1) with quantum number Q and the
GCE (2), with α tuned such that 〈Q̂〉gc

α = Q are equivalent in
the thermodynamic limit.

The symmetry-breaking versions of the Fourier and Haar-
random bases can also be applied in simulations of the
GCE without symmetries. In many cases, this improves the

convergence of the sampling as illustrated for the antifer-
romagnetic spin-1/2 Heisenberg chain in Fig. 4. Here, we
use Haar-random symmetry-breaking collapse bases (Rb) on
blocks of b = 1,2,4, and 8 sites and compare the statistical
errors of the thermal energy per site. The behavior observed
here is typical: The statistical errors reduce as the block size
is increased. Note, however, that larger block sizes also tend
to increase the computation cost per sample.

VIII. SYMMETRIC SIMULATION OF
GRAND-CANONICAL ENSEMBLES

Except for Ref. [30], METTS have so far been used
exclusively to simulate grand-canonical ensembles (2)
[21–24,40,41], alternating between different collapse bases
that break the symmetry of the system to reduce autocor-
relations. In this case, basis states are not eigenstates of
the conserved quantities (Q̂) and it is hence in general not
possible to exploit symmetries in the MPS representation (3)
of the METTS. In the following, we discuss a modification
of the algorithm to simulate grand-canonical ensembles under
utilization of symmetries.

A. The symmetric METTS algorithm

As illustrated in Fig. 5, we employ small collections of
symmetric METTS to exploit symmetries in the DMRG
time evolution. Starting from an initial symmetric basis state
|n〉 with some quantum number Q, we use imaginary-time
evolution to obtain the corresponding symmetric METTS
sample |φn〉, where symmetries can be utilized in the tDMRG
algorithm as described in Sec. II. After the evaluation of
observables, we apply a collapse that breaks the symmetry
in such a way that the resulting basis state |n′〉 only has
contributions from a small number of different symmetry
sectors. We write the new basis state as a superposition of
(normalized) symmetry eigenstates,

|n′〉 =
∑

j

αj |n′
j 〉, (11)

where |n′
j 〉 is the component with quantum number Qj . Sub-

sequently, the |n′
j 〉 are evolved in imaginary time separately,

again exploiting symmetries.
The DMRG time evolution [28,29] usually entails a Trotter

decomposition. After each time step s�τ → (s + 1)�τ , the
MPS should be renormalized to avoid numerical problems due
to the exponential norm decay. So, after each time step, we
multiply the evolved state j by a factor 1/r

(j )
s . In order to keep

the different renormalizations in the separate time evolutions
of the states |n′

j 〉 consistent, we have to determine their

relative weights Pn′
j
= 〈n′

j |e−βĤ |n′
j 〉. These can be obtained

by multiplying the renormalization factors r
(j )
s ,

Pn′
j
=

[∏
s

r (j )
s

]2

= exp

[
2
∑

s

log r (j )
s

]
. (12)

As indicated, we do not actually multiply the r
(j )
s but rather

accumulate the sum of their logarithms because the Pn′
j

decay
exponentially in the system size and inverse temperature β.

195148-7



MORITZ BINDER AND THOMAS BARTHEL PHYSICAL REVIEW B 95, 195148 (2017)

|n〉

tDMRG

|φn 〉 ∝ e−βĤ/2|n〉
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FIG. 5. Illustration of our symmetric METTS algorithm for the GCE using small sets of symmetry eigenstates. An initial symmetric basis
state |n〉 is evolved in imaginary time to obtain the METTS |φn〉. After the evaluation of observables, a suitable symmetry-breaking collapse
results in a nonsymmetric basis state |n′〉. It is split into its symmetric components {|n′

j 〉}, which are separately evolved to obtain a small
collection of symmetric states {|φn′

j
〉}. Observables are evaluated with respect to this collection according to Eq. (13), and a collapse using a

symmetric basis yields a new symmetric basis state |n′′〉. We keep alternating between symmetry-breaking and symmetric collapse bases to
explore different symmetry sectors according to their weights in the GCE.

One should take care that the factors r
(j )
s do not comprise the

norm change due to the DMRG truncations of bond dimensions
but only the norm change due to the application of evolution
operators e−�τĤ .

With the resulting normalized states |φn′
j
〉, the normalized

METTS sample is then given by

|φn′ 〉 =
∑

j

cj

∣∣φn′
j

〉
, where cj ≡

αj

√
Pn′

j√∑
k |αk|2Pn′

k

,

and |φn′
j
〉 = P

−1/2
n′

j
e−βĤ/2|n′

j 〉. However, note that we can

evaluate any observable Ô without explicitly encoding the
superposition |φn′ 〉 as an MPS according to 〈φn′ |Ô|φn′ 〉 =∑

kj c∗
kcj 〈φn′

k
|Ô|φn′

j
〉. For symmetry-conserving observables

[Ô,Q̂] = 0 we have 〈φn′
k
|Ô|φn′

j
〉 = 0 for k �= j as Qk �=

Qj ∀ k �= j , and the expression reduces to the simple sum

〈φn′ |Ô|φn′ 〉 =
∑

j

|cj |2
〈
φn′

j

∣∣Ô∣∣φn′
j

〉
. (13)

Subsequently, the small collection of symmetric METTS
is collectively collapsed to a new single symmetric basis state
|n′′〉, using, e.g., any of the symmetric collapse bases described
in Sec. V. The transition probabilities for this projective
measurement can be obtained using Ô = |n′′〉〈n′′| in Eq. (13).
We end up with a single state |n′′〉 that has one of the quantum
numbers {Qj }. This procedure is repeated, alternating between
symmetry-breaking and symmetric collapse bases to explore
the different symmetry sectors according to their weights in
the GCE until the estimates of observables have reached the
desired accuracy.

B. Suitable symmetry-breaking bases

As described, we suggest to alternate between symmetric
and symmetry-breaking collapse bases, where elements of
the latter should only have components from a few different
symmetry sectors to allow for an efficient simulation. For a

spin-1/2 system with conservation of the total magnetization,
a simple choice is based on the Sz collapse. For even iteration
steps, we can use the {Ŝz

i } eigenbasis. For odd iteration steps,
we randomly select nx sites on which the Ŝx

i eigenbasis is
used as the collapse basis, while the Ŝz

i eigenbasis is used
on all other sites (“Sz/Sx”). A new set of nx sites is drawn
for every symmetry-breaking collapse. It is straightforward to
obtain the symmetric components, {|n′

j 〉} in Eq. (11), of the
nonsymmetric basis states |n′〉 in MPS form. Note that with the
described choice of bases, the parameter nx is directly related
to the number of states in the small collection of symmetric
METTS described above. Specifically, the states |n′〉 have
nx + 1 components with different magnetizations that are
separately evolved in imaginary time. Correspondingly, the
total magnetizations of subsequent symmetric samples (|φn〉
and |φn′′ 〉 in Fig. 5) differ by �M ∈ {−nx, . . . ,nx}. In
generalization of this symmetric Sz-Sz/Sx scheme, one can
reduce autocorrelations, e.g., by starting from any of the
efficiently mixing symmetric block bases discussed in Sec. V
and, for odd iteration steps, modify the collapse basis for some
randomly selected blocks to allow for changes of the conserved
quantities, similar to the role of the Ŝx

i eigenbasis above.

C. Quantum number trajectories and convergence

We test the algorithm for the isotropic spin-1/2 Heisenberg
antiferromagnet, corresponding to � = 1 in Eq. (10). For
collapses, we alternate between four-site block symmetric
Fourier bases (SF4 with blocks shifted by two sites in every
second use), and nonsymmetric bases, where the Ŝx

i eigenbasis
is used for nx randomly selected sites and the Ŝz

i eigenbasis
for all other sites. We denote this combination of bases by
“SF4-Sz/Sx.”

Figure 6 shows trajectories of the total magnetization
M(ν) = 〈φnν |Ŝz

tot|φnν 〉 occurring in the Markov chain and
the probability distribution {pM} of the magnetization in the
GCE, obtained by the MPDO approach that was introduced in
Ref. [15]. The rows in Fig. 6 show data for different values of nx

in the symmetry-breaking collapse. The columns correspond
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FIG. 6. Simulations of grand-canonical ensembles for the antiferromagnetic spin-1/2 Heisenberg chain [� = 1 in Eq. (10)] with 〈Ŝz
tot〉 = 0

and system size L = 64. The density plots show the distribution {pM} of the total magnetization M , computed with MPDOs as described in
Ref. [15]. Lines show exemplary trajectories of M(ν) in Markov chains of symmetric METTS simulations using the SF4-Sz/Sx collapse bases
as discussed in Sec. VIII. They are characterized by nx , the number of sites on which the symmetry-breaking Ŝx

i eigenbasis is used. Note
that for even iteration steps ν, the state is an eigenstate of Ŝz

tot with quantum number M(ν) while, for odd ν, we use the expectation value
M(ν) = 〈φnν |Ŝz

tot|φnν 〉.

to different inverse temperatures β = 1, 4, and 8. Whenever
we use the symmetric collapse basis (even steps ν in the
Markov chain), the METTS sample is an Ŝz

tot eigenstate with
magnetization M(ν). For odd ν, M(ν) is the Ŝz

tot expectation
value. Note that for nx = L, we alternate between the {Ŝx

i }
eigenbasis and the SF4 bases (SF4-Sx collapse).

In all cases, the Markov chain appropriately explores
the symmetry sectors according to their weights. At lower
temperatures, the distribution is peaked around the center
(M = 0), while at higher temperatures, a large number of
symmetry sectors contribute significant weight to the GCE.
In the zero-temperature limit β → ∞, where the system
is in its ground state with quantum number M = 0, the
symmetry-breaking collapse forces the resulting superposition
to have components with M �= 0. However, in this case, the
imaginary-time evolution essentially projects onto the ground
state, such that all contributions with M �= 0 are exponentially
suppressed. The parameter nx determines the speed with which
the Markov chain can explore the symmetry sectors. It limits
the maximum change in magnetization that can be achieved in
a single symmetry-breaking collapse.

Comparing with quasiexact purification data [15], Fig. 7
shows the error of the algorithm as a function of the number of
samples. The DMRG truncation weight ε and the Trotter step-
size �τ were again chosen such that the error is dominated by
the statistical error. See Ref. [23] for a detailed discussion
of the interplay of different error sources in the METTS

algorithm. We consider the same observables as in Fig. 3,
namely the energy per site 〈Ĥ /L〉 and the correlators 〈Ŝ+

0 Ŝ−
1 〉

and 〈Ŝ+
0 Ŝ−

3 〉, all at inverse temperatures β = 1, 4, and 8. The
error of the energy expectation value decreases with increasing
nx until nx = L/2. For the nearest-neighbor correlator 〈Ŝ+

0 Ŝ−
1 〉

the variations with nx are rather small. For the correlator
〈Ŝ+

0 Ŝ−
3 〉 at the highest temperature (β = 1), errors increase

with increasing nx , and, at the lower temperatures (β = 4,8),
the variations with respect to nx are again rather small. These
properties can again be explained through the competition
between autocorrelations and the spread in the distribution of
measurement values.

In general, Fig. 7 shows that also for rather small values
of nx , the error of our new symmetric METTS algorithm
is comparable to the error of the original simulation of the
GCE without the use of symmetries, where one alternates
between {Ŝz

i } and {Ŝx
i } eigenbases on all sites (Sx-Sz collapse).

Hence, the use of symmetries can make METTS simulations
significantly more efficient.

IX. CONCLUSIONS AND DISCUSSION

We have demonstrated how the METTS algorithm can be
modified to allow for the utilization of symmetries. Concep-
tually, this is straightforward for the canonical ensemble; one
just needs to employ collapse bases that respect the symmetries
of the system. In practice, it is important to cycle through a set
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FIG. 7. Convergence of the symmetric METTS algorithm for grand-canonical ensembles, applied to the antiferromagnetic spin-1/2
Heisenberg chain with L = 64 and 〈Ŝz

tot〉 = 0. We show the METTS error as a function of the number of samples N at inverse temperatures
β = 1 (left), 4 (center), and 16 (right), for the energy density 〈Ĥ /L〉 (top), the correlator 〈Ŝ+

0 Ŝ−
1 〉 (center), and the correlator 〈Ŝ+

0 Ŝ−
3 〉 (bottom).

For collapses, we use the SF4-Sz/Sx bases as described in Sec. VIII, and compare their performance to the nonsymmetric Sx-Sz collapse.
Numbers in the lower left corners of the panels state the quasiexact values of the observables.

of different collapse bases to reduce autocorrelation times.
To this purpose, we have introduced and tested efficiently
mixing collapse bases such as Fourier bases and Haar-
random bases which involve states that are entangled within
blocks of several sites. We have also introduced an efficient
algorithm for the simulation of the grand-canonical ensemble
under utilization of symmetries, using small collections of
symmetric METTS.

Explicitly encoding symmetries in the MPS representation
of the quantum states leads to a considerable speedup in the

imaginary-time evolution and can hence make the sampling
significantly more efficient. For both ensembles, we have
discussed the effect of the collapse bases on the convergence of
the METTS algorithm. Good bases grant short autocorrelation
times in the Markov chain of METTS samples and a narrow
distribution of measurement values for the observables of
interest. As demonstrated in this paper, understanding the
role of the collapse bases and finding improved bases is
a promising route to enhancing the efficiency of METTS
simulations.

[1] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[2] S. R. White, Phys. Rev. B 48, 10345 (1993).
[3] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[4] M. Fannes, B. Nachtergaele, and R. F. Werner, Commun. Math.

Phys. 144, 443 (1992).
[5] S. Rommer and S. Östlund, Phys. Rev. B 55, 2164 (1997).
[6] U. Schollwöck, Ann. Phys. 326, 96 (2011).
[7] T. Nishino, J. Phys. Soc. Jpn. 64, 3598 (1995).
[8] R. J. Bursill, T. Xiang, and G. A. Gehring, J. Phys.: Condens.

Matter 8, L583 (1996).

[9] N. Shibata, J. Phys. Soc. Jpn. 66, 2221 (1997).
[10] X. Wang and T. Xiang, Phys. Rev. B 56, 5061 (1997).
[11] A. Uhlmann, Rep. Math. Phys. 9, 273 (1976).
[12] A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
[13] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2000).

[14] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Phys. Rev. Lett.
93, 207204 (2004).

[15] T. Barthel, Phys. Rev. B 94, 115157 (2016).

195148-10

https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1007/BF02099178
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1103/PhysRevB.55.2164
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1143/JPSJ.64.3598
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1143/JPSJ.66.2221
https://doi.org/10.1143/JPSJ.66.2221
https://doi.org/10.1143/JPSJ.66.2221
https://doi.org/10.1143/JPSJ.66.2221
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1016/0034-4877(76)90060-4
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1016/0034-4877(86)90055-8
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1103/PhysRevB.94.115157
https://doi.org/10.1103/PhysRevB.94.115157
https://doi.org/10.1103/PhysRevB.94.115157
https://doi.org/10.1103/PhysRevB.94.115157


SYMMETRIC MINIMALLY ENTANGLED TYPICAL THERMAL . . . PHYSICAL REVIEW B 95, 195148 (2017)

[16] A. E. Feiguin and S. R. White, Phys. Rev. B 72, 220401 (2005).
[17] T. Barthel, diploma thesis, RWTH Aachen, 2005.
[18] T. Barthel, U. Schollwöck, and S. R. White, Phys. Rev. B 79,

245101 (2009).
[19] T. Barthel, New J. Phys. 15, 073010 (2013).
[20] M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004).
[21] S. R. White, Phys. Rev. Lett. 102, 190601 (2009).
[22] E. M. Stoudenmire and S. R. White, New J. Phys. 12, 055026

(2010).
[23] M. Binder and T. Barthel, Phys. Rev. B 92, 125119 (2015).
[24] B. Bruognolo, J. von Delft, and A. Weichselbaum, Phys. Rev. B

92, 115105 (2015).
[25] I. P. McCulloch and M. Gulácsi, Europhys. Lett. 57, 852 (2002).
[26] A. Weichselbaum, Ann. Phys. 327, 2972 (2012).
[27] The total quantum number can arise less trivially than by

summing single-site quantum numbers, e.g., by addition modulo
N for a cyclic group of order N .

[28] S. R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401
(2004).

[29] A. J. Daley, C. Kollath, U. Schollwöck, and G. Vidal, J. Stat.
Mech. (2004) P04005.
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