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Polarizability of electrically induced magnetic vortex plasma
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Electric field control of magnetic structures, particularly topological defects in magnetoelectric materials, has
drawn a great deal of attention in recent years, which has led to experimental success in creation and manipulation
by an electric field of single magnetic defects, such as domain walls and skyrmions. In this work we explore a
scenario of electric field creation of another type of topological defect, magnetic vortices and antivortices, which
are characteristic of materials with easy-plane (XY) symmetry. Each magnetic (anti)vortex in magnetoelectric
materials (such as type-II multiferroics) possesses a quantized magnetic and an electric charge, where the former
is responsible for interaction between vortices and the latter couples the vortices to an electric field. This property
of magnetic vortices opens a peculiar possibility of creation of magnetic vortex plasma by nonuniform electric
fields. We show that the electric field, created by a cantilever tip, produces a “magnetic atom” with a localized
spatially ordered spot of vortices (“nucleus” of the atom) surrounded by antivortices (“electronic shells”). We
analytically find the vortex density distribution profile and temperature dependence of polarizability of this
structure and confirm it numerically. We show that electric polarizability of the “magnetic atom” depends on
temperature as α ∼ 1/T 1−η (η > 0), which is consistent with Euclidean random matrix theory prediction.
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I. INTRODUCTION

Efficient control of magnetic structures by electric fields
might revolutionize the field of magnetic memory devices.
Compared to the existing technology that switches magnetic
states using electric currents (via created magnetic fields or
spin-transfer torques) and thus is subject to joule heating [1],
the replacement of current with an electric field promises
to reduce energy dissipation by a factor of 100 [2]. Several
mechanisms of electric field manipulation of magnetism
have been proposed, such as electric field changing of the
carrier concentration, which mediates magnetic interactions in
magnetic semiconductors; changing the magnetic anisotropy
in insulator/magnetic metal heterostructures; and using mag-
netoelectric coupling in multiferroic materials [2]. In the
present work we will focus on the latter mechanism.

The magnetoelectric effect was first discovered “with the
point of the pen” by Dzyaloshinskii [3] and then this prediction
was experimentally observed by Astrov in Cr2O3 [4]. Then,
after fast development in the 1960s and 1970s, interest in
such materials gradually faded away, because of the weakness
of the observed effect. But since the experimental successes
of the 2000s—discovery of many multiferroics (materials in
which two or more ferroic orders, such as ferromagnetism
and ferroelectricity, are present [5]) and “revival” of the
field—magnetoelectric materials are still in the focus of both
experimental and theoretical research. For recent reviews on
multiferroics see [6–10].

According to the classification of Khomskii [11], there are
two types of multiferroics. Type I consists of multiferroics,
where both ferromagnetic and ferroelectric orders coexist,
being almost not coupled to each other. In type-II multiferroics
the two orders are coupled and usually a magnetic order
creates an electric one. This feature can be used backwards:
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applying an electric field and inducing polarization, magnetic
patterns can be also created and manipulated. While this
type-II feature was originally coined in multiferroics, it
has become more widespread that this coupling between
magnetization and electric polarization can appear in any
magnetic insulator, where it is allowed by symmetry [6]. In
2008 Dzyaloshinskii theoretically predicted the possibility of
creation and manipulation of domain walls by electric fields in
conventional and weak ferromagnets [12] and the movement
of magnetic domain walls under the action of electric field was
directly observed [13,14].

The use of domain walls and other topological defects
in multiferroics [15] for magnetic storage is particularly
appealing since it provides a mechanism of very dense packing
of information, while topological nature protects information
from loss under the influence of external perturbations such as
heating or mechanical action [16,17]. Among the bright ex-
amples of such topological defects are skyrmion lattices [18],
as well as individual skyrmions observed in magnetoelectric
materials [19], magnetic vortices [20,21] with their discrete
analogs [22–24], and domain walls [13,14,25]. Usually such
defects and textures are observed in thin-film magnetoelectric
materials [26].

In the present paper we consider theoretically a phenomeno-
logical model developed by Mostovoy [27] for a type-II
multiferroics and apply it to a thin-film material with easy-
plane symmetry. We show both analytically and numerically
that in this case a strong enough locally concentrated electric
field may cause formation of a “magnetic atom” that consists
of a vortex “nucleus” surrounded by antivortex “shells”. This
idea allows us to propose an experimental realization for 2D
Coulomb plasma in a trap and make predictions about its
normal modes. The topic of finite Coulomb plasma clusters,
and particularly of their normal modes, draws great attention
in different areas of physics (see [28,29] and references
therein). However, usually particles in 2D plasma clusters
interact between themselves via screened or unscreened 3D
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Coulomb 1/r potential. On the contrary, systems that we
consider in this work provide a unique possibility of creation of
plasma with constituents interacting via the 2D Coulomb log r

potential.
The research presented here also has some reminiscence

of quantum electrodynamics. It was proposed that space- or
time-dependent electric fields can generate electron-positron
pairs from vacuum or fill empty electronic shells in an atom,
producing a positron [30]. The idea was first theoretically
proposed by Sauter [31] and Schwinger [32] and has attracted
considerable interest recently (see, for example, [33]). But
the experimental observation is still lacking: such strong
electric fields cannot be obtained in laboratory conditions
yet; now steps are being done in this direction: the Extreme
Light Infrastructure project [34], which will presumably allow
one to reach the Schwinger limit [35], is currently under
construction.

Another example lies in the physics of heavy atoms. For
atomic numbers Z � 1/α (α ≈ 1/137 is the fine structure
constant) the electric field becomes so strong that the nucleus
can tear electrons out of the vacuum and fill lower electron
levels while emitting positrons [36,37]. This effect has not
yet been observed since such heavy atoms are very unstable.
However, recently a condensed matter version of the artificial
atom-like structures was realized in graphene [38].

The present paper proposes an experimental setup for
observation of analogous effects in another part of the realm
of condensed matter systems, in multiferroics: we propose
that vortex-antivortex pairs can be created from the ground
state of a type-II multiferroic thin film by applying a strong
nonuniform electric field.

The paper is organized as follows. In Sec. II we introduce
our basic phenomenological model of quasi-two-dimensional
type-II multiferroic-like material. In Sec. III we explore the
consequences of applying a strong nonuniform electric field
created by the tip of a cantilever and find “the first critical
electric field”, when the first vortex-antivortex pair is created.
In Sec. IV we present our analytical results on the number
of induced vortices and vortex density distribution in the
continuous model. In Sec. V we deal explicitly with the effects
of discreteness of vortex distribution and estimate the principal
part of temperature dependence of polarizability of an artificial
“magnetic atom”. Section VI presents our numerical results,
which confirm theoretical calculations in Secs. IV and V.
In Sec. VII we make some estimates for real materials and
show that the critical electric field may be quite moderate
and that even weak magnetic anisotropy protects in-plane
spin arrangement. Section VIII contains our conclusions and
some ideas on experimental techniques that can be applied for
observation of the described effects.

II. DERIVATION OF THE MODEL

In order to describe a 2D material with coupled magnetic
and electric subsystems we use the following phenomenolog-
ical model. We write the total free energy density as a sum
of parts arising from electric polarization, magnetization, and
magnetoelectric coupling:

w = we + wm + wme. (1)

Here

we = P 2

2χe

− EP − E2

8π
(2)

is the energy of electric polarization [39], χe is the electric
susceptibility in the absence of magnetization; we assume
that there is no spontaneous polarization in the absence of
magnetization, thus the ∼P 4 term is absent in the free energy
(2). We write the magnetic part of the free energy as

wm = α

2

[(
∂M
∂x

)2

+
(

∂M
∂y

)2
]
, (3)

which is the magnetic exchange energy [39]; the contribution
AM2 + BM4 that keeps |M| = M0 = constant is implied.
Since we are modeling thin-film material, we assume that
the film thickness h is much less than the exchange length
and neglect the variations of M in the transverse to the film
direction. We also note that the same kind of analysis can
be done also for an antiferromagnetic model, which also
possesses the vortex excitations [40].

The most interesting energy part is the coupling energy
[27], which characterizes type-II multiferroics:

wme = γ P(M(∇M) − (M∇)M). (4)

This Lifshits-type term was introduced based on symmetry
grounds; it can be present if spatial inversion symmetry is bro-
ken. One of the possible underlying microscopic mechanisms
is based on the inverse Dzyaloshinskii-Moriya interaction [41].

Combining the three contributions (2), (3), and (4), we write
the total free energy density of the magnetoelectric material as

w = P 2

2χe

− EP − E2

8π
− γ P((M∇)M − M(∇M))

+ α

2

[(
∂M
∂x

)2

+
(

∂M
∂y

)2
]
. (5)

Now we assume that M is a primary order parameter, which
can induce P. Thus we can find polarization by minimizing (5)
with respect to P:

P = γχe((M∇)M − M(∇M)) + χeE. (6)

Because of the thin-film geometry of the sample, magneti-
zation tends to be parallel to the film plane, otherwise the
magnetic energy of the demagnetizing field would greatly
increase; also, material can possess an additional easy-plane
type of symmetry. Therefore we restrict the magnetization to
lie in the plane

M(r) = M0

⎛
⎝cos φ(r)

sin φ(r)
0

⎞
⎠. (7)

Using the angle variable φ the polarization can be written as

P = γχeM
2
0

⎛
⎝−∂yφ

∂xφ

0

⎞
⎠ + χeE. (8)

Substituting (7) and (8) into (5), we see that the electric,
magnetic, and magnetoelectric parts of the energy combine
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to

w = 1
2

(
αM2

0 − χeγ
2M4

0

)
(∇φ)2

−χeγM2
0 (∂xφEy − ∂yφEx) − 1

2χeE
2. (9)

Assume, for a moment, that E = 0. In this case the
expression for energy W = ∫

wdV is similar to that of the
XY model WXY = 1

2ρs

∫
(∇φ)2dS with an effective spin-wave

stiffness

ρs = (
αM2

0 − χeγ
2M4

0

)
h, (10)

where h is the film thickness. Hence, in the absence of the
electric field, the magnetoelectric coupling just renormalizes
the spin stiffness of the XY model. For typical values of
parameters [see Sec. VII and especially the text after formula
(57) for details], αM2

0 is greater than χeγ
2M4

0 by several
orders of magnitude; therefore, ρs remains almost unchanged
by magnetoelectric interaction and further we use ρs ≈ αM2

0 h.
Despite this, some interesting features appear. It is well

known that in the XY and related models the magnetic vortices
play the crucial role [42]. Vortex placed at the origin has the
form

φ = k arctan
y

x
+ φ0, (11)

where k is the winding number of the vortex, and φ0 is an
arbitrary angle. It turns out that magnetoelectric coupling
affects vortices. From (8) it follows that polarization of
magnetic vortex is P = −kγχeM

2
0 r/r2. This leads to the

fact that a magnetic vortex acquires an electric charge kqe

proportional to the winding number k of the vortex [27], where

qe = 2πγχeM
2
0 h. (12)

Consider now what happens in a nonzero electric field.
The φ-dependent part of the energy can be rewritten with the
accuracy O(γ ) in the coupling constant as

W = h

2

∫ [
αM2

0 (∇φ)2 − 2χeγM2
0 (∂xφEy − ∂yφEx)

]
dS

= hαM2
0

2

∫ [(
∂xφ− χeγ

α
Ey

)2

+
(
∂yφ + χeγ

α
Ex

)2]
dS.

(13)

From this we see that the ground state in the electric field is
reached when ∇φ = (Ey, − Ex)χeγ /α.

For example, a weak constant in-plane electric field mod-
ifies the ground state configuration into a cycloidal magnetic
structure with a period λ = 2πρs/χeγE and the wave vector
perpendicular to the electric field [43]. At T = 0 this magnetic
structure creates polarization P = χ2

e γ 2M2
0 E/ρs and gives

contribution to electric susceptibility: χcycloid = χ2
e γ 2M2

0 /ρs .
We also see that λ → ∞ as E → 0 and, hence, finite-
size magnetic orientational defects are not influenced by an
infinitesimal electric field.

When the electric field is neither constant nor weak, it is
convenient to write it with the use of the electric field potential
E = −∇ϕ, so the coupling term (4) can be rewritten as

Wme = hχeγM2
0

∫
(∂xφ ∂yϕ − ∂yφ ∂xϕ)dS. (14)

Excluding singular points from the integration domain and
making cuts in order that it be simply connected, we can
integrate by parts and get

Wme = hχeγM2
0

(∮
(∂xφn̂y − ∂yφn̂x)ϕ dl

−
∫

(∂y∂xφ − ∂x∂yφ)ϕ dS

)
, (15)

where the boundary integral over the edge of the sample
dl contains a normal to it, n̂. Since the integration domain
is simply connected and does not contain singularities, the
second integral in (15) vanishes.

The first integral can be transformed using the fact that
dl ∼ (−n̂y,n̂x), so

∮
(∂xφn̂y − ∂yφn̂x)ϕ dl = − ∮

ϕ ∇φdl. In-
tegration contour includes not only outer boundary of the
sample, but also all singular points of ∇φ. Since integration
around the singularities is clockwise, we take out −1 and make
it counterclockwise;

∮ ∇φdl = 2πki , where ki is the winding
number (vorticity) of the i-th singular point. Integrals along
cuts give 0, since ∂iφ is single-valued (though φ itself is not).
Therefore, we obtain

Wme = hχeγM2
0

(∑
cores

2πkiϕ(ri) −
∮

edge
ϕ∇φdl

)
. (16)

The first term in (16) has the form
∑

qiϕ(ri). This means
that similarly to the case of a zero electric field (12), in a
nonzero electric field vortices still have an electric charge
proportional to the winding number of the vortex qi = kiqe =
ki 2πhχeγM2

0 . Therefore, vortices carry positive charge qe and
antivortices carry negative charge −qe.

However, from (16) we see that when the external electric
field is applied, boundary effects become important. Consider
a single vortex, which has electric charge (12) due to the
magnetoelectric interaction. From the total electroneutrality
it follows that the boundary of the sample also becomes
charged; it acquires charge of the same magnitude but the
opposite sign compared to the vortex. In a longitudinal external
field, the boundary charge effectively shields the charge of the
vortex, and the value of screening depends on the geometry
of the sample. In this work we assume for simplicity that our
sample is a disk with radius R. For such a disk screening of
longitudinal constant electric field reduces the effective charge
of vortices exactly twice [43] (see Appendix A for further
details). For axially symmetric electric fields with potential
ϕ(r) the integral in (16) gives just qedgeϕ(R) with qedge =
hχeγM2

0

∮ ∇φdl. So for magnetically neutral systems (when∮ ∇φdl = 0) the edge charge is zero and (16) transforms to

Wme = −qe

∑
i

kiϕ(ri). (17)

Coupling energy (16) is additive both in φ and in ϕ.
Additivity in φ tells us that magnetoelectric coupling does not
influence the vortex-vortex magnetic interaction, which comes
only from the nonadditive term (∇φ)2 in (9). Therefore vortices
interact as in the XY model via the 2D Coulomb potential [42]
W = ±2q2

m ln(r/a), where a is the short-distance cutoff of
order the lattice spacing and qm is the “magnetic charge”:

q2
m = πρs ≈ αM2

0 h. (18)
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Here and further we put for simplicity vorticities to be k =
±1, since vortices with higher winding numbers are unstable
towards decomposition to these elementary ones.

The magnetic energy of a magnetically neutral system of
N vortices and N antivortices can be written as [44]

Wm = −2q2
m

∑
i<j

kikj ln
rij

a
. (19)

Here rij is the distance between i-th and j -th vortex cores.
For a sample with the number N1 of vortices not equal to

the number N2 of antivortices, formula (19) can be generalized
to

Wm = (N1 − N2)2q2
m ln

R

a
− 2q2

m

∑
n<m

kikj ln
rij

a
. (20)

We would like to emphasize that there is also a purely
electrostatic Coulomb interaction between the vortex cores,
but it gives a contribution ∼γ 2, which is negligibly small
compared to the interaction ∼γ with the external electric
field. Therefore, in what follows we adopt an approximation
in which a system of vortices and antivortices interact with
each other only via the magnetic subsystem, and in addition,
they interact with the external electric fields due to the
magnetoelectric coupling.

III. BREAKING THE MAGNETIC VACUUM WITH
ELECTRIC FIELD: VORTEX-ANTIVORTEX

PAIR CREATION

In this section we explore the basic idea of the paper, that
a strong nonuniform electric field can break the “magnetic
vacuum” of magnetoelectric material via creation of vortex-
antivortex pairs.

A. Geometry of the system

Figure 1 shows the typical experimental setup that we
keep in mind (which was proposed in Refs. [21,45]). An
electric field is produced by the tip of a cantilever with a

FIG. 1. Geometry of the system. Sample is a disk with radius
R and thickness h. Above its center at the height H the tip of the
cantilever with a negative charge −Qtip is placed.

fixed point charge −Qtip < 0. Because of the magnetoelectric
interaction, strong enough electric field makes possible cre-
ation of magnetic vortices. In this section we work in the limit
of low temperatures, where there are no thermally activated
vortex-antivortex (VA) pairs (for T � πρs = q2

m their number
is exponentially small).

The electric potential produced by the tip of the cantilever
with charge −Qtip is

ϕ(r) = − Qtip√
r2 + H 2

, (21)

where H is the distance from the tip to the sample, and r is the
polar radius of the point of observation. We assume that the
sample is thin: its thickness h � H , so we neglect the variation
of the electric field in the transverse to the film direction inside
the film.

B. Critical tip charge for the creation of the first VA pair

In this subsection we find the critical value of the electric
field that creates the first vortex-antivortex pair at T = 0 in a
sample of big enough size to accommodate the pair as a whole
(“big sample”).

Let the electric field produce one VA pair with the vortex
situated at the center of the disk and the antivortex placed at
the distance r from its center (in the considered case of big
samples r � R). The energy of the pair as a function of r

consists of the magnetic energy (19) of the VA interaction and
the magnetoelectric part (17):

W = 2q2
m ln

r

a
+ Qtipqe

(
1√

r2 + H 2
− 1

H

)
.

Instead of Qtip, r , and H it is convenient to introduce the
dimensionless variables κ , x, and h:

κ = Qtipqe

2q2
mH

, (22)

x = r2

H 2
, (23)

h = H

a
. (24)

The total dimensionless energy expressed with the parameters
κ , x, and h is

W = κ

(
1√

x + 1
− 1

)
+ 1

2
ln x + ln h.

Then, minimizing the energy with respect to the distance
between the vortex and the antivortex r by the condition
dW/dx = 0 we obtain the following cubic equation:

(x + 1)3 = κ2x2. (25)

This equation always has a negative root (Fig. 2). When
parameter κ increases from 0 to some critical value κ0 the
equation also acquires a positive multiple root. This happens
when the discriminant of the cubic equation is equal to 0, from
which we find κ2

0 = 3
√

3/2 and xmin = 2, which means that
for this critical value of charge the most favorable distance for
the VA pair is rmin = H

√
2. For κ > κ0 the potential energy

always possesses a local minimum. Whether it will or will not
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FIG. 2. Plots for the left-hand side and right-hand side of Eq. (25)
for κ = 3.5 > κ0. Two intersection points x ≈ −0.2 and x ≈ 0.6 are
seen, while the third unseen intersection point x ≈ 8.9 lies far to the
right.

be an absolute one depends on the dimensionless parameter
h = H/a � 1.

The vortex-free state has zero energy. Then, the local
minimum state with one VA pair becomes the global one when
its energy becomes negative. This condition W < 0 is fulfilled
when

κ√
x0 + 1

< κ − ln h − 1

2
ln x0, (26)

where x0(κ) is the greatest root of (25) that corresponds to
the local minimum of energy; x0(κ) � 2. Since the left-hand
side of (26) is positive, the above inequality can be fulfilled
only if the right-hand side is also positive, therefore, at least
κ > ln h � 1. For such big κ Eq. (25) always has 2 positive
roots, with the greater one x0 ≈ κ2 (and the lesser one x ≈ 1/κ

corresponding to the local maximum of energy). Returning
back to the original variables we find the optimal distance
between the vortex and the antivortex that minimizes the
energy W :

r0 ≡ H
√

x0 ≈ Qtipqe

2q2
m

.

Substituting x0 ≈ κ2 in (26) with the accuracy O(κ−1) we get

κ − ln h − ln κ > 1. (27)

An approximate solution of the equation κ − ln h − ln κ = 1
is κ ≈ ln h + 1 + ln(ln h + 1) ≈ ln h. From this we deduce the
critical charge Qcrit

tip , above which the first VA pair forms:

κcrit = Qcrit
tip qe

2q2
mH

≈ ln h ≡ ln
H

a
, (28)

Qcrit
tip = 2q2

mH

qe

ln
H

a
. (29)

For Qtip � Qcrit
tip the vortex-antivortex solution corresponds not

only to a local but also to the global minimum of energy.
We also define the critical voltage of the tip as voltage

produced at the nearest to the tip point of the sample:

ϕcrit
0 = Qcrit

tip

H
= 2q2

m

qe

ln
H

a
. (30)

For the same typical values of parameters as we used in Sec. II,
we get 2q2

m/qe 
 10−100 V, so ϕcrit
0 
 (10−100 V) ln(H/a).

Higher values of tip voltages can lead to systems with several
vortex-antivortex pairs.

C. Vortex creation in small samples

Above we considered the case of a big sample, when the
VA pair lies far from its boundary. The opposite case of small
samples is also possible and some estimates were made in
Ref. [45]. If r0 becomes greater than R (or R < Qtipqe/2q2

m),
the antivortex leaves the sample, and because the positively
electrically charged vortex remains in its center, the boundary
of the sample acquires a negative charge (see Appendix A for
details). The energy of the system is

W = q2
m ln

R

a
− qeϕ,

where ϕ = Qtip(1/H − 1/
√

R2 + H 2) is the electric poten-
tial difference between the boundary and the center of the
sample. In this case the single vortex is created when energy
W becomes negative, i.e., when voltage

ϕ = q2
m

qe

ln
R

a

is applied.

IV. VORTEX DISTRIBUTION IN CONTINUOUS
APPROXIMATION

In this section we construct an analytical theory in the
continuous approximation for vortex distribution. It proves
that even such a crude approximation captures many effects
and allows us to find the vortex distribution profile, the number
of vortices for given Qtip, and the ground state energy of the
system. These results are numerically verified in Sec. VI.

A. Self-consistent calculation of the vortex density n(r)
and the number of vortices N

The number of vortices in the system is not fixed (as if it
were an external parameter), but rather is determined by the
condition of the energy minimum. In this section we calculate
self-consistently the number of vortices N created by a charge
−Qtip at T = 0.

Consider the continuous limit [which means that at least
N � 1, so Qtip � Qcrit

tip ; see (29)]. Let nv(r) and na(r) be
concentrations of vortices and antivortices, respectively. Let
n(r) = nv(r) − na(r). At T = 0, regions of nonvanishing nv

and na do not intersect, since if they did, the vortices in the
intersection area would annihilate with antivortices in order to
lower the energy of the system.

Consider a ring between radii r and r + dr . In the ground
state there is a balance between the electric and magnetic
interactions. The magnetic interaction pushes vortices outside
while the external electric force pulls them inside the ring (and
vice versa for antivortices). From (21) external electric force
acting on a given area element with electric charge qedN =
qendS is

Fel = qedN
dϕ

dr
= QtipqendS

r

(r2 + H 2)3/2
. (31)
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FIG. 3. Schematic plot for rn(r) vs r . Here rn(r) is proportional
to the number of vortices at distance r from the disk center; the vortex
distribution density n(r) is given by (34).

From (19) the magnetic force is 2q2
m/r; we can now calculate

the magnetic force acting at the same area element with
magnetic charge dqm = qmndS, using Gauss’s theorem from
electrostatics: an axially symmetric ring acts on the outer
charges with such a force as if all charges of the ring were
concentrated in its center and does not act on the inner charges;
therefore the magnetic force is

Fmagn = 2dqmq inside
m

r
, (32)

where q inside
m = qm

∫
n(r)d2r = 2πqm

∫ r

0 n(r)rdr is a net mag-
netic charge inside the considered ring.

Equating (31) and (32) we get

Qtipqer

(r2 + H 2)3/2
= 4πq2

m

r

∫ r

0
n(r)rdr. (33)

Multiplying by r and differentiating this with respect to r we
obtain the vortex distribution density profile:

n(r) = Qtipqe

4πq2
m

2H 2 − r2

(r2 + H 2)5/2
. (34)

The r-dependence of rn(r) that is proportional to the number
of vortices at distance r from the disk center is shown in
Fig. 3. Vortices are concentrated inside a small circle of radius
r0 = H

√
2; antivortices are smeared over the sample outside

r0 with their density decaying as rn(r) ∼ −1/r2.
From (33) we get the total topological charge of vortices

and antivortices inside a circle of radius r:

N (r) = 2π

∫ r

0
n(r)rdr = Qtipqe

2q2
m

r2

(r2 + H 2)3/2
. (35)

Now we can calculate the total number of vortices (which for
big samples is the same as the number of antivortices). The
border between vortices and antivortices lies at r0 = H

√
2.

Using this we get

N = 1

33/2

Qtipqe/H

q2
m

. (36)

For a small system with radius R the number of antivortices
can be less than the number of vortices, and there will be a
linear charge density at the edge of the sample. This edge
charge is

qedge = −qeN (R) = −Qtipq
2
e

2q2
m

R2

(R2 + H 2)3/2
.

B. Total ground state energy of the system

Here we calculate the magnetic and electric energy of
system of vortices and antivortices in the ground state. First,
we calculate the magnetic energy. We use the continuous
version of (19), which can be obtained by the substitution
ki → n(r)dS ≡ n(r)dS:

Wm = −2q2
m

∫
d2r n(r)

∫
r ′<r

d2r ′n(r ′) ln
|r − r′|

a
.

The integral over d2r ′ can be calculated using Gauss’s the-
orem for the potential energy:

∫
r ′<r

d2r ′n(r ′) ln |r − r′|/a =
ln(r/a)

∫
d2r ′n(r ′) ≡ ln(r/a)N (r), where N (r) is given by

(35), so we obtain

Wm = −Q2
tipq

2
e

2q2
m

∫ ∞

0
dr

r3(2H 2 − r2)

(r2 + H 2)4
ln

r

a
.

Integrating this we get

Wm = Q2
tipq

2
e

16q2
mH 2

. (37)

Second, we find the energy of the magnetic vortices in external
electric field (21):

Wme = qe

∫ ∞

0
d2r n(r)ϕ(r) = − Q2

tipq
2
e

8qmH 2
. (38)

Summing (37) and (38) we get the total ground state energy
of the system in the continuous limit:

W = − Q2
tipq

2
e

16q2
mH 2

. (39)

Since it is negative and the energy of the uniform vortex-free
state is taken to be 0, then in the continuous limit the formation
of vortex structures is always energetically favorable. This
estimate, as well as the continuous limit itself, is valid only for
Qtip � Qcrit

tip .
Concluding this section, we note that despite the continuous

limit being a crude approximation, it gives us the distribution
density of induced vortices and their number, which are
numerically verified in Sec. VI. The next section addresses
some effects that cannot be captured in the continuous
approximation.

V. CALCULATION OF POLARIZABILITY:
DISCRETENESS EFFECTS

In this section we find the polarizability of big samples with
zero total magnetic vorticity, for which even the antivortices
most distant from the tip do not feel the boundaries of the
sample. As explained below, the continuum approach cannot
be applied to the polarizability calculation and we have to deal
explicitly with the effects of discreteness of vortex distribution
over the sample.

We study two limiting cases: (A) the case of very low tem-
peratures T � qm when only tip-induced vortices are present;
(B) the case of higher temperatures T � q2

m/2 
 TBKT , when
close to the Berezinskii-Kosterlitz-Thouless temperature there
also exist some number of thermodynamically activated pairs.
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A. T � q2
m

Consider a system of N vortices and N antivortices. As a
first approximation we can neglect the effect of the finite size
of the positive vortex “nuclei” and consider it as a point-like
one, neglecting its contribution to the polarizability. Then, the
remaining 2D system of N antivortices has 2N degrees of
freedom and, therefore, 2N normal modes.

Consider the system near its local energy minimum.
Polarizability at T = 0 is largely determined by the softest
mode of the system. If the system possesses a zero mode
that couples with the electric field, then an arbitrary small
perturbation leads to huge distortions, so polarizability of
such state is infinite. However, temperature fluctuations can
effectively smear the low-lying modes, which makes the
polarizability finite and strongly temperature dependent.

The problem of finding polarizability can be exactly
analytically solved for small fixed values of N , but the exact
solution seems to be inaccessible for arbitrary large N . Here we
employ a strategy similar to the “energy landscape approach”
used for overcooled liquids, glasses and spin glasses, proteins
folding, and melting of small clusters [46].

Let ri = r
(0)
i + ri (i = 1, . . . ,2N ), where ri are devi-

ations of Cartesian coordinates of N antivortices from the
local minimum, with the first N components giving us x

coordinates of antivortices, and the second N components
giving their y coordinates: r1 = x1, . . . , rN = xN ; rN+1 =
y1, . . . , r2N = yN . The total energy W = W (0) + W (1), where
W (0) = ∑

i,j V (xi,yi ; xj ,yj ) + ∑
i Vtip(xi,yi) is the sum of

the magnetic energy of the antivortices and the electrostatic
energy interaction of the antivortices with the tip. The small
perturbation W (1) = qeE

∑N
i=1 ri is the energy of interaction

with the infinitesimal in-plane electric field E in the x

direction.
We employ the Hessian matrix:

Ki,j = ∂2W (0)

∂ri∂rj

. (40)

Near the local minima, energy W (0) can be written as a positive-
definite quadratic form [vector r = (r1, . . . ,r2N )]:

W (0) = 1

2

2N∑
i,j=1

riKijrj = 1

2
rKr. (41)

The symmetric matrix Kij can be diagonalized by some
orthogonal transformation O: K̃ = OKO−1, with coordinates
ri being accordingly transformed to normal coordinates Ri :
r = OR. Then W (0) transforms as

W (0) = 1
2 RK̃R, (42)

where K̃ = diag{K1, . . . ,K2N }, and Ki are eigenvalues of the
Hessian matrix, which play an important role as we will see
below.

Since ri = (OR)i = ∑2N
j=1 OijRj , W (1) transforms as

W (1) = qeE

N∑
i=1

ri = qe

2N∑
j=1

ojRj , (43)

where

oj =
N∑

i=1

Oij . (44)

The partition function can be written in terms of normal
coordinates Ri as

Z(E) =
∫ 2N∏

i=1

dri exp[−β(W (0) + W (1))]

=
∫ L

−L

2N∏
i=1

dRi

× exp

⎛
⎝−1

2
β

2N∑
j=1

RjKjRj −βqeE

2N∑
j=1

ojRj

⎞
⎠. (45)

Here we introduced a cutoff L, which takes into account
the fact that for big enough Ri potential W (0) is no longer
a parabolic one. L corresponds to such displacement of
antivortices that shifts the point in the configuration space
from the local minimum to the nearest saddle point; we expect
L to be of order the distance between nearest antivortices.

Polarization of antivortices with negative charges −qe is

px(E) = −qe

N∑
i=1

〈ri〉 = T

Z(E)

∂Z

∂E
. (46)

Polarizability can be found as

α = ∂px

∂E

∣∣∣∣
E=0

= T

Z(0)

∂2Z

∂E2

∣∣∣∣
E=0

. (47)

Substituting here the partition function (45) we get

α =q2
e

T

2N∑
i=1

o2
i

∫ L

−L
dRiR

2
i exp

(− 1
2βKiR

2
i

)
∫ L

−L
dRi exp

(− 1
2βKiR

2
i

) . (48)

As T → 0 (β → ∞) Gaussian integrals converge very fast
and cutoff L does not play any role: we can extend the limits
of integration up to infinity. Then from (48) we find

α(T → 0) = q2
e

T

2N∑
i=1

o2
i

1

βKi

= q2
e

2N∑
i=1

o2
i

Ki

. (49)

From this we see that in the limit T → 0 polarizability α is
determined by the “softest” modes Ki .

Now consider the case of nonzero T . Performing integra-
tions in (48) we see that the cutoff L now enters the expressions
for polarizability explicitly:

α(T ) = q2
e

2N∑
i=1

o2
i

Ki

f

(√
βKi

2
L

)
, (50)

where we denoted

f (x) = 1 − 2xe−x2

√
π erf x

, (51)

playing the role of the smooth cutoff function for the terms
in the sum (50) with the lowest eigenvalues Ki . The function
f (x) is sketched in Fig. 4.
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FIG. 4. Plot of the cutoff function f (x) defined by formula (51).
As x → 0, f (x) ∼ 2

3 x2; as x → +∞, f (x) ∼ 1 − 2√
π
xe−x2

.

In the limit of the large number of vortices and antivortices
N � 1 the sum (50) can be approximated by an integral:

α(T ) ≈ q2
e

∫ Kmax

Kmin

o2(K)

K
f

(√
βK

2
L

)
D(K)dK, (52)

where D(K) is the density of K modes. In order to make
some estimates of α(T ) and deduce its leading temperature
dependence we use the following three approximations.

(i) We estimate D(K) using random matrix theory for
a Euclidean ensemble [47]. Amir et al. [48] analytically
calculated the density of eigenvalues for certain 1D dilute
systems with a short-range potential and obtained D(K) ∼
1/K; for higher dimensions they predicted that there should
be some correction

D(K) ∼ 1/K1−η, (53)

where η > 0 depends on the dimensionality of the system and
on the form of the particle interaction potential. In Sec. VI C
we check this assumption by exact numerical diagonalization
of the Hessian matrix and find the exponent η.

(ii) We replace the smooth cutoff function with a sharp
Heaviside theta function f (x) → θ (1 − x), so the lower limit
of integration becomes T/2L2. This can be done since f (x) ∼
2
3x2 for x → 0 and integral (52) converges at the lower limit
as

∫
K1−ηdK .

(iii) Since coupling to the electric filed is determined
only by x → −x symmetry of the mode, we assume that all
modes couple to the electric field with approximately the same
strength, apart from fluctuations on the small-K scale:

〈o2(K)〉 = 1

K

∫ K+K

K

o2(K)dK ≈ const(K). (54)

For example, if the stationary configuration r (0) is symmetric
under reflection x → −x, then all modes are twofold degener-
ate and either symmetric (does not couple to the electric field)
or antisymmetric (couples to the electric field with the same
weight).

Finally, using the above three approximations, we obtain
the following temperature dependence of polarizability:

α(T ) ∼
∫ +∞

T/2L2

D(K)dK

K
∼

∫ +∞

T/2L2

dK

K2−η
∼ 1

T 1−η
. (55)

Since the integral converges we extended the upper limit
of integration up to ∞. This estimate holds as long as
T � KminL

2. For very low temperatures T � KminL
2, α ∼

1/K
1−η
min = const(T ).

The exponent η is in a sense a nonuniversal one and it should
depend not only on the dimensionality of the system, but also
on the form of the particle interaction and external potentials.
We numerically test the validity of the above approximations
and the α ∼ 1/T 1−η dependence for our particular case in
Sec. VI C.

B. Some estimates for T � q2
m/2

Now consider the case T � q2
m/2. Then there also exist VA

pairs created by thermal fluctuations. The profile of the total
vorticity n(r) = nv(r) − na(r) remains the same as was found
in Sec. IV A from the force balance considerations [formula
(34) and Fig. 3]. The difference is that now the regions of
nonvanishing nv(r) and na(r) intersect with each other. This
describes the process of penetration of antivortices in the vortex
region and vice versa because of VA pair formation.

Now there will be two contributions to polarizability:
(i) The contribution of tip-induced vortices, but now their

interaction will be renormalized by the Kosterlitz-Thouless
dielectric function: W (r) = ±2q2

m ln(r/a)/ε(r).
(ii) The pure contribution of thermally activated dipole pairs

away from the tip.
Below we consider only the renormalized contribution (i)

[the pure contribution of thermally activated vortices (ii) is
considered in Appendix B].

The renormalized interaction energy is W (r) =
±2q2

m ln(r/a)/εKT (r). As long as χKT = (εKT − 1)/2π � 1,
which holds in almost the whole range T < TBKT ≈ q2

m/2
except in a small temperature interval in the vicinity of TBKT ,
there will be no qualitative influence of the thermal VA pairs
on the field-induced vortices.

We can estimate the melting temperature for the induced
“magnetic atom” patterns. The pattern starts to melt at
a temperature Tc when the position fluctuations become
comparable to intervortex distance r ∼ 1/

√
nv (nv is a local

vortex concentration). Make an estimate for the vortex situated
in the center of the disk. Here only the electric potential
influences, which is almost parabolic:

We(r) ≈ kr2

2
, k = 2Qtipqe

H 3
.

Using (36) and nv ∼ πr2
0 /N = 2πH 2/N we get

Tc ∼ k(r)2

2
∼ k

2nv

∼ kH 2

2N
∼ 2QtipqeH

2

2H 3N
∼ q2

m ∼ TBKT .

Hence, the magnetic pattern is stable up to T � TBKT . For
T > TBKT thermodynamically induced vortex pairs dissociate
and break the local magnetic order.

VI. NUMERICAL SIMULATION

In this section we describe the procedure and the results of
numerical simulation.

A. Numerical procedure

We modeled a system of pointlike vortices and antivortices,
which interact between themselves [with the magnetic energy
(19)] and with the external electric field created by the
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FIG. 5. Configuration of a vortex-antivortex system for Qtipqe/

H = 23q2
m at T = 0.001q2

m. Vortex cores (filled circles) and an-
tivortex cores (open circles) are shown; arrows show magnetization.
Coordinates are given in the units of lattice spacing a.

cantilever’s tip [with energy (17); the electrostatic potential
is given by (21)]. The system shows “glassy” behavior; i.e.,
there are many local minima that are close to the global one.
In order to find a state corresponding to such a local energy
minimum we performed simulated annealing using the Monte
Carlo (MC) method [49]. Three types of MC steps were used:
movement of a vortex or an antivortex, creation of the VA pair,
and destruction of the VA pair. We cooled the system from high
temperatures Tstart 
 q2

m > TBKT 
 q2
m/2 (which allowed the

system to find the optimal number of vortices) down to as low
as Tstop = 10−6q2

m, depending on the numerical experiment. A
geometrical cooling schedule was used [50]:

Tk = Tstartγ
[k/Nit ]

with γ = 0.99 and typically Nit = 100 000 Monte Carlo
iterations at a given temperature.

The simulation was performed for the following ratios
between the lattice constant a, distance H from the tip to the
sample, and radius R of the sample: a = 0.01H , R = 100H .

FIG. 7. Plot for N vs Qtip (number of vortex-antivortex pairs
vs the tip charge). The inset shows a zoom of the plot for range
Qtip = (0–24)Hq2

m/qe. From the inset the critical tip charge is
Qcrit

tip ≈ 9Hq2
m/qe.

B. Number of vortices and the critical field

As we described in detail in Secs. III and IV, the charged tip
produces magnetic patterns (“magnetic atoms”) in the system
under consideration. Figure 5 shows a typical low-temperature
(T = 0.001q2

m) distribution of magnetization in the system for
moderate values of tip voltages (ϕ = Qtip/H = 23q2

m/qe), for
which N = 3 vortices and 3 antivortices are created.

Figure 6 shows a typical low-temperature configuration of
the system for higher values of the tip’s voltage (Qtipqe/H =
240q2

m). For the depicted configuration the observed number
of vortices is Nnum = 43, whereas analytical formula (36)
gives N analyt = 240/33/2 ≈ 46.2; this mismatch is explained
below. Vortices and antivortices are arranged in a highly
regular structure that is reminiscent of the structure of an
atom: negatively charged antivortex outer concentric circular
“shells” surround the positive vortex “nucleus”. Figure 6(b)
depicts only this vortex “nucleus” of the “atom”; arrangement
of the vortices, interacting via a 2D Coulomb-like log r

magnetic potential, is similar to one of the trapped single-
species Coulomb plasma, where charges are confined to a
plane and interact via a 3D Coulomb 1/r potential [51,52].
Similar patterns of magnetic skyrmion systems were observed
recently [53].

Figure 7 shows the N (Qtip) dependence for the ground
states of the system with varying Qtip. We see that analytical
result (36) is in a good agreement with the numerical mod-
eling. Analytical theory, which was derived in a continuous

(a) (b)

FIG. 6. Configuration of a vortex-antivortex system for Qtipqe/H = 240q2
m at T = 10−6q2

m. Vortex cores (filled circles) and antivortex
cores (open circles) are shown. (a) Antivortex subsystem; vortex “nucleus” cannot be resolved. (b) Vortex subsystem.
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FIG. 8. Plot for dipole moment p vs electric field E at T =
0.001q2

m for a big system (for Qtipqe/H = 200q2
m, N = 36). Filled

circles show the px dependence (component parallel to the electric
field), open circles the py dependence (component perpendicular to
the electric field).

approximation, gives the correct slope, but slightly overesti-
mates the number of vortices.

We also see that the analytical result for the critical
charge that creates the first VA pair (29) gives for the con-
sidered parameters (a = 0.01H ) Qcrit

tip = 2 ln 100q2
mH/qe ≈

9.2q2
mH/qe, whereas the numerical simulation gives Qcrit

tip ≈
9q2

mH/qe (inset of Fig. 7). This mismatch Q = Qcrit
tip between

the continuum theory and simulation for Qtip at a given N leads
to mismatch in N for a given Qtip, and the average mismatch
should be of order N ≈ Qqe/33/2q2

mH ≈ 1.7; moreover
the observed staircaselike dependence gives an additional ±1
deviation from the continuous formula (36), which explains
the above mismatch N ≈ 3.2 between the analytical formula
and the numerical simulation for Qtipqe/H = 240q2

m.

C. Polarizability of big samples

In this section we numerically find the temperature depen-
dence of the polarizability of big samples. In order to find
polarizability we performed cooling at a fixed value of electric
field E and then independently repeated this for different
values of E. From the theoretical analysis of Sec. V we expect
the polarizability to be strongly temperature-dependent.

Figure 8 shows the variation of the x and y components
of the dipole moment with the applied electric field for

FIG. 9. ln α vs ln(βq2
m) plot (for Qtipqe/H = 200q2

m, N = 36).
Here α is the electic polarizability of the “magnetic atom” and β

is the inverse temperature. Symbols show data with their standard
deviation; solid line shows fitting. Slope of the dashed inclined line
is 0.74 ± 0.07.

FIG. 10. Cumulative distribution function of the Hessian matrix
eigenvalues

∫ K

0 D(K)dK vs K . Thick broken line, data from exact
diagonalization of 72×72 Hessian matrix; thin curve, best fit ∼K0.25.
This leads to D(K) ∼ K−0.75.

fixed temperature T = 0.001q2
m. A linear fit for the px(E)

dependence gives polarizability αnum = 1388.9H 2q2
e /q

2
m.

Figure 9 shows the temperature dependence of the polariz-
ability in log-log coordinates, which in the limit of small β is
fitted by ln α ≈ 0.74 ln(βq2

m) + constant. This dependence is
consistent with the estimate (55), when we choose η ≈ 0.26,
which gives then α ∼ 1/T 0.74. Using the exact numerical
diagonalization we have found an eigenspectrum (Fig. 10)
from which indeed exponent η ≈ 0.25.

We propose that such nontrivial temperature dependence
of polarizability of finite clusters is a generic one. For glassy
systems the potential energy landscape of the system possesses
many local minima that are close to the global one; adding one
VA pair to the system completely changes this landscape and its
local minima, but preserves its Hessian eigenvalue distribution.
Then we argue that temperature fluctuations smear the fine
details of this energy landscape, effectively cutting off the
low-K (low-frequency) normal modes Ki � T/L2. This
makes the polarizability of the system strongly temperature-
dependent with a nontrivial dependence α ∼ 1/T 1−η. The
exponent η is nonuniversal and depends on the density of
Hessian eigenvalues. For example, for a single-species 2D
plasma confined by a quadratic external potential with particles
interacting via a 3D Coulomb 1/r potential, D(K) ∼ 1/K0.33

[54], so from (53) in this case η ≈ 0.67.

VII. POSSIBLE EXPERIMENTAL OBSERVATION

In this section we consider the possibilities of experimental
observation of the described effects and make estimates for
the required electric fields. The most plausible candidates
possessing the magnetoelectric effect seem to be multiferroic
materials. However most of the known multiferroics are
antiferromagnets with the staggered magnetization playing the
role of the order parameter. We believe that the theoretical
results presented in the previous sections are applicable to
them at least qualitatively if not quantitatively. An important
remark should now be kept in mind: by vortex/antivortex we
understand now ±2π rotation of the staggered magnetization
vector. Also in order to ease the comparison with the
experimental data we use SI units throughout this section;
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for transferring from Gaussian to SI units substitutions χe →
χeε0, Qtip → Qtip/4πε0 should be made.

A. Theoretical estimates for real materials

First, we consider the potential materials where the pre-
dicted effects could be found. In order to observe creation
of “magnetic atoms” by electric field in a thin film we need
a fairly strong coupling between the electric and magnetic
subsystems. Below we make estimates for type-I and type-II
multiferroics.

Type-I multiferroics. We consider a prototypical type-I
multiferroic, BiFeO3. Its single crystals are rhombohedral at
room temperature with the space group R3c and pseudocubic
unit cell with a ≈ 4 Å and G-type antiferromagnetic structure
[55]; its spontaneous polarization P 
 1C/m2 [56,57], which
induces cycloidal twisting of the staggered magnetization
with the period λ 
 620–640 Å [55,58], dielectric constant
ε = 1 + χe 
 50 [59].

In order to estimate the constant α characterizing the
strength of the exchange interaction [see Eq. (3) above], we use
the exchange constant for nearest-neighbor Fe-Fe interaction
J = 10 meV [60]. Hence for the bcc pseudocubic setting we
obtain exchange stiffness A ≡ αM2

0 /2 = Ja2/V = 4pJ/m

which is consistent with the estimate deduced from the Néel
temperature [61] (V ≈ a3 is the volume of the pseudocubic
unit cell).

Now using (3), (4), (7) and taking φ = kx, where k = 2π/λ,
we get

wme + wm = −γPykM2
0 + α

2
k2M2

0 . (56)

Minimizing this energy density with respect to k we obtain
k = γPy/α = 2γPyM

2
0 /A or

γM2
0 = kA/2P ≡ πA/λP 
 0.8 mV. (57)

Using estimate (57) we find that χeε0γ
2M2

0 
 3×10−16 J/m,
which is much less than αM2

0 
 8×10−12 J/m. This indeed
justifies our simplification of the formula (10) in Sec. II.
Now from (12) using h = a ≈ 4 Å we find the vortex electric
charge per one layer qe ≈ 9×10−22 C ≈ 0.006e (e is the
charge of electron). From (18) we find the value of “magnetic
charge” and using (30) we find the critical tip voltage for
creation of first VA pair ϕcrit

0 
 20 V× ln(H/a). Using (29)
with ln(H/a) ∼ 1 we also estimate the charge of impurity
necessary to create one VA pair in a monoatomic film layer as
Qcrit

impurity 
 10−18 C ≈ 6e.
Type-II multiferroics. Namely, type-II multiferroics with

a noncollinear magnetic order seem to be very natural
candidates for observation of “magnetic atoms”. Among
them are cycloidal helimagnets such as TbMnO3, DyMnO3,
Eu0.75Y0.25MnO3, Ni3V2O8, MnWO4, etc.; see [8,62] for
reviews. Although the ground state in cycloidal helimagnets
is different from the collinear one, vortex excitations of this
ground state can be created anyway.

Here we make estimates for the prototypical type-II multi-
ferroic TbMnO3. At room temperature it has orthorhombically
distorted perovskite structure with space group Pbnm and the
lattice parameters a = 5.3 Å, b = 5.86 Å, c = 7.49 Å [63].
Below TN = 41 K magnetic order appears: a sinusoidal spin

density wave caused by frustrations is formed, with no electric
polarization. Below T = 28 K the magnetic cycloidal state in
the bc easy plane with the wave vector k = π (0,0.28,0) (and
λ = 2π/k ≈ 42 Å ≈ 7b) becomes energetically favorable and
it induces the electric polarization which grows with lowering
the temperature and reaches the value P = 8×10−4 C/m2 at
T = 10 K; dielectric constants are εa 
 24, εb 
 23, εc 
 29
[64]; for estimates we get the mean value εbc = (εb + εc)/2 =
26 = 1 + 4πχe. Using (6) we calculate the magnetoelectric
constant

γM2
0 = P/χeε0k 
 2.4 mV. (58)

As expected its value is greater than for type-I multiferroics
(57), though the difference is not that drastic. From (12)
we also find the vortex electric charge per one layer qe ≈
1.8×10−21 C ≈ 0.01e.

In order to estimate the exchange stiffness and “magnetic
charge” we use values of microscopic exchange constants.
The literature data on these are somewhat controversial, with
even different relative strengthes of exchange constants along
different unit-cell directions [65–68]. For the estimate we use
the exchange in the c direction, which is free of magnetic
frustrations, as Jc = 1.5 meV, consistent with estimates from
the Néel temperature [69] kBTN 
 Jz/3 (z is the number
of nearest neighbors for the magnetic atom); therefore the
exchange stiffness A = Jcc

2/2V 
 0.3 pJ/m. Then from (30)
we find the critical tip voltage for creation of the first VA
pair ϕcrit

0 
 0.3 V× ln(H/a). Using (29) with ln(H/a) ∼ 1 we
estimate the charge of impurity necessary to create one VA
pair in a single layer as Qcrit

impurity 
 1.6×10−20 C ≈ 0.1e.
Other materials. In principle there might be a wide class of

materials where magnetic vortices can be created by electric
field, with multiferroics substituting only a narrow subclass
of them: potentially, any magnetic insulator can exhibit
a magnetoelectric phenomena, when symmetry arguments
allow this [6]. One microscopic mechanism for this is the
Dzyaloshinskii-Moriya interaction, which is present in many
materials, such as weak ferromagnets and helical magnets.

B. Magnetic anisotropy

Here we discuss the limitations of our theoretical picture
due to possibility of out-of-plane polarization induced by
the tip of the cantilever. The charged tip induces an electric
field perpendicular to the plane and consequently a transverse
electric polarization; the latter can in turn induce a magnetic
spiral with an out-of-plane magnetization component and
in-plane wave vector.

In order for this effect to be minor there should be some
uniform easy-plane anisotropy that also holds magnetization
in the plane in the absence of the tip: for example, single-
ion anisotropy or one connected with the sample geometry
(for ferromagnetic systems it is just the demagnetization
energy; but for antiferromagnetic systems some weak surface
anisotropy effects are also expected [70]).

First, consider a system with tetragonal or orthorhombic
symmetry, where an easy plane exists, and magnetic anisotropy
energy is relatively large. Estimate the necessary transverse
electric field that can induce a spiral in a “hard” plane (plane
containing the hard direction). Here we chose as an example

195136-11



P. I. KARPOV AND S. I. MUKHIN PHYSICAL REVIEW B 95, 195136 (2017)

TbMnO3, which has a ground state with a cycloidal spiral
in the bc plane (thus the hard axis is a); for an estimate we
take anisotropy parameter Kan � 0.1J 
 0.1 meV [65] per
one magnetic Mn atom.

Let the electric field be strong enough to induce a cycloidal
magnetic spiral with an out-of-plane magnetization compo-
nent. Using (3) and (4) we get the following estimate for
the energy gained by the spiral state with induced out-of-
plane polarization Pz = ε0χeEz = ε0χeE0z/ε ≈ ε0E0z (z axis
is perpendicular to the plane, Ez is the field inside the film,
E0z is the field in vacuum, ε ≈ 1 + χe ≈ χe):

wm + wme 
 −γ ε0E0zkM2
0 + α

2
M2

0 k2. (59)

Minimizing this with respect to wave vector k we obtain k 

γ ε0E0z/α; therefore (59) transforms to

wm + wme 
 −γ 2ε2
0E

2
0zM

2
0

2α
, (60)

which is the energy density that the system gains when the
spiral state is created. However the anisotropy energy density
of the system increases by an amount

wanisotr 
 4 × Kan

2V
, (61)

where the factor of 4 comes because of four magnetic Mn
atoms per TbMnO3 unit cell of volume V = abc and the
factor of 2 in the denominator is because of averaging
local anisotropy energies ∼ cos2(kx) over spiral propagation
direction x. Comparing the energy gained by the spiral state
(60) and the increase of the anisotropy energy (61), and taking
typical values of parameters for TbMnO3 considered above,
we obtain the following estimate for the electric field needed
to produce a magnetic cycloid rotating in a “hard” plane:

E0z � 2
√

αKan√
V ε0γM0


 1.9 × 1010 V/m.

For comparison, if the tip is placed at H = 10 nm above the
film, in order to create such strong electric field that will
influence the Mz component, the tip’s voltage has to be as
large as ϕ = E0zH ≈ 200 V (and even larger for greater H ).
This value is well above the critical voltage 0.3 V for VA pair
formation estimated for TbMnO3 earlier. Thus, we conclude
that almost any reasonable nonzero magnetic easy-plane
anisotropy protects the in-plane spin arrangement, in spite of
the possibly strong electric field component perpendicular to
the plane induced by the tip.

For systems with very weak or no single-ion anisotropy,
such as BiFeO3, where only surface effects protect the in-
plane magnetization, the perpendicular component of the
electric field will induce the out-of-plane component of the
magnetization.

One way to avoid an out-of-plane magnetization for such
systems is to use two symmetrical charged tips from both sides
of the film (Fig. 11; still H � h). However we claim [71]
that even for the single-tip geometry (Fig. 1), an out-of-plane
component of magnetization near the tip would be localized
inside the area of the radius ∼H (distance from the tip to
film surface). This will not affect parts of the system outside
the latter area, away from the tip. Therefore, the “magnetic

FIG. 11. Geometry of the system with two symmetric charged tips.

atom” nucleus consisting of vortices in the r ∼ H area may
drastically change, but antivortex shells will preserve their
qualitative features. This will happen because of the topolog-
ical nature of vortex excitations. For example, if anisotropy
is not strong enough, vortices may have a core with an
out-of-plane component of M; this will make the core electric
charge more smeared, but it will not influence its amount. For
a single vortex, the boundaries of the sample are negatively
charged with the same charge as if the vortex core were
“flat”. The boundaries are not influenced by an out-of-plane
component of the electric field of the tip, since it decreases as
∼1/r3 away from the center, while the in-plane field decreases
only as ∼1/r2. Then by the charge conservation, the positive
charge at the vortex core has to remain the same.

VIII. CONCLUSIONS

In magnetoelectric materials interaction of magnetic and
electric subsystems makes possible the creation of magnetic
patterns by an applied electric field. In this paper we have
presented analytical and numerical analysis of such quasi-
two-dimensional type-II multiferroic-like materials, where
“atom”-like patterns of magnetic vortices and antivortices can
be created by a strong electric field, and we have studied the
structure and electric polarizability of such magnetic “atoms”.

When the spotlike electric field, produced by the tip
of a cantilever, exceeds some critical value, the first
vortex-antivortex pair forms; with increasing electric field
more vortices and antivortices are created from the “magnetic
vacuum” of the magnetoelectric film. We found analytically
and confirmed numerically the critical voltage that is required
to create the first vortex-antivortex pair, and found the depen-
dence of the number of vortex pairs on the applied voltage.
We have shown that a “magnetic atom” forms: a “nucleus”
consists of vortices arranged in a lattice-like structure with
a short-range order; it is surrounded by antivortices forming
outer concentric circular “shells”. We obtained the vortex
density profile in a continuous approximation.

In the type-II multiferroic-like magnetoelectric materials
studies here, vortices carry a positive and antivortices a
negative electric charge; therefore an additional weak in-plane
electric field pulls them in opposite directions, thus creating a
polarization. In this work we have studied the temperature
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dependence of electric polarizability of such “magnetic
atoms”. The polarizability of a finite vortex-antivortex cluster
is determined by the eigenvalues of its Hessian matrix. We
analyzed properties of these normal modes using results
from Euclidean random matrix theory. We speculate that
the behavior of polarizability α ∼ 1/T 1−η is generic for
disordered (“glassy”) finite classical systems with many local
minima near the ground state energy; the exponent η depends
on the form of the potential and dimensionality of the system.
Thermodynamical fluctuations wash out the fine details of
the energy landscape, effectively cutting off the low-lying
eigenmodes. By the exact numerical diagonalization of the
Hessian matrix we get the density of its eigenvalues, from
which we deduce an α ∼ 1/T 1−η (η ≈ 0.25) dependence
of polarizability and confirm it directly by Monte Carlo
simulation.

The presented theoretical and numerical analysis should
find its experimental realization. First, such “magnetic atoms”
can be created in thin films of type-II multiferroic materials
with an easy-plane spin arrangement, for example in cycloidal
helimagnets (such as TbMnO3, Ni3V2O8, and others [8]).
Although the ground state in cycloidal helimagnets is different
from the collinear one, vortex excitations upon this ground
state can be created anyway. Also, the materials where
magnetic vortices can be created by electric field are not
restricted to only multiferroics: potentially, any magnetic insu-
lator can exhibit magnetoelectric phenomena, when symmetry
arguments allow this.

Atomic force microscopy (AFM) techniques might be
used in order to create high local electric field. The direct
observation of the magnetic vortex patterns formation can
be done using high-resolution Lorentz TEM imaging [72,73]
combined with AFM [74]; alternatively combined AFM/STM
setups can be used [75,76]. A number of indirect methods can
be used in order to test the eigenmodes of the induced vortex-
antivortex system. These eigenmodes can be experimentally
found by measuring the electric polarization in the applied
transverse electric field (as studied analytically in Sec. V and
numerically in Sec. VI), but also by measuring heat capacity,
or microwave absorption spectra experiments [77]. Dynamical
effects associated with the vortex “atom” can be tested using
the setup, when the cantilever oscillates along the film plane
[78] or applying a time-dependent voltage, and measuring the
energy dissipation.

We finally note that the electric field creation of magnetic
vortices and antivortices out of a magnetoelectric thin-film
ground state studied here provides a condensed matter toy
model for studying the long-standing problem of production of
electron-positron pairs out of vacuum applying strong electric
fields, which arises in quantum electrodynamics and atomic
physics.
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APPENDIX A: ENERGY OF A VORTEX
IN THE IN-PLANE ELECTRIC FIELD

In this Appendix we calculate the energy of a charged
vortex in the electric field. As was explained in the main
text, the magnetic vortex core acquires an electric charge
(12) due to magnetoelectric coupling (5). Since our sample
is electrically neutral, its edge acquires negative charge of the
same magnitude, which should also be taken into account [see
Fig. 12(a)]. This edge charge effectively shields the vortex
charge, modifying its energy.

Let our sample be a disk with radius R, which contains a
single vortex with vorticity n, placed at the distance X0 from
the center of the disk. Chose a coordinate system as shown in
Fig. 12(b); electric field E = (Ex,Ey).

From (8) polarization of the single-vortex configuration
(11) is

P = γχeM
2
0

(−∂yφ

∂xφ

)
= −kγχeM

2
0

r

(
cos θ

sin θ

)
. (A1)

Since we calculate the linear response, the χeE term was
omitted from (8). Then the electric energy of the magnetic
vortex configuration is Wme = −h

∫
PE d2r:

Wme = khγχeM
2
0

∫ 2π

0
dθ (Ex cos θ + Ey sin θ )l(θ ). (A2)

Since l(θ ) =
√

R2 − X2
0 sin2 θ − X0 cos θ is an even function

of θ , then the odd term Ey sin θ vanishes. Thus,

Wme = −πkhγχeM
2
0 ExX0. (A3)

Using (12) we obtain Wme = − 1
2qeExX0 or for general

displacement of the vortex core r = (X0,Y0)

Wme = − 1
2qeEr. (A4)

We see that for the circular sample geometry this energy is
exactly half of the vortex core energy of a charged particle
in the in-plane electric field. This effective shielding comes
from the boundary charge and its exact value depends on the

(a) (b)

FIG. 12. (a) Distribution of the polarization for a single vortex.
The vortex core is positively charged; the edge of the sample is
negatively charged. (b) Coordinate system. The vortex core is placed
at (0,0); the disk center is (−X0,0).
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geometry of the sample. We also note that since polarization
(A1) is linear in phase angle φ, the same result (A4) holds for
the vortex-antivortex configuration, with r denoting a vector
that connects cores of the antivortex and the vortex.

APPENDIX B: THERMALLY ACTIVATED PAIRS

In this Appendix we find the polarizability that comes
from thermally activated dipole pairs at T < TBKT . Since the
chemical potential of a pair is quite big, the concentration
of pairs is low and we can employ the approximation of
noninteracting pairs. Therefore we can find polarizability of
one pair, then multiply it by the number of pairs, and we will
get polarizability of the VA pairs subsystem.

First, find the polarizability of one VA dipole pair. The
energy of a dipole pair is the sum of magnetic interaction en-
ergy of the vortex and antivortex (19) and the magnetoelectric
energy (A4), obtained in Appendix A:

W = 2q2
m ln(r/a) − qeEx/2. (B1)

Here r = (x,y) is the vector connecting the antivortex core to
the vortex core; the electric field is chosen to be parallel to the
x axis. The partition function of such a dipole

Z(E) = S

a2

∫
d2r

a2
exp

[ − β
(
2q2

m ln(r/a) + qeEx/2
)]

,

where S = πR2 is the area of the system, which comes from
integration over the dipole center of mass. For zero electric
field we get

Z(0) ≡ Z0 = S

a2

π

βq2
m − 1

.

The average dipole moment of a pair

p(E) = S

Z(E)a2

∫
d2r

a2

qe

2
x exp[β

(−2q2
m ln(r/a)+qeEx/2

)]
.

Formally, this integral diverges at large r . However, we should
keep in mind that we are calculating the linear response (i.e.,
we take the limit E → 0), so that the r divergence is cut off at
the radius of the sample r = R. Therefore, if we first take the
derivative of p(E) with respect to E and then put E = 0, then
we obtain the correct result. Hence, the polarizability of one

pair is

α1 = ∂p

∂E

∣∣∣∣
E=0

= βq2
e S

4Z0a2

∫
d2r

a2
x2 exp

[−2βq2
m ln(r/a)

]
,

integrating which we obtain

α1 = βq2
e a

2

8

βq2
m − 1

βq2
m − 2

. (B2)

Second, estimate the concentration of VA pairs. Since a
weak field does not affect their concentration, we make the
estimation for E = 0. Moreover, due to the fact that the
chemical potential of a pair is quite big with respect to TBKT

(μ 
 −πq2
m, TBKT 
 q2

m/2; see Ref. [42]), concentration of
VA pairs is always small. Calculate the grand partition function
of a noninteracting dipole system:

Z =
∑

n

exp(βμn)
∑

different
config

exp [−β(W (r1) + · · · + W (rn))]

=
∑

n

1

n!

(
exp(βμ)

S

a2

∫
d2r

a2
exp [−βW (r)]

)n

= exp(eβμZ0).

Then, the number of thermally activated VA pairs

Npairs = T

Z
∂Z
∂μ

= eβμZ = πSeβμ(
βq2

m − 1
)
a2

. (B3)

Finally, combining (B2) and (B3) we find the polarizability of
the sample that comes from all dipole pairs:

αthermal = Npairsα1 = π2R2βq2
e e

βμ

4
(
βq2

m − 2
) . (B4)

From here we can deduce the electric susceptibility χe =
αthermal/S and we see that it is consistent with the Kosterlitz-
Thouless susceptibility [42] with the difference that now we
have the electric charge qe/2 instead of qm in the numerator.
This is natural since the response to the electric field depends
on the value of electric charge qe whereas screening comes
from the interaction of “magnetic” charges qm.

We see that at low temperatures T → 0, αthermal expo-
nentially vanishes to 0, whereas it diverges as αinduced ∼
1/T 1−η; therefore αinduced dominates. On the contrary, near
TBKT , αthermal diverges and dominates over αinduced.
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