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Violation of an f -sum rule with generalized kinetic energy
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Motivated by the normal state of the cuprates in which the integrated spectral weight of the optical conductivity
or optical sum increases faster than a linear function of the particle density, we derive an f -sum rule for a system
in which the kinetic-energy operator in the Hamiltonian is a general function of the momentum squared. Such a
kinetic energy arises in scale invariant theories and can be derived within the context of holography. Our derivation
of the f -sum rule is based on the gauge couplings of a nonlocal Lagrangian in which the kinetic operator is
a fractional Laplacian of order α. We find that the f -sum rule in this case deviates from the standard linear
dependence on the particle density. We find two regimes. At high temperatures and low densities, the optical
sum is proportional to nT

α−1
α where T is the temperature. At low temperatures and high densities, the optical

sum is proportional to n1+ 2(α−1)
d with d being the number of spatial dimensions. The result in the low-temperature

and high-density limit, when α < 1, can be used to qualitatively explain the behavior of the effective number of
charge carriers in the cuprates at various doping concentrations.
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I. INTRODUCTION

Understanding the nature of the current carrying degrees of
freedom in the normal states of the superconducting copper
oxides stands as a key challenge in modern condensed-matter
physics. Many properties in the normal states of the cuprates
deviate from the standard theory of metals. One well-known
example is that the electrical resistivity, ρ, observed in the
normal state, exhibits a non-Fermi-liquid behavior. Instead
of having ρ ∝ T 2 as in the case of Fermi liquid, ρ in the
cuprates goes like T a with a in a range of 1 to 2 depending
on the chemical composition [1]. Explaining such strange
properties in the cuprates may require a nontraditional model,
in particular models in which the basic notions of particles and
locality are abandoned.

The focus of this paper is the deviation of the integrated
spectral weight of the optical conductivity (also known as
an optical sum) in the normal states of the cuprates from
the standard f -sum rule (or conductivity sum rule). The
content of the f -sum rule is that the optical sum is directly
proportional to the charge-carrier density:

∫ ∞
0 σ1(ω)dω =

πe2n
2m

. Here σ1 is the real part of the optical conductivity,
n is the charge-carrier density, e is the electric charge, and
m is the mass. When σ1(ω) is integrated up to a cutoff
frequency ωc, the optical sum is proportional to the effective
number of charges from energy below ωc (Neff). In normal
metals, when ωc is chosen to be in the region of the optical
gap, Neff is simply given by the number of electrons in the
conduction band. However, in the cuprates [2,3], Neff deviates
from what one expects from the dopant concentration, x.
When 0 < x < 0.2, instead of having Neff(x) = x,Neff(x) is
greater than x and is concave downward. We find that the
empirical Neff from Refs. [2,3] can be fitted to the functional
form

Neff = N0 + N1x
γ , (1)

with γ ≈ 0.3–0.4.1 Here N0 and N1 are dimensionless con-
stants. Shown in Fig. 1 are the plots of Neff as a function of x

from Refs. [2,3] overlaid with the fitted lines from Eq. (1). We
note that the optical conductivity measurements upon which
this Neff is based were performed at room temperature [2,3].

The proof (see, for example, [4–6]) underlying the con-
ductivity sum rule relies on the fact that the kinetic-energy
operator of a single particle in the Hamiltonian is K = p2

2m
.

The deviation from the standard sum rule indicates that the
dynamics of the charge-carrying degrees of freedom may
not be governed by the kinetic term which is quadratic in
momentum. Recently, in the context of the gauge/gravity
duality, one of us [7] has shown that a massive free theory
with a geodesically complete metric in the bulk generically
gives rise to a boundary theory with a fractional Riesz
derivative (a fractional Laplacian). The power of the fractional
derivative is partially determined by the mass of the field. The
result of this paper implies that, in some cases, the infrared
behavior of a strongly coupled theory could be described
by a nonlocal operator such as a fractional derivative. This
leads us to a postulate that an emergent charge carrier in the
infrared is an object with a fractional kinetic energy. That
is, the kinetic-energy operator is a fractional Riesz derivative
K ∝ (−∂2)α with α being a positive real number. Equivalently,
in momentum space, the kinetic term is a fractional power of
momentum K ∝ p2α . We note that the quantum mechanics of
such a kinetic operator was studied in Refs. [8–10]. Recently,
the fractional kinetic operator has been presented as a way of
understanding unparticles [11].

The concept of fractional kinetic energy is not limited to
gauge/gravity duality. In the context of a quantum critical

1We fitted Eq. (1) to the data points extracted from the plots in
Refs. [2,3]. As a result, the values of γ we present here are only
approximated.
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FIG. 1. Effective number of charge carriers (Neff ) vs doping
concentration (x) from Refs. [2,3].

theory, a critical system with its kinetic energy of the form
K ∝ p2α can be thought of as having a non-inter-value of
the dynamical exponent z = 2α. Noninteger values of z have
been derived theoretically, for example, in the model of a
Josephson array in 3+1 dimensions [12]. Hence, the particle
with fractional kinetic energy is the same as a sharp excitation
near a quantum critical point with nontrivial value of z.

In this paper, we consider a model of nonrelativistic
particles with a kinetic term given by a general function
of momentum squared, K(p2). The particles are allowed to
have nonderivative interactions with one another. This model
is equivalent to the restricted band model where the kinetic
energy is replaced by the band dispersion, E(p).2 In the
restricted band model, one considers only particles in a single
band and ignores the interband interactions. It turns out that
the conductivity sum rule of the restricted band model [4,13]
is given by

W ≡
∫ ∞

0
σ1(ω)dω = πe2

2

∫
ddp

(2π )d
n(p)

∂2

∂p2
i

E(p), (2)

where σ1 is the real part of the optical conductivity and n(p) is
the occupation number of the momentum state p. We review
a proof of the sum rule in this paper. Our proof is based
on the gauge couplings of a nonlocal Lagrangian [14]. This
sum rule is applied in many systems such as the Hubbard
model3 [15,16], graphene [17], and the d-density wave
state [13,18]. We then apply the conductivity sum rule to the
case of noninteracting fermions with fractional kinetic energy:
K(p2) ∝ p2α . We show that the behavior can be divided in two

2We ignore the fact that the kinetic energy of our model is
rotationally invariant and simply replace it by the band dispersion.

3The sum rule in this case is usually written as

W ≡
∫ ∞

0
σ1(ω)dω = −πe2

2
a2

i 〈Ki〉

where ai and Ki are the lattice spacing and the kinetic-energy operator
along the ith direction, respectively.

regimes. In the high-temperature and low-density regime, the
optical sum is proportional to nT

α−1
α where n is the density and

T is the temperature. On the other hand, in the low-temperature
and high-density regime, the optical sum is proportional to
n1+ 2(α−1)

d . Here d denotes the number of spatial dimensions. To
make contact with experiment, we make a further assumption
that the density of these emergent excitations, n, is the same as
the density of the bare charge carrier (bare electrons or holes).
This means n ∝ x in the cuprates. In the low-temperature
and high-density limit with 0 < α < 1, the optical sum is
proportional to xβ with 0 < β = 1 + 2(α−1)

d
< 1, which is

qualitatively the same behavior as Neff in the cuprates.

II. HAMILTONIAN WITH A GENERALIZED
KINETIC ENERGY

We investigate a system of nonrelativistic particles in which
its kinetic term has a noncanonical form. K is not necessarily
proportional to a square of momentum (p2) but is some
general function of p2, i.e., K = K(p2). The second quantized
Hamiltonian of this system in d spatial dimensions is

H =
∫

ddrψ†(r)[K(−∂2) − μ]ψ(r) + Hother, (3)

where ψ†(r) and ψ(r) are creation and annihilation field
operators, respectively, μ is the chemical potential, and Hother

describes nonderivative potentials and interactions. Since
Hother contains no derivative operators, the current only comes
from the kinetic term. To derive the conductivity sum rule of
this model, one needs the form of its U (1) current operator.

Current operator

The couplings between the particle fields and the U (1)
electromagnetic gauge fields can be obtained by gauging
a nonlocal Lagrangian with Wilson lines [14,19]. One
starts by rewriting the kinetic term of the Hamiltonian,
HK = ∫

ddrψ†(r)K(−∂2)ψ(r), in the form

HK =
∫

ddrddr ′ψ†(r)F (r,r′)ψ(r′), (4)

where F (r,r′) is a function resulting from rewriting the kinetic
term. HK can be made U (1) invariant by inserting a Wilson
line, W (r,r′) = exp[−ie

∫ r′

r dxiAi(x)], between ψ†(r′) and
ψ(r) in the kinetic term as

HK =
∫

ddrddr ′ψ†(r)W (r,r′)F (r,r′)ψ(r′). (5)

Here e is the electric charge and Ai is the ith component of a
U (1) electromagnetic gauge field. The vertex couplings can be
derived by taking derivatives of the gauged HK with respect
to the particle and gauge fields. The coupling between two
particles and one gauge field is

e�i(p,q) = δ3HK

δAi(q)δψ(p)δψ†(p + q)

= e(2p + q)iF(p,q) (6)
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and the coupling between two particles and two gauge fields is

e2�ij (p,q1,q2) = δ4HK

δAi(q1)δAj (q2)δψ(p)ψ†(p + q1 + q2)

= e2

{
2δijF(p,q1 + q2) + (2p + q2)j (2p + 2q2 + q1)i

q2
1 + 2(p + q2) · q1

[F(p,q1 + q2) − F(p,q2)]

+ (2p + q1)i(2p + 2q1 + q2)j

q2
2 + 2(p + q1) · q2

[F(p,q1 + q2) − F(p,q1)]

}
, (7)

with

F(p,q) = K[(p + q)2] − K(p2)

(p + q)2 − p2
. (8)

Using the vertex couplings obtained above, one can expand HK to second order in gauge fields as

HK =
∫

ddrψ†(r)K(−∂2)ψ(r) + e

∫
ddpddq

(2π )2d
ψ†(p + q)ψ(p)�i(p,q)Ai(q)

+ e2

2

∫
ddpddq1d

dq2

(2π )3d
ψ†(p + q1 + q2)ψ(p)�ij (p,q1,q2)Ai(q1)Aj (q2) + O(A3). (9)

We neglect the higher-order terms, since we only need up to the terms with two gauge fields in linear-response theory. The current
operator can be obtained by taking derivatives of HK [Ai] with respect to the gauge field:

Ji(−q) = −(2π )d
δHK

δAi(q)
. (10)

Performing the derivative leads to

Ji(q) = −e

∫
ddp

(2π )d
ψ†(p − q)ψ(p)�i(p, − q) − e2

∫
ddp1d

dp2

(2π )2d
ψ†(p1 + p2 − q)ψ(p1)�ij (p1, − q,p2)Aj (p2). (11)

III. DERIVATION OF THE CONDUCTIVITY SUM RULE

We use linear-response theory to derive the conductivity sum rule. Our approach is based on the derivation of the standard
conductivity sum rule from Ref. [20]. The idea of the diamagnetic contribution to the conductivity and some of the notations we
use are from Ref. [21]. We assume that the system is time-translationally invariant and the background electric field is uniform.
We work in the gauge that A0 = 0. Let us denote 〈O〉 as an expectation value of an operator O with respect to the thermal
equilibrium state in the presence of a background gauge field Ai . 〈O〉0 denotes a thermal expectation value of an operator O

with Ai = 0. From linear-response theory [22], the difference in the current δ〈Ji(x,t)〉 ≡ 〈Ji〉 − 〈Ji〉0 is given by

δ〈Ji(x,t)〉 = −i

∫ t

−∞
dt ′

∫
ddx ′〈[Ji(x,t),Jj (x′,t ′)]〉0Aj (x′,t ′). (12)

The total current is then 〈Ji〉 = 〈Ji〉0 + δ〈Ji〉. The term 〈Ji〉0 gives rise to the diamagnetic conductivity, σd , while the term δ〈Ji〉
contributes to the paramagnetic conductivity, σp. Let us first calculate the diamagnetic conductivity. Taking the expectation value
〈...〉0 of Eq. (11), one has

〈Ji〉0(q,ω) = −e

∫
ddp

(2π )d
〈ψ†(p − q)ψ(p)〉0�

i(p, − q) − e2
∫

ddp1d
dp2

(2π )2d
〈ψ†(p1 + p2 − q)ψ(p1)〉0�

ij (p1, − q,p2)Aj (p2,ω).

(13)

We drop the first term because in the thermodynamic limit
(q → 0) it corresponds to a spontaneous current which
vanishes according to the Bloch theorem (see Appendix A).
For a uniform background field, we have Aj (p2,ω) =
(2π )dδ(p2)Aj (ω). Integrating over the delta function, 〈Ji〉0

can be simplified to

〈Ji〉0(q,ω) = −e2
∫

ddp1

(2π )d
〈ψ†(p1 − q)ψ(p1)〉0

×�ij (p1, − q,0)Aj (ω,). (14)

From the definition of an electrical conductivity 〈Ji〉0(q,ω) =
σij (q,ω)Ej (q,ω), we can extract the diamagnetic conductivity
as

σd
ij (q,ω) = ie2

ω + iη

∫
ddp1

(2π )d
〈ψ†(p1 − q)ψ(p1)〉0

×�ij (p1, − q,0). (15)

The factor iη with η → 0+ is there to make sure that σd is a
retarded response function. Taking the thermodynamic limit,
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we have

lim
q→0

�ij (p, − q,0) = 2δijK ′(p2) + 4pipjK ′′(p2)

= ∂2

∂pi∂pj

K(p2). (16)

Finally, the diamagnetic conductivity is given by

σd
ij (ω) = lim

q→0
σd

ij (q,ω)

= ie2

ω + iη

∫
ddp

(2π )d
n(p)

∂2

∂pi∂pj

K(p2) (17)

where n(p) ≡ 〈ψ†(p)ψ(p)〉0 is an occupation number of the
momentum state p.

We now calculate the paramagnetic conductivity from
δ〈Ji〉. We can drop the terms with Aj in Ji [the second
term in Eq. (11)] inside the commutator, since they contribute
to a nonlinear response. From the assumption of a uniform
background field, we have Aj (x,t) = Aj (t) in Eq. (12).
Performing the Fourier transform on δ〈Ji〉 and then taking
the thermodynamic limit, one obtains

δ〈Ji〉(t) = −i

∫ t

−∞
dt ′〈[J̃i(t),J̃j (t ′)]〉0Aj (t ′), (18)

where J̃i(t) ≡ ∫
ddxJi(x,t). We define the response function

as χij (t,t ′) ≡ −i�(t − t ′)〈[J̃i(t),J̃j (t ′)]〉0. As a result of time-
translational invariance of the system, χij (t,t ′) = χij (t − t ′) =
−i�(t − t ′)〈[J̃i(t − t ′),J̃j (0)]〉0. As a result, we find δ〈Ji〉 in
frequency space is given by

δ〈Ji〉(ω) = χij (ω)Aj (ω), (19)

with

χij (ω) =
∑
m
=n

e−βEn

Z

( 〈ψn|J̃i |ψm〉〈ψm|J̃j |ψn〉
ω − (Em − En) + iη

− 〈ψn|J̃j |ψm〉〈ψm|J̃i |ψn〉
ω − (En − Em) + iη

)
. (20)

Here J̃ ≡ J̃ (t = 0) and the summation in Eq. (20) is over all
eigenstates of H from Eq. (3). Using Eq. (19), we rewrite the
paramagnetic conductivity as

σ
p

ij (ω) = i

ω + iη
χij (ω). (21)

Combining the results from Eqs. (17) and (21), we finally
obtain the total conductivity:

σij (ω) = ie2

ω + iη

∫
ddp

(2π )d
n(p)

∂2

∂pi∂pj

K(p2) + i

ω + iη
χij (ω).

(22)

To derive the sum rule for the ii component of the optical
conductivity, we utilize the Kramers-Kronig relation,

σ2(ω) = − 1

π

∫ ∞

−∞
dω′P

σ1(ω′)
ω′ − ω

, (23)

where σ1 and σ2 denote the real part and the imaginary part
of σii , respectively. P denotes the Cauchy principal integral.
Taking the limit ω → ∞ in Eq. (23), one finds

∫ ∞
−∞ σ1(ω)dω =

π limω→∞ ωσ2(ω). Using the fact that σ1 is even, we obtain
the sum rule

W ≡
∫ ∞

0
σ1(ω)dω = πe2

2

∫
ddp

(2π )d
n(p)

∂2

∂p2
i

K(p2). (24)

We can neglect the paramagnetic part when taking the limit
limω→∞ ωσ2(ω) because σd ∼ ω−1 and σp ∼ ω−2 as ω → ∞.
The result coincides with the conductivity sum rule of particles
in a restricted band [Eq. (2)]. For the trivial case in which the
kinetic term has a canonical form K(p2) = p2

2m
, the optical sum

of σ1 is given by W = πe2n
2m

as expected.

IV. NONINTERACTING FERMIONS

We apply the conductivity sum rule derived above to a
system of noninteracting fermions with the kinetic term of a
form

K(p2) = cp2α, (25)

where c and α are positive real constants. The constant c has
units of [E]1−2α where [E] denotes units of energy. The poten-
tial of this system is assumed to be weak enough such that the
low-energy (or small momentum) behavior of the total energy
is the same as the kinetic term.4 That is, the total energy εp =
K(p2) = cp2α when p is less than a large momentum cutoff �.
For simplicity, we will take εp = cp2α for the whole range of
p. This approximation is valid as long as T � ε�. Since this is
a noninteracting fermionic system, the occupation number of
the momentum state p is given by the Fermi-Dirac distribution,

n(p) = 1

eβ(εp−μ) + 1
, (26)

where μ is the chemical potential. The density is the integral
of n(p) over all momenta:

n =
∫

ddp

(2π )d
n(p). (27)

We calculate the optical sum of this system in the high-
(Appendix B) and low-temperature limits (Appendix C). The
result is

W

πe2
≈

{
Dc

1
α nT

α−1
α if n � (

T
c

) d
2α

Acn1+ 2(α−1)
d if n 
 (

T
c

) d
2α

(28)

where the constants D = (α + 2α(α−1)
d

)
�( d−2

2α
+1)

�( d
2α

)
and A =

α(2π )2(α−1)( d
Sd

)
2(α−1)

d . We note that when α = 1 and c = 1
2m

we recover the standard result, W = πe2n
2m

, in both limits.
We numerically evaluate the optical sum [Eq. (24)]. We

display the results for the cases of α = 1/3 in Fig. 2(a) and
α = 5/3 in Fig. 2(b).

The numerical results confirm that W has different behav-
iors at low densities and high densities for both α < 1 and
α > 1 cases.

4It is possible that, due to the potential, the constant c is renormalized
to be c′. However, using c instead of c′ in εp will not change the
powers of n and T that we obtain in the optical sum [Eq. (28)]. So,
for simplicity, we will use c in our calculation.
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FIG. 2. Log-log plots of optical sum (W ) vs particle density (n)
at two values of α. We work in the units that c = 1. The parameters
we use are d = 2 and T = 0.5.

Using the result we obtain in this section, we can qualita-
tively explain the behavior of the effective number of charge
carriers, Neff , at various doping levels in the cuprates [2,3].
When 0 < x < 0.2, Neff(x) ∝ xγ with γ ≈ 0.3–0.4 as we
have discussed in the introduction. Qualitatively matching
this feature of Neff with our model necessitates low tempera-
tures and 0 < α < 1, and hence one has W ∝ nβ ∝ xβ with
0 < β = 1 + 2(α−1)

d
< 1. Here, as mentioned in the introduc-

tion, we make an assumption that the number of excitations
with fractional kinetic energy is the same as that of mobile
electrons or holes, n ∝ x. This assumption links our postulate
that the propagating degree of freedom in the infrared of the
low-doping regime is described by a fractional kinetic energy.
That is, it would be justified to use n ∝ x in the low-doping
regime where Mott-type physics is important. To be more
specific, this is the region in which the number of carriers (as
measured by Hall coefficients or quantum oscillations; see, for

FIG. 3. Plots of optical sum (W ) vs particle density (n) for the
cases of α = 1

3 and 1. The parameters that we use are T = 0.01,

d = 2. We set c = 1 for both α = 1 and 1
3 cases.

example, Ref. [23]) is x. At higher doping in the Fermi-liquid
regime, the number of carriers equals 1 + x and thus the
assumption is no longer appropriate. As a concrete example,
we make a plot of W versus n in this low-temperature limit with
the exponent between zero and one (for α = 1/3) in Fig. 3.
The plot in the case of α = 1 is also displayed for comparison.
The region of n for which W (α = 1/3) > W (α = 1) has
qualitatively the same feature as Neff in the cuprates. We note
that there is no unit cell in the model we are using. This means
we cannot numerically relate W to Neff and n to x. As a result,
rather than making a plot of Neff against x as in Refs. [2,3],
we are restricted to the plot of W versus n.

Although an effective theory with a fractional kinetic is an
attempt to model a correlated system with strong interactions,
one can go further by adding interactions to this effective free
Fermion system. From Eq. (24), we can see that interactions
only affect the sum rule through the occupancy n(p). For weak
and short-ranged interactions, the system should behave as a
Fermi liquid but with a fractional kinetic energy. This means
there is a discontinuity in n(p) at the Fermi momentum similar
to the free fermion case. As a result, the qualitative feature of
the sum rule we obtained for the free case [e.g., the exponents
in Eq. (28)] should be applied for this system. Still, one may
need to do a proper renormalization group as in Refs. [24,25]
to confirm that the system is really Fermi-liquid-like.

For the strong interactions, the form of n(p) and thus the
sum rule would be drastically different from the free case.
This is because fermions with fractional kinetic energy are
no longer appropriate low-energy degrees of freedom. The
direct computation of n(p) can be difficult. So one may have
to identify the new low-energy theory and then compute the
new sum rule.

V. DISCUSSION AND CONCLUSION

The key result of this paper is that the conductivity sum
rule of noninteracting fermions with a fractional kinetic energy
does not follow the traditional result. At high temperatures and
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low densities, the optical sum scales as W ∝ nT
α−1
α . At low

temperatures and high densities, the optical sum is given by
W ∝ n1+ 2(α−1)

d . One can use the result at low temperatures to
qualitatively explain the behavior of Neff at various doping
concentration in the cuprates. To nail down that the current-
carrying excitations in the cuprates are in fact governed by
a fractional kinetic energy requires further experiments. That
is, one needs to experimentally verify that the optical sum
has two regimes as we have predicted in Eq. (28). This can
be achieved by measuring the optical conductivity and then
computing the empirical optical sum as a function of x at
higher temperatures. However, we must keep in mind that the
temperature cannot be raised too high because the assumption
that the excitation energy, εp, has the same form as the kinetic
energy, K(p2), will break down eventually. The assumption is
valid only when T � ε�.
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APPENDIX A: BLOCH THEOREM
FOR THE GENERALIZED KINETIC TERM

In this section, we show that the spontaneous current term
in Eq. (13),∫

ddp

(2π )d
〈ψ†(p)ψ(p)〉02piK ′(p2) = 0, (A1)

is zero in the thermodynamic limit. We note that, in
Eq. (13), limq→0 �i(p, − q) = 2piK ′(p2). Our proof is based
on Refs. [26,27].

Let us introduce the momentum translation operator,

T (p) ≡ e−ip·R, (A2)

where the operator R is defined as R ≡ ∫
ddrψ†(r)rψ(r). For

small p′, one can show that

T †(p′)ψ(p)T (p′) ≈ ψ(p) + ip′ · [R,ψ(p)]

= ψ(p) − i

∫
ddre−ip·rp′ · rψ(r)

= ψ(p) + p′ · ∇pψ(p)

≈ ψ(p + p′). (A3)

On the first line, we use the identity [ψ†(r)ψ(r),ψ(r′)] =
−δd (r − r′)ψ(r), which is valid for both fermionic and bosonic
fields. In the same manner as Eq. (A3), one can show that
T †(p′)ψ†(p)T (p′) = ψ†(p + p′).

Let {|ψi〉} be a complete, orthonormal set of eigenstates
and let the eigenenergy of the eigenstate |ψi〉 be Ei . We define
the thermal equilibrium density matrix which gives the lowest
free energy at temperature T as

ρψ ≡
∑

i

|ψi〉wi〈ψi |, (A4)

where wi = e−βEi

Tr(e−βH ) is a Boltzmann weight. The expectation
〈O〉0 of an operator O defined in the main text corresponds to
Tr(ρψO). We assume that the expectation value of the current,

J i
ψ =

∫
ddp

(2π )d
Tr(ρψψ†(p)ψ(p))2piK ′(p2) 
= 0, (A5)

with respect to ρψ is finite. We show, in this appendix, that
this assumption will lead to a contradiction. We introduce a
trial density matrix:

ρφ ≡
∑

i

|φi〉wi〈φi |. (A6)

Here {|φi〉} is another set of complete, orthonormal eigenstates
defined by

|φi〉 ≡ T (−δp)|ψi〉 (A7)

where δp is a small momentum parameter. Since, by con-
struction, ρψ and ρφ have the same statistical weight, wi , their
entropies are equal: Sψ = Sφ = −Tr(ρ ln ρ) = −∑

i wi ln wi .
The expectation value of the energy with respect to ρφ is

Eφ = Tr(ρφH ) =
∑

i

wi〈φi |H |φi〉

=
∑

i

wi〈ψi |T †(−δp)HT (−δp)|ψi〉

= Tr(ρψT †(−δp)HT (−δp)). (A8)

For the kinetic part of the Hamiltonian, HK =∫
ddp

(2p)d ψ†(p)ψ(p)K(p2), we find that

T †(−δp)HKT (−δp)

=
∫

ddp

(2p)d
T †(−δp)ψ†(p)T (−δp)T †(−δp)ψ(p)

× T (−δp)K(p2)

=
∫

ddp

(2p)d
ψ†(p − δp)ψ(p − δp)K(p2)

=
∫

ddp

(2p)d
ψ†(p)ψ(p)K((p + δp)2)

≈ HK + δp ·
∫

ddp

(2p)d
ψ†(p)ψ(p)2pK ′(p2) + O(δp2).

(A9)

On the first line, we use Eq. (A3) and its complex conjugate
to translate the momentum of the field operators by −δp.
Because there are no derivative terms in other parts of the
Hamiltonian, the momentum translation leaves them invariant.
As a result, one finds

T †(−δp)HT (−δp) = H + δp ·
∫

ddp

(2p)d
ψ†(p)ψ(p)

× 2pK ′(p2) + O(δp2). (A10)

Using Eqs. (A5), (A8), and (A10), we rewrite the energy of
ρφ as

Eφ = Tr(ρψH ) + δp ·
∫

ddp

(2p)d
Tr(ρψψ†(p)ψ(p))2pK ′(p2)

= Eψ + δp · Jψ. (A11)
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The free energy of ρφ is

Fφ = Eφ − T Sφ = Fψ + δp · Jψ. (A12)

If we choose δp to have the opposite direction as Jψ , we find
Fφ < Fψ . This result contradicts the assumption that ρψ has
the lowest free energy. Consequently, the spontaneous current
Jψ is zero.

APPENDIX B: HIGH-TEMPERATURE EXPANSION

We investigate the conductivity sum rule of noninteracting
fermions at high temperatures and low densities. We first
perform a high-temperature expansion on the Fermi-Dirac
distribution to obtain the fugacity as a function of density
and temperature [28]. We rewrite Eq. (27) as

nλd = 2α

�
(

d
2α

) ∫ ∞

0

xd−1

z−1ex2α + 1
dx, (B1)

where z ≡ eβμ is the fugacity, λ ≡ 2π ( c
T

)
1

2α ( 2α

Sd�( d
2α

)
)

1
d is the

thermal de Broglie wavelength, and Sd = 2π
d
2

�( d
2 )

is a surface

area of a unit (d − 1) sphere. Expanding the right-hand side in
powers of z, one finds

nλd =
∞∑

n=0

(−1)nzn+1

(n + 1)
d

2α

. (B2)

We then solve for z in terms of nλd by substituting
z = ∑∞

m=1 am(nλd )m and then matching the coefficients of
(nλd )l . The result is

z = nλd + 1

2
d

2α

(nλd )2 + O[(nλd )3]. (B3)

At high temperatures, one can omit the higher-order term in
nλd and thus

z ≈ nλd. (B4)

It follows that n(p) in the high-T limit is given by

n(p) = nλde−βεp . (B5)

Substituting Eq. (B5) into Eq. (24) and then evaluating the
momentum integral, we obtain the optical sum,

W

πe2
= Dc

1
α nT

α−1
α , (B6)

where D = (α + 2α(α−1)
d

)
�( d−2

2α
+1)

�( d
2α

)
is a constant. This result is

valid when nλd � 1 or n � ( T
c

)
d

2α .

APPENDIX C: LOW-TEMPERATURE EXPANSION

We perform the Sommerfeld expansion [29] on Eq. (24)
to investigate the low-temperature (T � εF ) and high-
density behavior of the conductivity sum rule for nonin-
teracting fermions. Using the equation n = ∫

p<pF
ddp, one

can relate the density, n, to Fermi momentum, pF , as

pF = 2π ( d
Sd

)1/dn1/d , where Sd = 2π
d
2

�( d
2 )

is a surface area of

a unit (d − 1) sphere. From εp = cp2α , one finds the Fermi
energy is given by

εF = c(2π )2α

(
d

Sd

) 2α
d

n
2α
d . (C1)

We solve Eq. (27) for μ using the Sommerfeld expansion [29]:∫ ∞

−∞
dε

H (ε)

eβ(ε−μ) + 1
≈

∫ μ

0
H (ε)dε + π2

6
H ′(μ)T 2

≈
∫ εF

0
H (ε)dε + (μ − εF )H (εF )

+ π2

6
H ′(εF )T 2. (C2)

The result is

μ = εF − π2

6

(
d

2α
− 1

)
T 2

εF

. (C3)

In the next step, we use the Sommerfeld expansion on Eq. (24).
We substitute the chemical potential [Eq. (C3)] and Fermi
energy [Eq. (C1)] into the resulting expansion. We are then
able to rewrite the optical sum at low temperature as

W

πe2
= Acn1+ 2(α−1)

d + B
(α − 1)[d + 2(α − 1)]T 2

c
n1− 2(α+1)

d .

(C4)

A and B are positive constants given by A =
α(2π )2(α−1)( d

Sd
)

2(α−1)
d and B = π2

12α
1

(2π)2(α+1) (
Sd

d
)

2(α+1)
d . This result

is valid when T � εF or n 
 ( T
c

)
d

2α .
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