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Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model
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We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the
frustrated quantum magnet SrCu2(BO3)2. To this end perturbative continuous unitary transformations are applied
about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various
couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic
field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate
the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite.
Finally, we also calculate the triplon Hall effect arising at finite temperatures.
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I. INTRODUCTION

The frustrated quantum magnet SrCu(BO3)2 plays an
important role in quantum magnetism due to its very rich
and complex magnetization curve [1–10]. Experiments in
ultrastrong magnetic fields unveil a multitude of intriguing
behavior like a series of magnetization plateaus which has
triggered a huge body of research over the last years [1–24].
Interestingly, the low part of the magnetization curve came
into focus only recently, suggesting that SrCu(BO3)2 in a weak
magnetic field displays nontrivial topological properties [25],
which has been also investigated experimentally by inelastic
neutron scattering [26].

The physical properties of SrCu(BO3)2 can be well de-
scribed by the Shastry-Sutherland model [27] plus small
Dzyaloshinskii-Moriya (DM) interactions [28,29]. The non-
trivial topological properties then arise from DM interactions
being the magnetic analog of spin-orbit interactions in strongly
correlated Mott insulators. As a consequence, the energy bands
of the elementary triplon [30] excitation of SrCu(BO3)2 in
a weak magnetic field can have a finite topological Chern
number. The system is therefore expected to be a magnetic
version of a Chern insulator [31] displaying a triplon Hall
effect at finite temperatures [25], similarly to other bosonic
systems [32–35].

In Ref. [25], Romhányi and collaborators applied bond-
operator theory to an extended Shastry-Sutherland model
in the presence of a uniform magnetic field in z direction
to investigate the nontrivial topological properties of the
triplon bands for realistic values of exchange couplings for
SrCu(BO3)2. In this description one has three triplon bands
and the triplons behave in momentum space as pseudo-spin-
one objects coupled to an effective momentum-dependent
magnetic field. As a consequence, in a weak magnetic field,
topological bands with Chern number ±2 are found [25].

In this paper we investigate a general uniform magnetic field
which is allowed to point in any direction. This is not a trivial
extension, since the SU(2) symmetry of the Shastry-Sutherland
model is broken due to the DM interactions. Technically,
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we apply perturbative continuous unitary transformations
(pCUTs) [36,37] about the isolated dimer limit to derive
high-order series expansions for the one-triplon bands in the
various parameters. Although our calculation does not provide
quantitative predictions for the coupling regime relevant to
SrCu(BO3)2 in a weak magnetic field, we deduce generic
features of the studied system. We show that the more general
magnetic field leads to six distinct one-triplon bands and
therefore the effective description in terms of pseudo-spin-one
objects does not hold anymore. As a consequence, there is a
richer structure of topological phase transitions as a function
of magnetic field with nontrivial Chern numbers ±1 and ±2.

Our paper is organized as follows. In Sec. II we introduce
the microscopic model and notations while Sec. III includes all
technical aspects with respect to pCUTs and Chern numbers.
Afterwards, we present our results for the topological phase
transitions in Sec. IV and we calculate the associated triplon
Hall effect in Sec. V. The main findings are then summarized
and discussed in Sec. VI.

II. MODEL

We study the same extended Shastry-Sutherland model as
in Ref. [25] but in the presence of a general uniform mag-
netic field �h = (hx,hy,hz). The specific spin-1/2 Hamiltonian
reads

H = J
∑
n.n.

�Si · �Sj + J ′ ∑
n.n.n.

�Si · �Sj

+
∑
n.n.

�Dij · (�Si × �Sj ) +
∑
n.n.n.

�D′
ij · (�Si × �Sj )

− �h ·
∑

i

�Si, (1)

where the first line is the usual Shastry-Sutherland model with
antiferromagnetic Heisenberg couplings J and J ′, the second
line contains the intra- and interdimer DM interactions, and the
last line represents the magnetic field. The various couplings
are illustrated in Fig. 1. The unit cell of the Shastry-Sutherland
lattice contains one vertical and one horizontal J dimer,
highlighted as the blue shaded area in Fig. 1. In the following
we set J = 1 throughout the paper.
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FIG. 1. (a) Shastry-Sutherland model consisting of two antiferro-
magnetic Heisenberg couplings J and J ′. The Heisenberg couplings
within a dimer are denoted by J (horizontal in red and vertical
in green) while the interdimer couplings are denoted by J ′. The
blue shaded area highlights a primitive unit cell which contains
two orthogonal dimers. The corresponding unit vectors a, b are
depicted in the inset. (b) DM couplings allowed by the symmetries of
SrCu2(BO3)2. The long arrows on top of the bonds between two spins
indicate the orientation of the DM coupling with a corresponding DM
vector represented by the short arrow. Accordingly a long arrow from
spin i to spin j represents the term �D · (�Si × �Sj ). The intradimer DM
vectors �D are aligned perpendicular to the dimers. The interdimer
DM couplings �D′ can be divided into two parts: in-plane components
�D′

‖ and out-of-plane components �D′
⊥. The interdimer DM vectors are

depicted in violet.

III. TECHNICAL ASPECTS

In this section we give the technical details of our calcu-
lation. First, we describe the application of pCUTs about the
isolated-dimer limit which allows us to derive the effective
one-triplon hopping elements and therefore the calculation of
the one-triplon bands. Afterwards, we detail the determination
of Chern numbers for these one-triplon bands.

A. pCUTs

Starting from the isolated-dimer limit, we use a pCUT
[36,37] to derive a quasiparticle conserving effective Hamil-
tonian up to high order in perturbation along the lines of
Refs. [12,23,38,39]. In this limit, the unperturbed ground state
corresponds to the product state of singlets |0〉 ≡ ∏

i |s〉i and
excitations are local triplets |tα〉 with α ∈ {x,y,z}. The dimer
states are represented by

|s〉 = 1√
2

(|↑↓〉 − |↓↑〉), (2)

|tx〉 = i
1√
2

(|↑↑〉 − |↓↓〉), (3)

|ty〉 = 1√
2

(|↑↑〉 + |↓↓〉), (4)

|tz〉 = −i
1√
2

(|↑↓〉 + |↓↑〉). (5)

Next we introduce annihilation and creation operators of
triplets ti,α and t

†
i,α on dimer i with flavor α ∈ {x,y,z} so

that t
†
i,α|0〉 ≡ |tα〉i

∏
j �=i |s〉j . The unperturbed Hamiltonian of

isolated dimers can be written as

H0 = E0 + Q̂ = −3

4
Nd +

∑
i,α

n̂i,α, (6)

where Nd is the number of dimers and n̂i,α ≡ t
†
i,αti,α . The

operator Q̂ counts the total number of triplets. The full
Hamiltonian (1) is then expressed as

H = E0 + Q̂ +
n=2∑

n=−2

T̂n, (7)

where the T̂n operators increment (or decrement) the number
of triplets by n = {±2,±1,0}, i.e., [T̂n,Q̂] = nT̂n.

In total, there are seven perturbations in Eq. (7). Four
perturbations act on single dimers. These are the three
components α ∈ {x,y,z} of the magnetic field Hα as well as
the intradimer DM interaction HD. For the magnetic field one
has

Hx + Hy + Hz = T̂ x
0 + T̂

y
0 + T̂ z

0 . (8)

The intradimer DM vector �D is always orthogonal to the
(vertical or horizontal) orientation of the dimer as illustrated
in Fig. 1. The strength of this interaction can therefore be
parametrized by a single parameter D and one has

HD = T̂ D
1 + T̂ D

−1. (9)

The other two perturbations, the Heisenberg interaction HJ ′

and the interdimer DM interaction HD′ , couple neighboring
dimers. We describe the interdimer DM vector �D′ with the two
parameters D′

⊥ and D′
‖ (see also Fig. 1). Here D′

⊥ (D′
‖) refers

to the out-of-plane (in-plane) component of the interdimer DM
interaction. Decomposing the Heisenberg interaction HJ ′ and
the interdimer DM interaction HD′ into operator T̂n yields

HJ′ = T̂ J′
1 + T̂ J′

0 + T̂ J′
−1, (10)

HD′ = T̂ D′
2 + T̂ D′

1 + T̂ D′
0 + T̂ D′

−1 + T̂ D′
−2. (11)

The pCUT then transforms, order by order exactly in the
seven perturbations, the initial Hamiltonian (7) into an effec-
tive Hamiltonian Heff which commutes with Q̂: [H0,Q̂] = 0.
A pCUT calculation has two parts. The first part is model
independent and one finds the following effective Hamiltonian
[36]:

HpCUT
eff = H0 +

∑
m with

∑
i mi=0

C(m)T (m) (12)

= H0 + T̂0 + [T̂1,T̂−1] + 1

2
[T̂2,T̂−2] + . . . , (13)

where “. . .” represent higher orders and the coefficients
C(m) ∈ Q have been calculated as exact rational numbers
to high orders in perturbation. Here we have introduced
the notations m ≡ (m1,m2, . . . ,mk),mi ∈ {0,±1,±2}, and
T (m) ≡ Tm1Tm2Tm3 . . . Tmk

. The condition
∑

i mi = 0 reflects
the quasiparticle conservation of the effective Hamiltonian
which corresponds to triplons [30] (dressed triplets) in the
current problem. As a consequence, each quasiparticle sector
can be treated independently. In this paper we focus on the
one-triplon channel.
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The second part of the pCUT is model dependent. In our
case we are interested in determining the amplitudes of the
effective Hamiltonian in the one-triplon channel (see also next
subsection). To this end one has to normal order the effective
pCUT Hamiltonian (13) which is most efficiently done on
finite clusters. Here we calculated all one-triplon processes up
to order 7 in all seven perturbative parameters.

B. One-triplon sector

All operators of the one-triplon sector correspond to
processes where a single triplon with flavor α ∈ {x,y,z} hops
from dimer i to dimer i + δ getting the flavor β ∈ {x,y,z}.
Consequently, the effective Hamiltonian can be written as

H1qp
eff =

∑
i

∑
δ

∑
α,β

a
αβ

δ t
†
i+δ,β ti,α (14)

in the one-triplon sector. The hopping amplitudes a
αβ

δ depend
on the seven perturbative parameters and they have been
calculated by pCUTs as series expansion up to order 7.
The Shastry-Sutherland lattice has a two-dimer unit cell as
illustrated in Fig. 1(a). There are therefore six one-triplon
states in a single unit cell: the triplon can be either on the
vertical (v) or horizontal (h) dimer and in each case it can have
a flavor x, y, or z. Applying Fourier transformation yields then
the block-diagonal Hamiltonian

H1qp
eff =

∑
k

H1qp
eff (k)

=
∑

k

∑
α,β

∑
n,m∈{v,h}

ω
α,β,n,m

k t
†
k,β,ntk,α,m

=
∑

k

t†k H̃k tk, (15)

where tk ≡ (tk,x,v,tk,y,v,tk,z,v,tk,x,h,tk,y,h,tk,z,h) and H̃k is a
6 × 6 matrix. Diagonalizing H̃k for all momenta yields the
six one-triplon bands ωn(k) so that

H1qp
eff =

∑
k

6∑
n=1

ωn(k) t̄
†

k,nt̄k,n. (16)

The explicit matrix elements of H̃ up to order 2 in all
perturbation parameters are given in the Appendix. Expres-
sions for higher orders become lengthy and can be provided
electronically.

C. Chern numbers

The six one-triplon bands ωn(k) are expected to have
nontrivial topological properties due to the DM interactions,
i.e., they can be characterized by a finite Chern number.
The Chern number has to be calculated via the one-triplon
eigenstates |unk〉 so that H̃ |unk〉 = ωn(k)|unk〉.

If band n is isolated energetically from the other bands,
then the Chern number Cn ∈ Z is given for this band by

Cn = 1

2π

∫∫
BZ

Fn,xy(k) dkx dky, (17)

where the integral is performed over the Brillouin zone (BZ)
and Fn,xy is the Berry curvature defined by

Fn,xy(k) ≡ ∂An,y(k)

∂kx

− ∂An,x(k)

∂ky

(18)

with

�An(k) = i〈unk|∇k|unk〉 (19)

the Berry vector potential.
In a generalized setting a package p of N > 1 bands is

energetically separated from the rest of the bands, but the
bands included in the package overlap. In this situation one is
interested in the Chern number Cp of p as an entity which can
be calculated as follows. Let n and m be two bands being part
of p. The Berry vector potential is then generalized to [40–42]

�Amn(k) ≡ i〈umk|∇k|unk〉 (20)

which allows us to define the non-Abelian Berry curvature

Fmn,xy ≡ Fmn,xy − i[Amn,x,Amn,y] (21)

with

Fmn,xy ≡ i
[〈
∂kx

unk
∣∣∂ky

umk
〉 − 〈

∂ky
unk

∣∣∂kx
umk

〉]
.

The Chern number Cp is then obtained by taking the trace over
all bands of p and integration over the BZ:

Cp ≡ 1

2π

∫∫
BZ

Tr[Fxy] dkx dky. (22)

In the following we call a package of bands a multiband and
we refer to Cp as the Chern number of a multiband. Note that
we often skip the subscript p (n) in Cp (Cn) below if there is
no ambiguity in order to lighten the notation.

IV. PHASE DIAGRAM IN THE hx–hz PLANE

In this section we present our results for the topological
phase transitions present in the extended Shastry-Sutherland
model (1) as a function of the magnetic field. We concentrate
on the representative parameter set J ′ = 0.3,D = 0.03,D′

⊥ =
0.01, and D′

‖ = 0.007J where (i) our bare series from pCUTs
are well converged and (ii) the relative strengths of the various
couplings are appropriate for the frustrated quantum magnet
SrCu2(BO3)2 up to a factor 2 [25]. Note that a quantitative
calculation for SrCu2(BO3)2 demands to go beyond the bare
series and needs therefore extrapolation schemes for the
full six-dimensional band structure including the eigenstates,
which is a very challenging task. Our results are nevertheless
generic and expected to be of direct qualitative relevance for
SrCu2(BO3)2. We find that a magnetic field in the xy plane with
hz = 0 does not introduce gaps in the triplon band structure and
therefore does not give any nontrivial topological properties.
Furthermore, we observe that the sequence of Chern numbers
as a function of magnetic field does not depend on the direction
of the xy component. As a consequence, we set hy = 0 and
study the physical properties in the xz plane.

A. hz field

We start our discussion with the single-field case hx = 0.
This case has been discussed in Ref. [25] for realistic
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FIG. 2. (a)–(d) Evolution of the one-triplon bands ωn(k) in the first-order calculation for hx = 0 by tuning the magnetic field from hz = 0
to hz,c/2, hz,c, and 3hz,c/2 (from left to right) at D′

⊥ = 0.01 and D′
‖ = 0.007. The critical point is located at hz,c = 2|D′

⊥| = 0.02 for the chosen
parameters. Chern numbers C are given explicitly for (b) and (d).

parameters with respect to SrCu2(BO3)2 using a bond-operator
treatment including the first-order effects in the various
couplings. Here we would like to show that all generic features
concerning the topological nature of the triplon bands are
already present for small values J ′ = 0.3. One reason is that
the coupling J ′ does not influence the hopping amplitudes of
triplons in first order due to the geometric frustration and the
resulting triplon band structure becomes independent of J ′ as
in the treatment from Ref. [25].

The evolution of triplon bands as a function of hz is
displayed in Fig. 2 using the effective Hamiltonian in first-
order perturbation theory (see also the Appendix). We find
two topological phase transitions taking place at hz = 0
and hz,c = 2|D′

⊥| [25]. At the quantum critical points, the
band structure exhibits a three-band touching point located
at M = (π,π ) for hz = 0 and at � = (0,0) for hz = hz,c.
This bears a resemblance to Dirac cones with an additional
flat band. For hz > hz,c, all triplon bands have trivial Chern
numbers zero. In contrast, between the two critical points
0 < hz < hz,c, the triplon bands reveal topological nontrivial
Chern numbers C = ±2 [see Fig. 2(b)]. Here the lower
multiband has C = +2 and the upper one has C = −2. The
topological phase transitions and the associated changes of
Chern numbers can be also seen as divergences in the Berry
curvature shown in Fig. 3 for the same microscopic parameters.

Inclusion of higher orders in the effective one-triplon
Hamiltonian does only result in minor changes in the band
structure. As one example, we display the one-triplon band
structure inside the topological phase using the effective
Hamiltonian in seventh-order perturbation theory in Fig. 4
for the same microscopic parameters. The three multibands

remain unseparated and the middle band is exactly flat in
contrast to a magnetic field in x direction discussed below. The
overall dispersion has been shifted to lower energies which is
the leading (second-order) effect of J ′ giving a reduction of
the local hopping amplitude of triplons.

B. hx–hz plane

In this section we study the one-triplon band structure in the
xz plane. As mentioned above, a pure field in x direction does
not open any gaps between the one-triplon bands and therefore
does not induce nontrivial Chern numbers. However, one
important difference to the single z-field case is the appearance
of six one-triplon bands, i.e., also the two middle bands gain
a finite dispersion. As an example, we display in Fig. 5 the
one-triplon bands ωn(k) for a magnetic field in x direction
using the effective Hamiltonian in seventh-order perturbation
theory.

The additional effect of finite hx and hz can then result
in a richer topological structure of the one-triplon bands. Let
us set hz = 0.01 and hx = 0 so that we are located inside
the topological phase where the lowest multiband has Chern
number C = 2 (see Fig. 4). If one increases hz the gap to
the middle multiband closes simultaneously at two k points
and the Chern number of the lowest multiband jumps to zero.
Interestingly, the topological phase transition is different if
an additional small field component in x direction is present.
In this situation the gaps at the two k points close for slightly
different values of the z field and one has two topological phase
transitions. The first topological phase transition changes the
Chern number of the lowest multiband from C = 2 to 1 and

FIG. 3. Evolution of the Berry curvature Fxy(k) in the first-order calculation for the lowest multiband at (a) hz = 10−6, (b) hz,c/2, (c) hz,c,
and (d) 3hz,c/2.
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FIG. 4. Dispersion of the one-triplon bands ωn(k) for a magnetic
field in z direction with hz = 0.01 at J ′ = 0.3, D = 0.03, D′

⊥ = 0.01,
and D′

‖ = 0.007 using the effective Hamiltonian in seventh-order
perturbation theory. For these parameters the three triplon multibands
have nontrivial Chern numbers: the lowest multiband C = 2, the
middle multiband C = 0, and the upper multiband C = −2.

the second transition changes it from C = 1 to 0. An example
of a triplon band structure with odd Chern numbers is shown
in Fig. 6.

The phase diagram in the xz plane characterized by the
Chern number of the lowest multiband is shown in Fig. 7(a) for
the effective Hamiltonian in second-order perturbation theory.
We find that one always has two topological phase transitions
with a sequence of Chern numbers +2,+1, and 0 for the
lowest multiband except the two single-field cases hx = 0 and
hz = 0. The extension of the intermediate phase with an odd
Chern number of the lowest multiband is tiny but numerically
robust, e.g., we show in Fig. 7(b) the influence of the finite

FIG. 5. Dispersion of the one-triplon bands ωn(k) for a magnetic
field in x direction with hx = 0.01 at J ′ = 0.3, D = 0.03, D′

⊥ =
0.01, and D′

‖ = 0.007 using the effective Hamiltonian in seventh-
order perturbation theory. All six bands are connected and therefore
no nontrivial Chern numbers are observed.

FIG. 6. Dispersion of the one-triplon bands ωn(k) at
hz = 0.01, hx = 0.0025, J ′ = 0.3, D = 0.03, D′

⊥ = 0.01, and D′
‖ =

0.007 using the effective Hamiltonian in seventh-order perturbation
theory. One finds topological nontrivial Chern numbers C = 1, C =
0, and C = −1 from the lowest to the upper multiband as indicated.

wave-vector discretization in the determination of the Chern
number.

The presence of two distinct topological phase transitions
is also robust with the perturbative order as shown in Fig. 8. In
fact, the intermediate region increases by roughly an order

FIG. 7. (a) Phase diagram as a function of hz and hx at
J ′ = 0.3, D = 0.03, D′

⊥ = 0.01, and D′
‖ = 0.007 using the effective

Hamiltonian in second-order perturbation theory. The different phases
are characterized by the Chern number of the lowest multiband. For
very small values of hz we were not able to distinguish the two
transition lines and we therefore plotted a dashed curve as guide
to the eye. (b) The critical fields hx,c vs 1/N for a fixed z-field
component hz = 0.01. Here N refers to the number of wave vectors
k of the discretized BZ used in the numerical evaluations.
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FIG. 8. (a) Phase diagram as a function of hz and hx at J ′ =
0.3, D = 0.03, D′

⊥ = 0.01, and D′
‖ = 0.007 for different maximal

orders n of the effective Hamiltonian. The different phases are
characterized by the Chern number of the lowest multiband. In the
shaded regions the differences between the two topological phase
transitions cannot be resolved numerically. (b) The two critical
fields hx,c are depicted vs the perturbative order n for fixed z-field
component hz = 0.01.

of magnitude compared to the calculation in second-order
perturbation theory.

Finally, we discuss the evolution of the Chern numbers for
all three multibands. The corresponding data are displayed
in Fig. 9 using the effective Hamiltonian in sixth-order
perturbation theory. We find in total four topological phase
transitions as a function of hx for fixed finite hz. Two phase
transitions correspond to gap closings of the lowest multiband
as seen above. The other two phase transitions represent level
crossings between the middle and the upper multiband. As a
consequence, the Chern numbers of the involved multibands
change by one as also shown in the table of Fig. 9.

V. TRIPLON HALL EFFECT

The topological character of Chern insulators in electronic
systems is usually detectable by exploiting the integer quantum
Hall effect. Due to the nontrivial Chern number topological
edge states emerge in an infinite strip geometry with open
boundary conditions [43]. The edge states are located at the
boundary of the sample and have a chiral nature due to
the breaking of time-reversal symmetry. Furthermore, these
gapless edge states connect the conduction and the valence
band. If the Fermi level is located in the bulk band gap, which

FIG. 9. Topological phase transitions with respect to the whole
one-triplon band structure using the effective Hamiltonian in sixth-
order perturbation theory. The two red curves represent a closing
of the gap between the lowest and the middle multiband while the
two blue curves signal crossings between the highest and the middle
multiband. Lower table: Evolution of Chern numbers for all three
multibands for increasing hx as marked by the arrow in the figure.

can be done by doping the system, a transverse electrical
conductivity results by applying a voltage. The transverse
electrical conductivity is then quantized in integer values
corresponding to the Chern number [44].

The Chern number of the one-triplon dispersion gives also
rise to gapless chiral edge states [25]. But since the triplon
excitations are electrically neutral, an applied voltage does not
create a different occupation between the oppositely oriented
edge states. An alternative approach to detect the topological
nature of Chern insulators, which also works for electrical
neutral systems, is given by the so-called thermal Hall effect.
Applying the Kubo formula in analogy to the electronic case,
Matsumoto and Murakami have derived an expression for the
thermal Hall conductivity for ordered magnets with magnon
excitations [45] which also applies for our case of a valence
bond solid with triplon excitations.

Subsequently, Matsumoto and Murakami [46] showed
that the magnon wave packets in insulating magnets have
two different rotational motions: a self-rotational motion
and a rotational motion along the edge. The two rotational
motions of the magnons are caused by the Berry curvature
of the magnon bands. The expression for the thermal Hall
conductivity in Ref. [33] corresponds to the self-rotational
motion. The rotational motion along the edge yields an
additional contribution to the thermal Hall conductivity which
cancels the self-rotational contribution. The final expression
is then completely determined by the rotational motion along
the edge.

To exploit the rotational motion one can create a temper-
ature gradient yielding an anisotropic occupation of the two
opposite edge states. The rotational motion of the triplons
is no longer balanced and the triplon currents from the two
opposite edges do not cancel each other. As a consequence, a
finite transverse triplon current appears. This transverse triplon
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current corresponds to a transverse thermal current, since the
triplons are the elementary excitations of the system. Thus, the
topological nature of the extended Shastry-Sutherland model
can be detected by applying a temperature gradient which
leads to a transverse thermal current as already discussed in
Ref. [25].

The expression for the thermal Hall conductivity κxy [46]
is described by

κxy = −T
∑

n

c2(ρn)Fn,xy (23)

= 2T
∑

n

c2(ρn) Im

〈
∂un

∂kx

∣∣∣∣ ∂un

∂ky

〉
, (24)

where we measure temperature also in units of J setting kB = 1
[47]. Generally, the quantity cq(ρ) is defined by

c2(ρ) =
∫ ∞

εn

dε(βε)q
(

− dρ

dε

)∣∣∣∣
μ=0

=
∫ ρ

0
[log(1 + x−1)]q dx , (25)

where ρ is the Bose distribution. For c2(ρ) we have used the
exact expression [46]

c2(ρ) = −2 Li2(−ρ) + ρ log2(ρ−1 + 1) − log2(ρ + 1)

+ 2 log(ρ + 1) log(ρ−1 + 1) , (26)

where Li2 is a polylogarithm function. The topological
properties of the extended Shastry-Sutherland model can be
tuned by different magnetic fields as shown above. Therefore,
we calculate the transverse thermal conductivity κxy in depen-
dence of different magnetic field directions. In the following
we focus on the second-order effective Hamiltonian, which is
also given explicitly in the Appendix, since the most important
physical properties are already present. First, we investigate the
single-field case in z direction. Afterwards, we also calculate
the general case of arbitrarily oriented magnetic fields in the
xz plane.

A. Pure hz field

The magnetic field hz can be used to tune topological phase
transitions in the one-triplon bands of the extended Shastry-
Sutherland model as seen in the last section. The expression
for the Chern number C as well as for the thermal Hall
conductivity κxy contains the Berry curvature. Accordingly,
one expects that the topological behavior of the system as a
function of the magnetic field hz should be reflected in the
thermal Hall conductivity.

In Fig. 10 we depict the thermal Hall conductivity as a
function of a magnetic field hz for different temperatures T

using the triplon band structure in second-order perturbation
theory. Calculations to higher order lead only to small
modifications. As expected, the largest values for κxy are
located inside the topological phase. Turning on the magnetic
field leads to nonzero thermal Hall conductivity where the sign
is determined by the direction of hz just like for the sign of the
Chern numbers. When the field exceeds the critical magnetic
field hz,c, the Chern bands become topologically trivial and
the thermal Hall signal diminishes. Note that the thermal Hall

FIG. 10. Thermal Hall conductivity κxy as a function of hz for
various temperatures at J ′ = 0.3, D = 0.03, D′

⊥ = 0.01, and D′
‖ =

0.007 using the triplon band structure in second-order perturbation
theory. The three vertical dashed lines depict the critical value hz =
{−hz,c,0,hz,c}.

signal stays finite for hz > hz,c even if the Chern bands have
zero Chern number. This can be traced back to the thermal
occupation of the triplon bands leading to different weightings
so that equal opposite contributions are no longer canceled
exactly and a net nonzero thermal Hall signal is found. We
stress that our results for the thermal Hall conductivity show
qualitatively the same behavior as the ones calculated for
realistic values of J ′ with respect to the frustrated quantum
magnet SrCu2(BO3)2 [25], which is not surprising since the
underlying phase diagram is already similar as discussed
above.

Furthermore, it should be noted that increasing the tem-
perature yields higher values for κxy . This dependency is
displayed in Fig. 11(a). Here we determined the thermal Hall
conductivity at hz = 0.01 as a function of temperature. The
thermal Hall conductivity is increasing steadily with increasing
temperature. The curve can be roughly divided into two
linear regimes with two different slopes. The transition point
between both regimes is located close to T = 0.15. For higher
temperatures, the triplon bands are more strongly occupied
and the triplon-triplon interaction becomes more and more
important, which is beyond the current treatment.

The topological phase transition points where all three
bands form a kind of Dirac cone cannot be read off directly
from the shape of κxy . This is due to the fact that a phase
transition does not lead to an instantaneous change of κxy .
Instead, there are indications that the phase transitions are
apparent from the curvature of κxy . For this purpose the
derivative of κxy with respect to hz is depicted in Fig. 11(b).
The maxima and minima of the derivative are located at the
transition points. This indicates that phase transitions which
change the Chern numbers are connected to a change of the
curvature.

B. hx–hz plane

The topological Chern bands induced by a magnetic field hz

can also be converted into topological trivial bands by turning
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FIG. 11. (a) Thermal Hall conductivity κxy as a function of
temperature T at hz = 0.01, J ′ = 0.3, D = 0.03, D′

⊥ = 0.01, and
D′

‖ = 0.007. (b) First derivative of the thermal Hall conductivity with
respect to hz as a function of hz at T = 0.1443.

on a transverse magnetic field hx . The pure transverse magnetic
field hx cannot create a topological phase. Thus hx has a
different topological impact on the system compared to hz.
Therefore, it is worthwhile to investigate the phase transition
induced with hx by studying the thermal Hall conductivity.

In Fig. 12(a) we depict the thermal Hall conductivity as
a function of a magnetic field hx at hz = 0.01 for different
temperatures using the triplon band structure from second-
order perturbation theory. Also in this case the thermal Hall
conductivity takes the largest values in the topological phase.
The thermal Hall conductivity κxy is not symmetric with
respect to the sign of hx in contrast to the pure hz case.
Switching on hx leads to a decrease of κxy depending on the
direction of the magnetic field hx .

The derivative of κxy with respect to hx is shown in
Fig. 12(b). The curve contains a maximum and a minimum
that indicate the phase transition as in the case of a pure hz

field. These observations are hints that a phase transition is
anchored with a change of the curvature of κxy .

To complete the picture, the thermal Hall conductivity κxy

is shown as a function of hx and hz in Fig. 13(a). The largest
values for κxy are located on the hz axis as expected since
turning on hx leads inevitably to the trivial phase. The three-
dimensional plot reveals the point symmetry of κxy at the origin
of the coordinate system. The limiting cases of pure magnetic
fields in z and x direction are shown in Figs. 13(b) and 13(c).
The case of a pure x field shows a nonsmooth function due
to the fact that the bands are not well isolated. This creates
numerical inaccuracies leading to a nonsmooth behavior and
so the abrupt changes of the curvature do not correspond to
phase transitions. Nevertheless, it shows a finite thermal Hall

FIG. 12. (a) Thermal Hall conductivity κxy as a function of hx for
various temperatures using the triplon band structure from second-
order perturbation theory at hz = 0.01, J ′ = 0.3, D = 0.03, D′

⊥ =
0.01, and D′

‖ = 0.007. The vertical dashed lines depict the critical
value hx = {±hx,c}. (b) First derivative of the thermal Hall conduc-
tivity with respect to hx as a function of hx at T = 0.1443.

FIG. 13. (a) Thermal Hall conductivity κxy as a function of
hz and hx at T = 0.1443 using the triplon band structure from
second-order perturbation theory at J ′ = 0.3, D = 0.03, D′

⊥ = 0.01,
and D′

‖ = 0.007. (b) and (c) The limiting cases of a magnetic field
pointing in one direction.
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conductivity which is significantly smaller than for the pure
z-field case.

VI. CONCLUSIONS

In this paper we have investigated an extended Shastry-
Sutherland model which is the relevant microscopic model
for the frustrated quantum magnet SrCu2(BO3)2. We have
used perturbative continuous unitary transformations about the
isolated dimer limit to derive high-order series expansions for
the one-triplon band structure in various couplings including a
general uniform magnetic field as well as intra- and interdimer
DM interactions.

The main motivation of our paper was to extract the non-
trivial topological properties of the triplon band structure for
a general uniform magnetic field extending the investigation
of Ref. [25] where a field in z direction has been considered.
Although our scheme is limited to intermediate ratios J ′/J
due to the perturbative nature of our series expansion, the
qualitative findings are expected to be of relevance for
SrCu2(BO3)2.

We find that a magnetic field in the xy plane does not
induce any nontrivial Chern number into the one-triplon band
structure. In contrast, if the field has a finite component in
z direction and a finite component in the xy plane, then the
sequence of Chern numbers and topological phase transitions

is richer compared to the pure z case. In the latter the system
can be effectively described by a spin-one in a momentum-
dependent magnetic field. The band structure consists of three
bands which can have Chern numbers ±2 and 0. In the more
general case where also a finite xy component is present, the
Chern numbers of the three multibands can be ±2,±1, and 0.
This is the most important finding of our paper.

In the future it would be interesting to extend our calcula-
tions to larger values of J ′/J so that a quantitative modeling
of SrCu2(BO3)2 can be achieved. To this end one should go
beyond our perturbative treatment and apply nonperturbative
variants of continuous unitary transformations [48–51]. Fur-
thermore, it would be interesting to use similar linked cluster
expansions also for other spin systems where topologically
nontrivial Chern bands have been reported [52–54].

In addition to the one-triplon band structure, we have also
calculated the thermal Hall effect of triplons along the lines of
Ref. [25]. The involved approximations are only valid at low
temperatures, since triplon-triplon interactions as well as the
hardcore constraint have been neglected. A more consistent
calculation including these effects is certainly much more
challenging, but also very interesting, which we leave open
for future research.
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APPENDIX: EFFECTIVE HAMILTONIAN OPERATOR

In the following we give the explicit series for the second-order effective Hamiltonian Eq. (15):

H1qp
eff (k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t
†
k,x,v

t
†
k,y,v

t
†
k,z,v

t
†
k,x,h

t
†
k,y,h

t
†
k,z,h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H11 H
†
21 H

†
31 H

†
41 H

†
51 H

†
61

H21 H22 H
†
32 H

†
42 H

†
52 H

†
62

H31 H32 H33 H
†
43 H

†
53 H

†
63

H41 H42 H43 H44 H
†
54 H

†
64

H51 H52 H53 H54 H55 H
†
65

H61 H62 H63 H64 H65 H66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tk,x,v

tk,y,v

tk,z,v

tk,x,h

tk,y,h

tk,z,h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

H11 = 1 − J ′2 + 1
2D2 + (D′

⊥)2
(

1
2 − 1

4 [cos(2kx) + cos(2ky)] − 1
2 [cos(kx + ky) + cos(kx − ky)]

) + (D′
‖)2

(
1
2 + 1

4 cos(2ky)
)
,

(A2)

H21 = −ihz + 1
4 (D′

‖)2[cos(kx + ky) − cos(kx − ky)], (A3)

H31 = ihy − i

4
D′

⊥D′
‖[sin(2kx) + sin(kx + ky) + sin(kx − ky)], (A4)

H41 = 0, (A5)

H51 = −(
D′

⊥ + 1
2D′

⊥J ′)[cos(kx) + cos(ky)]e−ikx , (A6)

H61 = −(
D′

‖ − 1
2J ′D + 1

2J ′D‖
)
i sin(ky)e−ikx , (A7)

H22 = 1 − J ′2 + 1
4D2 + (D′

⊥)2
(

1
2 − 1

4 [cos(2kx) + cos(2ky)] − 1
2 [cos(kx + ky) + cos(kx − ky)]

) + 1
4 (D′

‖)2 cos(2kx), (A8)

H32 = −ihx + i

4
D′

⊥D′
‖[sin(2ky) + sin(kx + ky) − sin(kx − ky)], (A9)

H42 = (
D′

⊥ + 1
2D′

⊥J ′)[cos(kx) + cos(ky)]e−ikx + 1
2DD′

‖[cos(kx) − cos(ky)]e−ikx , (A10)
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H52 = 0, (A11)

H62 = −(
D′

‖ + 1
2J ′D + 1

2J ′D‖ + DD′
⊥
)
i sin(kx)e−ikx , (A12)

H33 = 1 − J ′2 + 1
4D2 + (D′

‖)2
(

1
2 + 1

4 [cos(2kx) + cos(2ky)]
)
, (A13)

H43 = (
D′

‖ − 1
2J ′D + 1

2J ′D‖ − DD′
⊥
)
i sin(ky)e−ikx , (A14)

H53 = (
D′

‖ + 1
2J ′D + 1

2J ′D‖
)
i sin(kx)e−ikx , (A15)

H63 = 0, (A16)

H44 = 1 − J ′2 + 1
4D2 + (D′

⊥)2
(

1
2 − 1

4 [cos(2kx) + cos(2ky)] − 1
2 [cos(kx + ky) + cos(kx − ky)]

) + 1
4 (D′

‖)2 cos(2ky),

(A17)

H54 = −ihz + 1
4 (D′

‖)2[cos(kx + ky) − cos(kx − ky)], (A18)

H64 = ihy + i

4
D′

⊥D′
‖[sin(2kx) + sin(kx + ky) + sin(kx − ky)], (A19)

H55 = 1 − J ′2 + 1
2D2 + (D′

⊥)2
(

1
2 − 1

4 [cos(2kx) + cos(2ky)] − 1
2 [cos(kx + ky) + cos(kx − ky)]

) + (D′
‖)2

(
1
2 + 1

4 cos(2ky)
)
,

(A20)

H65 = −ihx − i

4
D′

⊥D′
‖[sin(2ky) + sin(kx + ky) − sin(kx − ky)], (A21)

H66 = 1 − J ′2 + 1
4D2 + (D′

‖)2
(

1
2 + 1

4 [cos(2kx) + cos(2ky)]
)
. (A22)
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