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Understanding low-temperature bulk transport in samarium hexaboride
without relying on in-gap bulk states
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We present a new model to explain the difference between the transport and spectroscopy gaps in samarium
hexaboride (SmB6), which has been a mystery for some time. We propose that SmB6 can be modeled as an
intrinsic semiconductor with an accumulation length that diverges at cryogenic temperatures. In this model,
we find a self-consistent solution to Poisson’s equation in the bulk, with boundary conditions based on Fermi
energy pinning due to surface charges. The solution yields band bending in the bulk; this explains the difference
between the two gaps because spectroscopic methods measure the gap near the surface, while transport measures
the average over the bulk. We also connect the model to transport parameters, including the Hall coefficient
and thermopower, using semiclassical transport theory. The divergence of the accumulation length additionally
explains the 10–12 K feature in data for these parameters, demonstrating a crossover from bulk dominated
transport above this temperature to surface-dominated transport below this temperature. We find good agreement
between our model and a collection of transport data from 4–40 K. This model can also be generalized to materials
with similar band structure.
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I. INTRODUCTION

Samarium hexaboride (SmB6) has long eluded classifica-
tion due to its unique properties, beginning with its unusual
temperature-resistivity curve [1]. Past research has led to
the classification of SmB6 as a rare-earth mixed valence
compound; although it is homogeneous, the Sm ions have
mixed valence of 2+ and 3+ [1–3]. SmB6 has a simple cubic
structure, and it is also free of both magnetic and structural
phase transitions [1], which makes it a good candidate
for studying homogenous mixed valence. One of the most
significant developments was the discovery that SmB6 is a
Kondo insulator [4]. Kondo insulators are characterized by the
opening of a small gap at the Fermi energy due to hybridization
between f electrons and conduction electrons [5,6]. In SmB6

specifically, there are three 4f bands, one of which hybridizes
with the 5d conduction electrons, opening a gap between the
two hybrid bands [7].

Although the presence of the hybridization gap sug-
gests that SmB6 should exhibit insulating behavior, detailed
transport results over a 40-year period suggest a much
more complicated picture [1,8–12]. High-quality SmB6 has
consistently demonstrated activated behavior from 4–40 K.
Around 4 K, the activated behavior is always terminated by
an unknown conduction mechanism, leading to a plateau in
the temperature-resistivity curve. Many attempts have been
made to explain this crossover to conductive behavior in
terms of bulk effects, with a commonly accepted picture
based on impurities in the material [1]. A breakthrough came
from the prediction that Kondo insulators can additionally
be topological insulators [13–15], a class of materials that
undergo a crossover at low temperature from a conventional
state to a bulk insulating state with topologically protected
metallic surface states [16]. Indeed, recent transport [12,17]
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and angle-resolved photoemission spectroscopy (ARPES)
results [18–20] have demonstrated evidence for these topo-
logically protected metallic surface states in SmB6 with a
crossover temperature of approximately 4 K. In this paper,
we will concentrate on temperatures from 4–40 K, where
bulk transport is dominant. Although activated behavior is
consistently observed in this temperature range, transport
measurements including resistivity and Hall coefficient also
demonstrate a feature at about 10 K.

Before discussing some of the unusual properties of SmB6

that arise from its small gap and hybridized bands, it is instruc-
tive to discuss bulk transport in standard TIs. Such “standard”
TIs (for example, Bi2Se3 or Bi2Te3) are characterized by a
bulk band gap as in conventional semiconductors, and after
undergoing the crossover to the topological phase, there are
an odd number of surface states located in the gap [21,22]. If
the topological surface states are not considered, all standard
TIs can be treated as semiconductors. In this picture, charge
neutrality must be enforced, so the Fermi energy (EF ) is
initially expected to be exactly halfway between the top of
the valence band and the bottom of the conduction band. As
in semiconductors, impurity states may also be present in the
gap. For an n-type material, donor states would be in the gap
near the conduction band, and for a p-type material, acceptor
states would be in the gap near the valence band. Because
charge neutrality must also be enforced, the presence of these
extra states shifts EF towards the conduction band for donor
states and towards the valence band for acceptor states [23].

Impurity states in semiconductors and standard TIs can
be treated quantitatively using the effective mass approxima-
tion [24]. In this picture, impurities are assumed to be hydro-
genic but with the substitution of effective mass for electron
mass (m → m∗) and dielectric constant for vacuum permittiv-
ity (ε0 → κε0). The results are an effective Bohr radius

a∗
B = 4πκε0h̄

2

m∗e2
= κ

m∗/m
(0.53 Å) (1)
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and an effective ground-state energy

E∗ = − m∗e4

2(4πκε0)2h̄2 = −m∗/m

κ2
(13.6 eV). (2)

Once these parameters have been calculated, the initial
assumption of hydrogenic impurities can be verified. In a
donor state, for example, the extra electron must have an
extent much larger than one lattice constant for the donor to be
hydrogenic. If this were not the case, contributions from the
donor itself would also have to be considered, and the hydrogen
model could not be used. Therefore, when comparing the
effective Bohr radius to the lattice constant, we must satisfy
the condition a∗

B � a for the approximation to be valid.
The effective mass approximation has been used success-

fully in all standard TIs. Standard TIs exhibit residual bulk
conduction after undergoing the crossover to the topological
state, and this is well understood as arising from impurity states
that can be treated using the effective mass approximation.
Many researchers have applied the idea of impurity states in
the gap to SmB6 to try to understand the plateau at 4 K before
it was thought to be a TI [1] and later to explain experimental
discrepancies in the size of the Kondo hybridization gap.
While the presence of the gap is well known, transport
and spectroscopic methods disagree on the size. Transport
measurements, which probe the energy difference between
EF and the conduction band (the activation energy), report
3–4 meV [9–12,17]. In analogy with semiconductors and
standard TIs, it is expected that EF is exactly halfway between
the valence and conduction bands, suggesting that the total
transport gap is 6–8 meV. On the other hand, spectroscopy
and tunneling experiments measure the full gap near the
surface, and they report 16–20 meV [25–31].

This discrepancy has been interpreted as arising from the
presence of in-gap bulk impurity states [7,25,26,28–30,32–
34]. In this scenario, transport would measure the difference
between the impurity state and the conduction band, yielding
an incorrect result for the total gap. Since the effective mass
approximation is usually so successful, it has been applied
to SmB6 to understand this proposed in-gap impurity state.
However, reported values [26,30] of the dielectric constant κ

range from 600–1500, and as we have seen, activation energy
(which can be used to obtain effective mass) ranges from 3–
10 meV. Using these values with Eqs. (1) and (2), we obtain a
minimum a∗

B of 0.5 Å and a maximum a∗
B of 4 Å. Reports of

the effective Bohr radius are usually in this range; for example,
Sluchanko et al. report 3 Å [32]. Additionally, most reports
agree that the lattice constant a of SmB6 is about 4.13 Å,
so we find that the condition a∗

B � a required to verify the
effective mass approximation is not satisfied anywhere in the
range of Bohr radii that can be calculated. Because the effective
mass approximation fails, in-gap hydrogenic impurity states
in SmB6 are not justified.

Since semiconductor theory and the effective mass approx-
imation are successful in most cases, this result is startling.
However, upon closer examination, we find that it is perhaps
not completely unexpected. Because the gap in SmB6 arises
due to hybridization, its band structure is very different from
that of a conventional semiconductor. Unlike a semiconductor,
SmB6 has a nonquadratic and asymmetric dispersion, because

its band structure arises due to Kondo hybridization. Both the
valence and conduction bands have nearly flat regions charac-
terized by the localized f states as well as low-mass regions
characterized by the d states. Because of this unusual compo-
sition, while the gap and band structure effects in SmB6 arise
based on contributions from all the carriers, transport is domi-
nated only by the low-mass carriers. Additionally, both bands
have positive curvature, unlike in a semiconductor, where only
the conduction band has positive curvature. As we will see, this
has a significant effect on how we understand transport. The
gap is also much smaller than that of standard semiconductors
or TIs. Because of these differences in the band structure, we
will see that SmB6 must be treated much more carefully than
standard gapped materials. (In contrast, other hexaboride ma-
terials can be treated as standard gapped materials, and in these
cases, impurity states are present within the bulk gap [35].)

In the context of in-gap bulk states, we can gain insight
into SmB6 by analogy with superconductors. When a material
undergoes a transition to a superconducting state, some of
the electrons near the Fermi energy condense into Cooper
pairs. Formation of the condensate opens up a gap at the
Fermi energy [36]. Even though this gap is so small, tunneling
measurements [37] have shown that the addition of impurities
to a superconductor does not destroy superconductivity (until
the impurity concentration becomes sufficiently high). This
suggests that the impurity states are not in the gap or that
superconductors exhibit a small and clean gap and are not vul-
nerable to impurity conduction. Although the mechanism for
gap formation (the Kondo effect) is very different in SmB6, the
gap is also much smaller than a semiconductor bulk gap. This,
combined with the failure of the effective mass approximation,
suggests that SmB6 should have a clean gap that is not vulner-
able to impurity conduction at low temperatures. In fact, SmB6

does not exhibit residual bulk conduction experimentally, and
this can be taken as evidence for a clean bulk gap [12].

Another interpretation of the gap discrepancy is that
spectroscopy measures the direct gap while transport measures
an indirect gap that forms during hybridization. Theoretical
treatments of Kondo hybridization predict the presence of both
a direct and an indirect gap [6,38,39], and researchers have also
used this idea to explain the gap discrepancy [11,31]. This
interpretation explains the gap discrepancy while avoiding the
problem of the in-gap impurity states, but we will propose
an alternative explanation that is consistent with features
observed in transport. As we have seen, in-gap impurity states
in SmB6 are not justified by the effective mass approximation,
nor are they consistent with the observation of no residual
bulk conduction after the surface states become relevant. To
achieve consistency, we propose another explanation of the
gap discrepancy that does not rely on in-gap states and instead
allows for a clean direct gap.

II. SIMPLIFIED DENSITY OF STATES AND BAND
BENDING CALCULATIONS

A. Density of states

The dispersion in SmB6 is well known based on the success
of recent high-resolution ARPES measurements [18–20]. The
gap forms at low temperature, when the conduction band (5d)
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FIG. 1. Dispersion relation of SmB6 along the �-X-� direction,
focused where the hybridization takes place. (a) Band structure before
hybridization. (b) Band structure after hybridization of the d band
with one of the f bands. The vertical axis (energy) scale is zoomed
in from the scale in (a). (c) Simplified band structure used in the
calculation. The vertical scale is the same as in (b).

hybridizes with localized states (4f ). In SmB6, there are three
4f bands, and ARPES indicates that only one band participates
in hybridization. A sketch of the band structure of SmB6 before
hybridization is shown in Fig. 1(a), and the hybridized band
structure is shown in Fig. 1(b), both along the �-X-� direction.
SmB6 is an insulator, so the Fermi energy is located in the gap
in the hybridized band structure. As can be seen in the figure,
the two unhybridized f bands are still present.

In addition to this basic structure, the hybridized dispersion
has some subtle features, which can also be observed by
ARPES. For example, ARPES demonstrates an indirect gap
with a valence peak about 15 meV below the Fermi energy at
the H point [18]. This feature can also be observed at nearby
energies due to intrinsic and thermal broadening. Compared
to the main features of the dispersion, however, this feature is
small and close to the valence band. Although ARPES cannot
probe far into the conduction band at the temperatures we
are considering, there are likely some similarly small features
present in the conduction band. We refer to the regions in which
such small features exist as the “region of nonparabolicity.”

In our model, we will use a dispersion that is simplified
considerably from the actual dispersion. We neglect the small
features in the region of nonparabolicity, such as the feature
at the H point and any similar features in the conduction
band. To do this, we approximate the band structure using
a piecewise function, as shown in Fig. 1(c). Here, the flat
regions approximate the pieces of the hybridized dispersion
that primarily come from the 4f band, which we refer to as
“f -like” states. The linear regions approximate the pieces of
the hybridized dispersion that primarily come from the 5d

band, which we call “d-like” states. Additionally, the two
unhybridized 4f bands cannot be resolved separately from
the valence band by ARPES, so we approximate them to be
at the top of the valence band. Making these approximations
introduces some error into the model, but the features in the
region of nonparabolicity are small, so the error is not more
than a few meV.

From this dispersion, we can calculate a simplified density
of states (DOS). The DOS corresponding to our simplified
dispersion [Fig. 1(c)] is shown in the lower inset of Fig. 2.

FIG. 2. Parameters used in the calculation. Main plot: Data [31]
for dependence of the gap size on temperature and a best fit (dashed
line). Lower left inset: Simplified density of states used in the
calculation. Upper right inset: Fermi surface and Brillouin zone of
SmB6 after hybridization [40].

In this figure, the peaks in the DOS correspond to the f -like
regions of the dispersion, and these can be estimated from the
size of the pockets in the SmB6 Brillouin zone (BZ), shown in
the upper inset of Fig. 2. The flat parts of the DOS correspond
to the d-like regions of the dispersion. In the range Egap, the
DOS is zero, and the gap changes with temperature. Data for
the gap as a function of temperature [31] is shown in Fig. 2, as is
the fit to this data that was used in the calculation (dashed line).

We can represent the simplified DOS using delta functions
(δ) for the f -like states and step functions (θ ) for the d-like
states:

g(ε) = Ncf δ(ε − EC) + gcdθ (ε − EC)

+Nvf δ(ε − EV ) − gvd (θ (ε − EV ) + 1), (3)

where EC is the edge of the conduction band, EV is the edge
of the valence band, N is a density in cm−3, g is a DOS in
cm−3 eV−1, and the Fermi energy EF has been set to 0. The
subscripts on the four factors refer to electron type and band;
e.g., Ncf is the density of states for f -like electrons in the
conduction band (c). The Fermi energy, which is in the gap, is
defined to be zero.

The sizes of these four terms can be estimated using ARPES
data [40]. According to this measurement, the hybridized f

band BZ has six half-ellipsoid Fermi pockets (upper inset of
Fig. 2), and the total volume of these yields the number of
filled states in the conduction band, which we will denote nell.
This implies that

Ncf = nell = 9.0 × 1021 cm−3. (4)

The remaining volume in that BZ, plus the total volume of the
BZs for the two unhybridized f bands, yields the valence band
contribution. We will denote the volume of the BZ as nBZ, so
this implies that

Nvf = 3nBZ − nell = 7.6 × 1022 cm−3. (5)

The d-like states can be calculated from data above the
hybridization temperature [40]. We approximate the dispersion
to be quadratic and use the usual result for a 3D quadratic DOS,

g3D(ε) = m∗

π2h̄3

√
2m∗ε. (6)
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In our simplified DOS we can approximate the d bands on
both sides of the gap as constant. Specifically, we approximate
this constant to be g3D(EF ), because EF is in the gap and the
gap is small. This also means that this value in both bands is
about the same constant,

gcd ≈ gvd ≈ g3D(EF ) = 1.8 × 1019 cm−3 eV−1. (7)

We note that this term is 2–3 orders of magnitude smaller than
the terms in Eqs. (4) and (5). We will define this value as g0

for brevity.

B. Band structure calculation

As we have seen, the actual and simplified dispersions as
well as the DOS of SmB6 can be characterized by two types of
carriers. The flat regions are dominated by f -like carriers, and
the remainder is dominated by d-like carriers. In this section,
we will outline a self-consistent calculation used to obtain
the band structure. For such a calculation, we must take all
the charges into account. However, the f -like terms [Eqs. (4)
and (5)] are 2–3 orders of magnitude greater than the d-like
coefficients [Eq. (7)]. To get the total charge density, the d-like
states require a factor of kBT , so they become even smaller;
because of this we neglect the d-like carriers for the band
structure calculation. However, we will later see that transport
is governed by the low-mass, d-like carriers.

The charge density can be calculated using usual methods
for semiconductors. In semiconductors, the conduction band
is nearly empty, so the Fermi-Dirac distribution f 0(ε) can
be approximated by the Boltzmann distribution. The electron
density is

n =
∫ ∞

EC

f 0(ε)g(ε)dε = n0 e−(EC−EF )/kBT , (8)

where n0 is the average DOS. In SmB6 we use Eq. (3) for
the DOS, keeping only the delta function terms. This yields
electrons in the conduction band with approximate density

n ≈ Ncf e−(EC−EF )/kBT . (9)

We can similarly calculate the approximate density of holes in
the valence band to be

p ≈ Nvf e−(EF −EV )/kBT , (10)

where EV is the valence band edge. This result resembles
the carrier density of a conventional semiconductor. For such
semiconductors, charge neutrality, n = p, yields the intrinsic
carrier density

n = p = ni ≈ √
Ncf Nvf e−Egap/2kBT . (11)

The intrinsic picture works well for SmB6 at high temper-
atures. However, intrinsic materials are sensitive to surface
effects, and at low temperature, these become relevant. All
surface charges, such as TI states, if they are present, and
localized surface charges associated with oxidation on the
surface, contribute. Requiring charge neutrality with the
addition of the surface charges forces the Fermi energy to
be pinned in place, leading to band bending in the valence
and conduction bands. This possibility has been suggested
by recent experimental results [41] but was not previously
explored in depth.

To understand the effects of band bending, we perform a
self-consistent calculation to obtain the band structure. In this
calculation, we model the effects of band bending using a
potential φ(z) of the form

eφ(z) = EC(z) − Egap/2, (12)

where the conduction band is now dependent on location z

in the bulk, and Egap = EC − EV . We can rewrite the carrier
densities in terms of this potential to obtain

n(z) = Ncf exp

[
−eφ(z) + Egap/2 − EF

kBT

]
(13)

and a similar expression for p(z). Using charge neutrality
again, we obtain

ρ(z) = −en(z) + ep(z) = 2nie sinh

[
eφ(z)

kBT

]
(14)

for the total charge density. We then solve for the potential
across the bulk using Poisson’s equation in one dimension,

d2φ

dz2
= ρ(z)

ε
= 2nie

ε
sinh

[
eφ(z)

kBT

]
. (15)

To solve this equation, we choose a “test sample” of
thickness 200 μm, which is typical to a real SmB6 sample. We
define z = 0 as the center of the sample (so that z = ±100 μm
are the edges). In addition, we use κ = 600 as the dielectric
constant [26]. To proceed with the solution, we now require
boundary conditions. For the first boundary condition, we
simulate the band bending effects on the surface by introducing
a pinning energy Epin, which is defined with respect to the
midpoint of the gap by Epin = (EC + EV )/2 − EF . This
describes the energy difference between the band at zero
potential and the minimum of the bent band. Therefore, the
boundary condition can be expressed as eφ(z = 100 μm) =
−Epin. We can also define this pinning relative to the gap as
Epin = Egap/2 − Ea . As we will see later, when temperature is
sufficiently low, Ea corresponds to the activation gap measured
by transport. The pinning energy must also be the same at both
edges of the sample, and to enforce this, the second boundary
condition is that dφ/dz = 0 at z = 0, the center of the sample.

Additionally, we can define a “built-in potential,” Vbi , as
is commonly done for band-bending calculations in semicon-
ductors [23]. Vbi describes the magnitude of the bending in
terms of the difference between the maximum and minimum
points on the conduction or valence band. Using this built-in
potential, we can determine an associated length scale (the
accumulation length) of Eq. (15), given by

l =
√

2εVbi

eni

=
√

2εVbi

e(Ncf Nvf )1/2
eEgap/4kBT . (16)

At low temperature, when Egap is large, the accumulation
length is large, and at high temperature, when Egap is small,
the accumulation length is small.

With these parameters, solutions to Eq. (15) were found
for temperatures of 4–40 K and values of Epin between 4 and
7 meV. From a solution φ(z), the conduction and valence bands
can be obtained from Eq. (12), and the charge density can
be obtained from Eq. (14). An example of these are shown
for 8 K and Epin = 5.5 meV in Fig 3. Figure 3(a) shows
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FIG. 3. Parameters obtained from the self-consistent solution
for φ(z) in a 200 μm sample with Epin = 5.5 meV and T = 8 K.
(a) Band structure obtained using Eq. (12). The relationship among
the activation energy Ea , the built-in potential eVbi , the pinning Epin,
and the gap Egap are all shown. (b) Charge density obtained using
Eq. (14).

the calculated conduction and valence bands, as well as the
relationships among the band structure and the parameters
Epin, Egap, Ea , and eVbi . We note that the valence band is
always parallel to the conduction band and can be obtained
by subtracting EC(z) − Egap. Because of this symmetry, the
following discussion will be confined to the conduction band,
although it will also apply to the valence band. Figure 3(b)
shows the calculated charge density corresponding to this band
structure. Across the sample, the charge density is negative,
and its magnitude is largest near the surfaces. This is expected,
because excess charge at the surfaces leads to band bending.

Figure 4 shows how the band structure varies with tempera-
ture, again using Epin = 5.5 meV; the valence band is omitted.
At 12 K, the highest temperature shown, the conduction band
for the majority of the bulk is Egap/2 above the Fermi energy.
There is a small amount of band bending at the edges, but
it does not extend very far into the bulk, as expected from
Eq. (16). This means that the band structure is similar to
that of a standard gapped material, except near the surface.
As the temperature is lowered, however, the band bending
effects begin to extend farther into the bulk. At 2 K, the
lowest temperature shown, these effects completely dominate
the band structure. Here, the conduction band is much closer
to the Fermi energy than the valence band is, and this result
is very different from what is observed in a standard gapped
material.

FIG. 4. Calculated bulk conduction band at various temperatures
for Epin = 5.5 meV.

This process demonstrates a crossover between bulk con-
duction dominated by the usual bulk effects (at high tempera-
tures) and bulk conduction dominated by surface effects (at low
temperature). We can understand where the crossover occurs
by comparing the charge densities and relevant length scales.
At high temperatures, the bulk dominates bulk transport, and
this can be characterized by the size of the sample (t) and
the intrinsic carrier density (ni). At low temperatures, the
surface dominates bulk transport, and this can be characterized
by the accumulated carrier density on the surface (nacc).
From this, we can estimate the crossover as occurring when
tni ≈ nacc. In our calculation, we estimate that the crossover
occurs at about 10–12 K. The crossover temperature is also
dependent on the thickness of the sample. For example, in a
much thinner sample such as a thin film, the crossover would
occur at a higher temperature than we have estimated in this
calculation.

These band bending results and the crossover are able to ex-
plain the gap discrepancy between transport and spectroscopy.
In our picture, spectroscopy still measures the full gap, which
does not change based on where the measurement occurs in
the sample. Transport, on the other hand, measures a different
activation gap depending on temperature. Below the crossover,
transport measures the activation gap on the surface, as shown
in Fig. 3(a), but above the crossover, transport measures the
average gap across the entire bulk. As a rough estimate using
our model’s parameters, at 4 K the total gap is about 19 meV,
and with a pinning of 5.5 meV the model yields Ea = 4 meV,
in agreement with experiment. In this way, the gap discrepancy
can be understood without using in-gap bulk impurity states.

The crossover also has interesting implications for the gap.
As we have noted, the accumulation length extends through
the bulk at low temperatures. As the temperature is lowered,
the accumulation length diverges, and this can be thought
of in analogy with semiconductors. In semiconductors, the
accumulation or depletion length increases with purity, and a
completely pure material would have an infinite accumulation
or depletion length [23]. Our calculation shows that the
accumulation length becomes large at cryogenic temperatures
in SmB6, consistent with the hypothesis that the gap is clean
and the bulk is truly insulating.

We note that the effects of the surface, whether topological,
trivial, or both, were all included in the parameter Epin. In
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terms of our simulation, various surface effects including the
crystal plane, polarity, disorder, TI states, or other predicted
surface effects [42,43] would simply change the value of Epin.
We do not predict which effects are strongest, but changes in
Epin due to such effects would change the strength of the band
bending for the surface considered.

We further note that the Fermi energy pinning is not rigid,
which means that fixing the conduction band permanently at
Epin is not exact for all temperatures. Near the crossover, the
Fermi energy is allowed to shift slightly. This means that
competing with the surface-to-bulk crossover is a slightly
shifting pinning. (If the surface effects are topological, we
predict that the pinning would be more rigid than if the effects
were trivial.) This type of shift does not affect the fully surface
or fully bulk regions seen in the model, but if its effects were
included, it would slightly change the temperature at which
the crossover occurs. We have chosen not to include these
effects, because the model is quite robust against changes.
The band bending result is always present, and even a large
variation in the parameters only slightly shifts the magnitude
of the calculated effect. For example, reports of dielectric
constant [26,30] vary from 600 to 1500. When comparing these
extremes in the calculation, the results above the crossover are
exactly the same, and the results below the crossover differ
only slightly.

III. CONNECTION TO EXPERIMENT

To assess the validity of our model, we must connect
the results of the self-consistent calculation to measurable
parameters. Specifically, we examine Hall coefficient, resis-
tivity, and thermopower, comparing the simulation results for
each to data. Although we have used a semiconductor picture,
SmB6 is very different from a standard semiconductor due to
its nonparabolic dispersion arising from the hybridized band
structure. Because of this unusual band structure, its transport
properties are unique and must be considered in detail. We
must consider which carriers, d-like or f -like, contribute to
transport phenomena, as well as the sign of these carriers.

In the discussion of the simplified DOS above, we saw
that the f -like electrons dominate when calculating the carrier
density, because their contribution to the DOS is much greater
than the contribution of the d-like electrons. However, the
f -like electrons have a flat dispersion, which must yield zero
mobility. This means they cannot contribute to transport, so
observed transport phenomena must be due to the d-like
electrons. Looking back at the features of the actual band
structure, we note that the f -like electrons do not have an
exactly flat dispersion, and there is some curvature connecting
the f - and d-like states. However, based on ARPES data,
these features are small compared to the size of the gap [18].
Thus the curvature of these features is small compared to the
simplified band structure, so we can again neglect the effects.

We can understand this more quantitatively using semi-
classical (Boltzmann) transport. First, we will consider the
case of an intrinsic semiconductor in the conduction band to
demonstrate the calculation, but the valence band result can
be found similarly. We will then discuss modifications for the
SmB6 case. Using the elementary solution to the Boltzmann
equation, the current due to an electric field applied in the z

direction is [44]

jz = −
∫ ∞

EC

v2
z e

2τEz

∂f 0(ε)

∂ε
gC(ε)dε, (17)

where vz is the particle velocity, e is the electronic charge,
τ is the scattering time, Ez is the applied electric field,
gC(ε) denotes the DOS for the conduction band, and ε is
the energy. We use the relaxation time approximation, where
τ is independent of energy, and the equipartition theorem,
v2

z = v2/3, to rewrite Eq. (17). Then, using jz = σEz, we find
the conductivity,

σ ≈ −e2τ

3

∫ ∞

EC

v2 ∂f 0(ε)

∂ε
gC(ε)dε. (18)

The derivative of the Fermi-Dirac distribution is [44]

∂f 0(ε)

∂ε
= − 1

kBT
f 0(ε)(1 − f 0(ε)) (19)

and for a general intrinsic semiconductor, the conduction
band is almost empty, so the term in parentheses can be
approximated as 1. Then the conductivity becomes

σ ≈ e2τ

3kBT

∫ ∞

EC

v2f 0(ε)gC(ε)dε. (20)

Since only electrons near the Fermi energy are mobile, we can
approximate their velocity as the Fermi velocity vF , and this
is a constant. The remaining integral is just the usual method
for calculating carrier density, so we find

σ ≈ e2τ

3kBT
v2

F n, (21)

where n is given by Eq. 8. To further simplify, we can use
the Einstein relation for semiconductors, which relates the
diffusion constant, D = v2τ/3, to the mobility by

μkBT

e
= v2τ

3
, (22)

where μ is the mobility, v is the average velocity, and 3
represents the number of dimensions (the right-hand side of
this equation can be derived using the equipartition theorem).
So we find, for average velocity vF , the familiar result, written
for an intrinsic semiconductor,

σ = neμ. (23)

In SmB6, the picture is a little more involved. We will now
re-derive the general result of Eq. (23) with modifications for
SmB6. First, we consider the carriers. Since there are two
types of carriers (f -like and d-like), a small displacement
of the Fermi surface due to an applied electric field is not
uniform. For our simplified dispersion [Fig. 1(c)], say the field
is being applied from right to left (so that electrons move from
left to right). Then the electrons in d-like states on the right
are mobile as they would be in a conventional semiconductor.
However, the electrons in d-like states on the left are unable
to move, as the f -like states are filled and have zero mobility.
This means that only half of the carriers in the band can move
when a current is present. Therefore we must include a factor
of 1/2 relative to the usual result [Eq. (19)].
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Additionally, since only the d-like carriers contribute to
transport, we should only consider the carrier density n coming
from these. Using Eqs. (8) and (7), we find that

n = g0kBT e−(EC−EF )/kBT . (24)

Now we can rewrite g0 using Eq. (6). Also, the carriers should
still move with an average speed of vF . We obtain

σSmB6 ≈ e2τv2
F

6

m∗

π2h̄3

√
2m∗EF e−(EC−EF )/kBT , (25)

and this can be further simplified using
√

2m∗EF = h̄kF and
vF = h̄kF /m∗ to obtain

σSmB6 ≈ e2τk3
F

6m∗π2
e−(EC−EF )/kBT . (26)

Next, we apply kF = (3π2n)1/3, which can be calculated by
integrating to find the carrier density at zero temperature and
rearranging. This means that n in this expression is the density
of filled states up to EF , and according to Eq. (4), this is just
nell. We also use μ = eτ/m∗ to find

σSmB6 ≈ 1
2nell e μd e−(EC−EF )/kBT , (27)

where the subscript on mobility denotes that only d-like
electrons are mobile.

This calculation can be repeated for the valence band, and
the result is similar, except that the exponential is replaced by
exp[−(EF − EV )/kBT ]. To understand how the conduction
and valence band contributions are related physically, we
must consider the signs of the carriers in both bands. For
a conventional semiconductor, the conduction band con-
tributes electrons with positive effective mass and the valence
band contributes holes with negative effective mass. These
have opposite contributions to transport. In SmB6, we still
have electrons in the conduction band and holes in the
valence band, but both bands have positive curvature in the
d-like electrons. Since we are just considering the d-like
carriers, the conduction band case is the same as that of a
conventional semiconductor, electrons with positive effective
mass. However, the valence band has positive curvature rather
than negative as it would for a conventional semiconductor.
This means that although there are holes in the valence band,
they have a positive effective mass as well, so they contribute
with the same sign as the electrons in the conduction band.

Although this result was found by considering the simpli-
fied band structure, again we can neglect the details of the
bands. For example, the H -point feature in the valence band
observed by ARPES [18] shows up as a small bump with
negative curvature in the f -like part of the dispersion. As
discussed previously, this feature is very close to the valence
band, so although it creates some curvature in the valence
band, the effect is small. This means that there are holes with
negative effective mass at these points in the valence band, but
we assume that the curvature is large, so that these carriers
have a much smaller mobility than the d-like carriers.

Because the dominant (d-like) carriers in the valence and
conduction band contribute to transport with the same sign, we
can return to Eq. (27) and conclude that the total conductivity
for all carriers in both bands is the usual result as in Eq. (23),

FIG. 5. Calculated Hall coefficient as a function of temperature
for different values of Epin.

with μ = μd , and n defined as

n = 1
2nell e−(EC−EF )/kBT + 1

2nell e−(EF −EV )/kBT . (28)

This means that we can use the usual transport relations to
connect our model to the experimental results, provided that
this expression is used to calculate the carrier density.

IV. TRANSPORT IN THE MODEL

A. Hall coefficient and resistivity

We can now combine the results EC(z) and EV (z) of the
self-consistent calculation with Eq. (28) to define an effective
carrier density

neff = 1

t

∫ t/2

−t/2

1

2
nell(e

−[EC (z)−EF ]/kBT

+ e−[EF −EV (z)]/kBT )dz, (29)

where t is the thickness of the sample (t = 200 μm for our
test sample). We can then use this carrier density to compare
the model to transport data. We first concentrate on the
Hall coefficient (RH = 1/ne) because it does not require any
further parameters to be included; however, if we assume that
mobility is constant, the resistivity follows the same trend.
This is not a good assumption, as mobility is often temperature
dependent, but the same feature around 10 K is seen in data
for both Hall coefficient and resistivity.

Figure 5 shows a plot of calculated Hall coefficient as a
function of temperature for various values of Epin. As in the
band structure result of Fig. 4, we observe a crossover around
10 K. At temperatures above this crossover, where the bulk
transport is dominated by bulk effects, all values of Epin yield
the same curve. This is expected because in this region, the
accumulation length is always much less than the sample size,
regardless of Epin. Below the crossover, however, there is some
variation. In this region, the amount of bending influences the
accumulation length, so the magnitude of the Hall coefficient
changes with Epin. As mentioned previously, in this region, the
activation energy can also be determined by Ea = Egap/2 −
Epin.

The calculated Hall coefficient for Epin = 5.5 meV is
plotted along a collection of data in Fig. 6. The data agrees
very well above about 10–12 K, and this agreement suggests
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FIG. 6. Comparison of one value of Epin to a collection of Hall
data [9,11,17,32,45–47].

that the bulk carrier density in SmB6 is fairly consistent across
samples. Below about 10–12 K, the data exhibits a variation of
about an order of magnitude. We do not suggest a mechanism
for this variation, but we do note that in this temperature range,
our model suggests that the bulk conduction is dominated by
the surface. Around 10–12 K, a feature is observed by all
researchers, and this corresponds to the crossover discussed
previously, between bulk conduction dominated by bulk effects
above the crossover and bulk conduction dominated by surface
effects below the crossover.

The calculated Hall coefficient from our model also demon-
strates a crossover at about 10–12 K and correctly describes
the shape of the data, although the magnitude of our result
does not agree with the data. This disagreement was expected
based on the simplifications made to the dispersion. Previously,
we estimated that these simplifications yielded errors of not
more than a few meV in the dispersion, but this becomes very
important for the Hall coefficient calculation. We can estimate
the size of the expected discrepancy in the calculated Hall
coefficient by using a Boltzmann factor, e�/kBT , where � is
the approximate width of the features that were neglected. For
� in the range of 1 to 3 meV in a temperature range of 10 to
20 K, the model is expected to be off at least by a factor of 2 and
at most by a factor of 32. Our result was consistently a factor of
about 5–6 greater than the data, and this is within the expected
range of the discrepancy. Based on this estimate, agreement
would likely be improved by including more features of the
dispersion and DOS. However, this type of refinement would
require many more parameters to be introduced.

B. Thermopower

We also compare the model to thermopower data, because
like the Hall coefficient, it does not require any further param-
eters. In the relaxation time approximation, thermopower for
electrons in a semiconductor is given by [44]

SC = −kB

e

[(
α + 5

2

)
− EC − EF

kBT

]
, (30)

where the subscript denotes the conduction band, and α is a
constant between 0 and 2 that describes how energy is related to
scattering time (τ ∝ Eα). A similar expression can be obtained

for holes in the valence band; it is important to note that the
sign is positive for holes in a standard semiconductor. For
a material containing both electrons and holes, these can be
combined according to

Stot = SCσC + SV σV

σC + σV

. (31)

In the limit of an intrinsic semiconductor, where n = p, the
intrinsic carrier density in Eq. (11) and the usual conductivity
in Eq. (23) can be used to simplify this. Assuming a quadratic
dispersion for both the valence and conduction bands, we
obtain

S = kB

e

[
b − 1

b + 1

Egap

2kBT
+ 3

4
ln

mn

mp

]
, (32)

where b = μn/μp, and the subscripts refer to electrons (n) and
holes (p) [32,44].

Again, the picture is slightly different in SmB6. The factor
of 1/2 must be accounted for once again, but based on the
form of Eq. (31), it is clear that this factor cancels out for
thermopower. Also, the curvature of the valence band means
that the holes contribute with the same sign as the electrons.
Using the conductivity derived in Eq. (27) and the analogous
result for the valence band in Eq. (31), we can find the total
thermopower in the model. Defining εc(z) = EC(z) − EF and
εv(z) = EF − EV (z), we obtain

S(z) = −kB

e

1

kBT

εc(z)e−εc(z)/kBT + εv(z)e−εv(z)/kBT

e−εc(z)/kBT + e−εv (z)/kBT
, (33)

where z again refers to the location in the bulk in the model. To
get the total thermopower, we must integrate this expression,
but since thermopower is dependent on conductivity and
conductivity is dependent on z, it must be integrated using
a form similar to that of Eq. (31). Thus, the effective
thermopower across the bulk is

Seff =
∫ t/2
−t/2 S(z)σ (z)dz∫ t/2

−t/2 σ (z)dz
, (34)

where t is the thickness of the sample (here t = 200 μm)
and σ (z) = n(z)eμ, where n(z) is given by the integrand of
Eq. (29).

Seff was calculated as a function of temperature for various
values of the pinning, shown in Fig. 7. Again, a feature
around about 10 K is evident, although it is broader than the
feature seen for the Hall effect. The bulk behavior in Fig. 7 is
the same for all values of Epin, but the surface behavior and
prominence of the feature varies.

Figure 8 shows a collection of thermopower data with a fit
from the model. The data are consistent at high temperatures,
and in this regime, there is also excellent agreement between
the data and the model. As with the Hall coefficient, this
agreement is expected as bulk effects dominate in this regime.
At low temperatures, the data are more diverse. We note that
the crossover does not occur at the same temperature in each
data set shown, but we do not propose a mechanism for this.

At high temperature, in the bulk-dominated regime, there
is good agreement between the data and the model. A feature
is also present in both the data and the model, although it
does not occur at exactly the same temperature for each set
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FIG. 7. Thermopower versus temperature for various values of
Epin. A feature can be seen around 10 K, as in the Hall plot.

of data. At low temperature, a deviation can be observed in
the data, although it does not occur at the same point in each
data set. We attribute this deviation to the manifestation of
the TI surface state near 4 K, which can be added to the
calculation.

To estimate the contribution of the surface state, we will
again use Eq. (31),

Stot = Sbσbt + Ssσs

σbt + σs

, (35)

where the subscripts b and s refer to bulk and surface
contributions, respectively, and the thickness t is included
so that the units match. From the theoretical treatment of TI
surface states [49], we expect that their contribution is much
smaller than the bulk contribution. Therefore, only the first
term will have a significant contribution to the thermopower.
Near the bulk-to-surface transport crossover of Tc = 4 K, we
also expect that the bulk and surface will contribute similarly
to transport, i.e. σbt ≈ σs . Each of these can be approximated
using the form σ0e

Ea/kBT , where Ea is the activation energy
(the energy relevant to transport). For σs we use Tc = 4 K
in this expression, and for σbt we allow T to vary. We also
assume that near Tc, σ0 is about the same for both surface
and bulk contributions. Then the thermopower near 4 K, with

FIG. 8. Comparison of calculation for one value of Epin (solid
line) to a collection of thermopower data [32,48]. The effects of the
TI surface state crossover are also shown (dashed line).

Ea = 3.47 meV [12], is approximately

Stot ≈ eEa/kBT

eEa/kBT + eEa/kBTc
Sb. (36)

This expression is shown in Fig. 8 with a dashed line, and the
result provides a better estimate of the data near 4 K than the
fit from the calculation.

Our model, with the addition of the estimation of surface
effects, captures the low-temperature features of the ther-
mopower well. We note that there is not much thermopower
data available in the literature, which makes it difficult to
understand trends in the data as done for the Hall coefficient.
Our model agrees quite well with the data from Sluchanko
et al. [32] but not as well with the other data. Again, a
discrepancy between the data and the model is present, and
again we attribute this to neglecting the small features of the
dispersion. Improved agreement could likely be attained by
adding more details of the dispersion to the model.

V. CONCLUSION

We have presented a new model to understand the difference
between the spectroscopy and transport gaps in SmB6 without
relying on in-gap bulk states. Transport measures an activation
energy of 3–4 meV, or a gap of 6–8 meV, while spectroscopic
methods measure a gap of 16–20 meV. This discrepancy be-
tween the two results has often been explained by introducing
a localized bulk state in the gap, perhaps due to impurities,
although other explanations such as the presence of an indirect
gap have also been used. The effective mass approximation
has been used to understand such an in-gap impurity state,
because this method has been successful at describing impurity
states in many gapped materials. However, we showed that the
effective mass approximation fails when it is applied to SmB6,
suggesting that the in-gap impurity state picture is not justified.

Instead, we suggested a new way of understanding the
SmB6 gap using self-consistent band-bending calculations. We
simplified the well-known dispersion and corresponding den-
sity of states to capture the main characteristics of SmB6 and
modeled SmB6 as an intrinsic semiconductor. We considered
the possibility of band bending, which is expected to arise
from the presence of excess surface charges. A self-consistent
solution for the potential was found by numerically solving
Poisson’s equation with this charge density across the bulk
of a test sample, with the boundary conditions simulating the
strength of the bending effects at the surface and enforcing
symmetry across the bulk.

The self-consistent solution was found for temperatures
from 4–40 K, and from this result the band structure was cal-
culated. In addition, the band structure result was connected to
measurable transport parameters using semiclassical transport
theory modified for SmB6. Specifically, we concentrated on
Hall coefficient, resistivity, and thermopower, as these do not
require the addition of adjustable parameters to our model. The
results of these calculations demonstrated a crossover to bulk
transport dominated by bulk effects (in analogy with a standard
gapped material) at high temperatures, to bulk transport dom-
inated by surface effects at low temperature. The calculated
crossover temperature was 10–12 K, which accounts for a
feature that has been observed in transport data near this
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temperature. The transport parameters were compared to data,
and although there was qualitative agreement between the data
and the calculated curves, their magnitudes did not agree. We
attributed the disagreement to neglecting some of the small fea-
tures of the actual dispersion in the model, and found that a few
meV of error in the dispersion could explain the disagreement.

We also related the feature seen in transport data to the accu-
mulation length for a semiconductor. At high temperatures, the
accumulation length was much smaller than the sample size,
and at low temperatures, the accumulation length was much
larger than the sample size. We estimated that the crossover
would occur when bulk effects in terms of sample thickness
and intrinsic carrier density become comparable to surface
effects in terms of accumulation length and surface charges.
Because of this relationship between accumulation length and
sample size, our model suggests that the crossover would occur
at different temperatures for different sample thicknesses.

This suggests one straightforward way of testing our model:
measuring the location of the transport feature around 10–12 K
for samples of different thicknesses. For a sample thinner than
200 μm, the crossover temperature would be higher than the
10–12 K temperature calculated in our simulation, and for
a thicker sample, the crossover temperature would be lower
than 10–12 K. This dependence on thickness is shown in
Fig. 9 for samples from 20–2000 μm in thickness, and the
change in the crossover temperature is large enough to be
experimentally measurable. On the other hand, testing the
model using a method such as ARPES would be difficult.
Since ARPES probes at and near the surface, it might
be expected that changes in accumulation length could be
detected. However, the ARPES penetration depth is tiny
compared to the accumulation length, even when high energy
photons that can penetrate farther into the bulk are used.
Because of this, it would be difficult to directly image the
band bending effects using ARPES.

The divergence of the accumulation length in SmB6 at low
temperatures suggests that the gap is clean, similar to the gap

FIG. 9. Predicted thickness dependence of crossover for Epin =
5.5 meV.

in a superconductor. This, combined with the success of our
model at describing a variety of data without introducing bulk
states in the gap, agrees well with the observation that there is
no residual bulk conduction in SmB6 below the TI crossover
temperature of about 4 K. Together, these observations imply
that SmB6 is a true TI; it does not exhibit bulk conduction
below the TI crossover temperature as all other known TIs
do. This would be exciting for research in technological
applications that require a clean gap and no bulk conduction.
We also predict that our model could be extended to other
materials that have a dispersion similar to that of SmB6,
including alloys of SmB6.
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