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Quantum dot attached to superconducting leads: Relation between symmetric
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We study the Anderson single-level quantum dot attached to two BCS superconducting leads with the same
gap size. We reveal that a system with asymmetric tunnel coupling to the leads (�L �= �R) can be related to
the symmetric system with the same net coupling strength � = �L + �R . Surprisingly, it is the symmetric case
which is the most general, meaning that all physical quantities in the case of asymmetric coupling are fully
determined by the symmetric ones. We give ready-to-use conversion formulas for the 0-π phase transition
boundary, on-dot quantities, and the Josephson current and illustrate them on the NRG results of Oguri, Tanaka
and Bauer [Phys. Rev. B 87, 075432 (2013)] for the three-terminal setup. We apply our theory to the recent 0-π
transition measurement of Delagrange et al. [Phys. Rev. B 93, 195437 (2016)] and determine the asymmetry
of the experimental setup from the measured transition width. Finally, we establish that the widely assumed
Kondo “universality” of physical quantities depending only on the ratio of the Kondo temperature and the
superconducting gap TK/� cannot hold for asymmetric junctions.
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I. INTRODUCTION

Superconducting quantum dot nanostructures generalizing
the conventional Josephson junctions have been the subject of
intensive research in the past decade [1,2]. Versatility of the
setup covering a wide range of gate-tunable nanostructures
[3–26] promises great potential for applications but also allows
for detailed studies of their nontrivial physical properties in-
cluding Josephson supercurrent and Andreev subgap transport.
In many cases the system can be very well described by a
simple single impurity Anderson model (SIAM) coupled to
BCS leads [27] which, depending on particular parameters,
may exhibit so-called 0-π transition signaled by the sign
reversal of the supercurrent [7,9,10,16,20,24,25] and crossing
of Andreev bound states (ABS) at the Fermi energy [18,22,28].
The 0-π transition is induced by the underlying impurity
quantum phase transition (QPT) related to the crossing of
the lowest many-body eigenstates of the system from a
spin-singlet ground state with positive supercurrent (0 phase)
to a spin-doublet state with negative supercurrent (π phase)
[27,29–38].

In this study, we address an aspect of the problem which
has been largely overlooked thus far, namely the systematic
study of effects of asymmetry of the coupling to the two
superconducting leads. Asymmetric coupling is quite generic
in experiments, while theory typically addresses the symmetric
setup for simplicity (and lack of resources to cover many
asymmetric instances). In the normal nonequilibrium trans-
port, the symmetric setup is indeed just a special case in the
continuum of possibilities covering all asymmetries (while
keeping the total coupling constant). However, as we show
here, for the superconducting SIAM the symmetric case is the
most general and all quantities for asymmetric situations can
be derived exactly from it by simple analytical prescriptions.
Despite their simplicity, their nontrivial implications concern
both the fundamental properties of the model and the analysis
of experiments.

*tno@karlov.mff.cuni.cz

II. SYMMETRIC-ASYMMETRIC RELATION

A. Theory

The single impurity Anderson model is described by the
Hamiltonian

H = Hdot +
∑

α

(
Hα

lead + Hα
T

)
, (1a)

where α = L,R denotes the left and right superconducting
leads (and possibly additional normal-metal leads like in
Refs. [39–42]). The first term

Hdot = ε
∑

σ=↑,↓
d†

σ dσ + Ud
†
↑d↑d

†
↓d↓ (1b)

describes an impurity with a single-particle level ε. Operators
d†

σ , dσ create (annihilate) an on-dot electron with spin σ ,
and U describes the local Coulomb interaction. The BCS
Hamiltonian of the superconducting leads reads

Hα
lead =

∑
kσ

εα(k) c
†
αkσ cαkσ − �α

∑
k

(eiϕα c
†
αk↑c

†
α −k↓ + H.c.),

(1c)
where c

†
αkσ, cαkσ are the creation and annihilation operators of

electrons with momentum k and spin σ , �α is the amplitude of
the superconducting gap, and ϕα is the superconducting phase.
Throughout this paper we will assume �L = �R = �, which
is crucial for our derivation (and generic in experiments). The
last term

Hα
T =

∑
kσ

(tαkc
†
αkσ dσ + H.c.) (1d)

describes the coupling with tα denoting the tunneling matrix
elements. We assume the tunnel-coupling magnitude �α =
πt2

αρα (where ρα is the normal-state density of lead electron
states at the Fermi level) to be constant in the energy range of
interest. We further denote � ≡ �R + �L.
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The system can be described in the Matsubara formalism
[43–45]. In the noninteracting U = 0 case the Green function
reads

Ĝ0(iωn)=
(

iωn[1+ s(iωn)] − ε �ϕ(iωn)

�∗
ϕ(iωn) iωn[1 + s(iωn)] + ε

)−1

,

(2)
where ωn are fermionic Matsubara frequencies and the
functions s(iωn) = �/

√
ω2

n + �2 and �ϕ(iωn) = (�LeiϕL +
�ReiϕR )�/

√
ω2

n + �2.
The interacting (U �= 0) system with self energy � is then

described by the full Green function Ĝ, which is given by the
Dyson equation Ĝ−1(iωn) = Ĝ−1

0 (iωn) − �̂(iωn). The Green
function Ĝ is known to be a functional of Ĝ0, only further
depending on the interaction strength U [43], meaning that
model parameters �α , ϕα , ε only enter through Ĝ0. Any
symmetries of the noninteracting system under the change
of these parameters are then preserved in the interacting case.
We will further deal with a correspondence of the case of
symmetric coupling (�L = �R = �/2) with an asymmetric
case (�L �= �R), accompanied by a corresponding change in
the ϕα parameters.

We first notice that Ĝ0 only depends on ϕL,R through
the off-diagonal part �ϕ and, moreover, only through a
frequency-independent factor �LeiϕL + �ReiϕR . Introducing
the superconducting phase difference ϕ = ϕL − ϕR , ϕ ∈
(−π,π ), the average phase shift δ = (ϕL + ϕR)/2, and the
coupling-parameter asymmetry a ≡ �L/�R , we can now
simplify the ϕ-dependent factor to

�LeiϕL + �ReiϕR =�
√

χ (ϕ,a)ei(δ+�), (3a)

with

χ (ϕ,a) =1 − 4a

(a + 1)2
sin2 ϕ

2
(3b)

and the overall phase �

�(ϕ,a) = arctan

[(
a − 1

a + 1

)
tan

ϕ

2

]
. (3c)

Equations (3a)–(3c) make it possible to relate an asym-
metric junction to a symmetric one. Note that χ (ϕ,a)
is preserved by a → 1/a (thus reflecting our freedom of
choice in the definition of the asymmetry) and reduces to
χ (ϕ,1) ≡ cos2(ϕ/2) in the symmetric case. The value range
of χ (ϕ,a = 1) in the symmetric case is [0,1], which shrinks
to [(a − 1)2/(a + 1)2,1] for the asymmetric one (a �= 1).
Together with continuity and monotony of function χ (ϕ) this
implies that for any physical (asymmetric) ϕA there exist an
effective (symmetric) ϕS such that

χ (ϕS,1) = χ (ϕA,a). (4)

Inserting from Eq. (3b) we find that

ϕS = 2 arccos
√

χ = 2 arccos

√
1 − 4a

(a + 1)2
sin2

ϕA

2
.

(5a)

To express ϕA instead, we invert this formula and using (3b)
together with 2 arcsin x = arccos(1 − 2x2) we obtain

ϕA = arccos

(
(a + 1)2

2a
(χ − 1) + 1

)
= arccos

(
1 − (a + 1)2

2a
sin2 ϕS

2

)
.

(5b)

Eqs. (5a) and (5b) are substitution relations for ϕ, which are
sufficient to relate on-dot quantities. To ensure correspondence
of nonlocal quantities such as the Josephson current, we also
have to impose the condition

δS = δA + �(ϕA), (5c)

which ties together the gauges of the symmetric and asym-
metric cases. Equations (5a) and (5c) fully describe the
correspondence, ensuring Ĝ(ϕA,δA) = Ĝ(ϕS,δS).

We wish to stress that counterintuitively it is the symmetric
case which contains all information and only needs to be
examined to fully understand the general (asymmetric) system.
This is very useful, because it allows us to calculate only
characteristics of the symmetric case and then compute all
other cases from the formulas above. Additionally, it is also
a simple way to determine the asymmetry of an experimental
setup.

B. Phase boundary

We will now examine specific examples of the symmetric-
asymmetric relation, starting with the 0-π phase boundary. In
a suitable range of parameters, when keeping U , �, and �

fixed, the state of the system depends on ε and ϕ and may
exhibit the 0-π transition. The transition curve is described
by ϕC(ε), ϕC being the critical value at which the transition
occurs for a given ε. Knowing the relation ϕS

C(ε) in the
symmetric case, we simply get the asymmetric transition curve
by substitution in Eq. (5b). Figure 1 shows the phase diagram
for different values of U , in symmetric and asymmetric cases.
The parameters � = 0.44 meV, � = 0.17 meV correspond
to the experiment of Delagrange et al. [25] which will be
addressed in more detail later on. The symmetric curves
in panel (a) were obtained by numerical renormalization
group (NRG) calculations [46]. For small enough U [2 and
2.5 meV in Fig. 1(a)] the π phase exists only above some
finite critical ϕS

C even at ε = −U/2. The ϕS
C curve changes to

approximately arc-cosine shape for larger U . Part (b) shows
the effect of asymmetry. The curves were obtained from panel
(a) by using the relation (5b). Only the lower part of the
symmetrical data in panel (a) is used and gets “stretched”
by transformation (5b) over the whole ϕ range (consequently,
the phase boundary line corresponding to U = 2 disappears
altogether). Panel (c) shows a plot of 1 − χ (ϕC) dependence
on ε̃ ≡ (ε + U/2)/(U/2) = 1 + 2ε/U . Due to Eq. (4), χ can
be with advantage used as an invariant variable.

C. Physical quantities

Physical quantities on the dot, like the free energy, particle
number, magnitude of the induced gap, or energy of the An-
dreev bound states, which depend only on the local Green func-
tion in a gauge-invariant way (i.e., are independent of δ), can
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FIG. 1. 0-π phase boundary. (a) ϕS
C dependence on the (shifted and normalized) energy level ε̃ ≡ 1 + 2ε/U in the symmetric case �L = �R .

The dots were obtained by NRG using the parameters � = 0.44 meV, � = 0.17 meV, and (from left to right) U = {2, 2.5, 2.8, 3, 3.2, 4, 5, 6, 7}
meV. The red line (U = 3.2 meV) represents the experimental values of Delagrange et al. [25]. (b) ϕA

C (ε)—plot (a) recomputed via Eq. (5b)
for asymmetry a = 11. The relevant ϕS

C range is indicated by the blue area in panels (a) and (c). (c) 1 − χ (ϕC) vs the shifted and normalized
dot level energy ε. The curves are becoming linear with increasing U .

also be computed easily. If the quantity’s ϕ dependence FS(ϕS)
is known in the symmetric case, the symmetric-asymmetric
relation reads FA(ϕA) = FS(ϕS). Inserting Eq. (5a) yields for
any asymmetry a the equation

F (ϕ) = FS

(
2 arccos

√
1 − 4a

(a + 1)2
sin2

ϕ

2

)
. (6)

Here, F (ϕ) and ϕ are the physical quantities that can be
measured/tuned experimentally in a real asymmetric junction
(we skip the superscript A for physical quantities from
now on).

If we want to describe the Josephson current, which is
represented by a nonlocal operator coupling the dot to lead(s),
we encounter a problem as its mean value is not determined
from the Green’s function Ĝ only but depends explicitly on ϕα

as well [45]. If one proceeds via this direct way, relation (5c)
must be also incorporated into the (rather tedious) derivation
as we explicitly demonstrate in Appendix A. However, it is
possible to follow an indirect route of the supercurrent evalua-
tion via the derivative J ≡ 2e/h̄ · ∂F/∂ϕ of the free energy F ,
which satisfies the above symmetry relation (6). Consequently,
a prefactor appears in the symmetric-asymmetric relation for
the supercurrent:

J (ϕ) = cos ϕ

2√
(a+1)2

4a
− sin2 ϕ

2

× J S

(
2 arccos

√
1 − 4a

(a + 1)2
sin2

ϕ

2

)
.

(7)

Note that our theory can also be used if the setup contains
one or more normal metal lead(s) in addition to the two
superconductors like in Refs. [39–42], because the normal
metal leads do not influence the physics of the superconducting
phase difference. This is illustrated in Fig. 2 containing
different on-dot quantities and the Josephson current for a

setup with an additional normal electrode. The black bullets
were taken graphically from Fig. 11 of Ref. [40], where they
were calculated by NRG for symmetric as well as asymmetric
cases. On the other hand, we calculated by NRG only the blue
lines for the symmetric case, while red lines, corresponding
to different levels of asymmetry, were obtained by Eq. (6)
for on-dot quantities and Eq. (7) for the Josephson current.
With higher asymmetry, a smaller range of the symmetric data
is used. The on-dot quantities (a)–(c) are characteristically
“stretched,” while the behavior of the Josephson current (d) is
more complicated due to the prefactor in Eq. (7). In particular
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FIG. 2. Phase shift δ (a), magnitude of the pair correlation (b),
Andreev conductance gNS (c), and Josephson current J in terms of
JC = e�S/h̄ (d) plotted as functions of the Josephson phase difference
ϕ. The black bullets have been taken graphically from Fig. 11 in Oguri
et al. [40]. The blue solid lines have been calculated for the symmetric
coupling (a = 1) using the NRG. The red dashed lines, representing
asymmetric coupling with a = 4, 7, 10 have been obtained from the
blue ones using the relations (6) (a)–(c) and (7) (d).
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FIG. 3. Phase diagram in the U -� plane of the superconducting
single-impurity Anderson model with symmetric leads at half-filling
ε = −U/2 and ϕ = 0 (note the logarithmic scale on the vertical
axis). Black line separates the singlet (0 phase) and doublet (π phase)
ground states. The 0 phase has two kinds of singlet ground state
(BCS and Kondo) connected through a broad crossover region. NRG
solution (black bullets) is compared with the GAL approximation
[44,45] (blue dash-dotted line) and with an estimate of the critical
delta from the Kondo temperature �C ≈ 1.37 TK [32] (red dashed
line). The orange squares mark the positions of the experimental
setup taken from Ref. [25].

J (ϕ = π ) = 0 also for the asymmetric cases. Our theory is in
all cases in excellent agreement with NRG results.

D. Kondo (non)universality

We wish to comment on the notion of Kondo universality
used, e.g., in Ref. [25]. If the system is in the Kondo regime (big
U/� and small enough �/�, see Fig. 3), physical quantities
are believed to only depend on TK/�, where

TK =
√

�U

2
exp

(
−π

∣∣4ε2 − U 2
∣∣

8�U

)
(8)

is the normal-state Kondo temperature. To our knowledge, in
the superconducting case universality has been tested both
by numerical simulations of a symmetric setting [32–34]
and experimentally [47]. As our example of the transition
width demonstrates, physical quantities can be altered by the
asymmetry of the junction while keeping � and, thus, also
TK constant—recall the disappearance of the transition line
corresponding to U = 2 meV (U/� ≈ 4.5) between panels
(a) and (b) of Fig. 1. Consequently, TK/� scaling cannot hold
for junctions with different asymmetry and there is at least
one more parameter to be taken into account for any physical
quantity F : FS(TK/�) −→ F (TK/�,a).

III. ANALYSIS OF THE EXPERIMENT

One of the most beneficial outcomes of the symmetric-
asymmetric relation is that all relevant experiments can be
addressed with the symmetric models regardless of the real
coupling asymmetry. Moreover, Eq. (5b) can be used to obtain
the value of the asymmetry from the experimental data as we
now demonstrate.

In their recent experimental study of a carbon nanotube
(CNT) quantum dot, Delagrange et al. [25] focused on

TABLE I. Transition width and asymmetry—summary of experi-
mental data [25] and our corresponding results. Columns correspond
to the measured Coulomb diamonds. The rows give the measured
normalized parameters U/�, �/�, and coefficients α and γ of
Eq. (10) obtained from the NRG data fitting. Normalized transition
widths δ̃εexp ≡ 2δεexp/U measured for both sides of the diamonds are
followed by the asymmetry a determined by the procedure discussed
in the main text. The last two lines are parameters (negative slope and
asymmetry) obtained by an alternative linearization fitting procedure,
which is discussed in Appendix B. (#) Here, δ̃εexp is bigger then the
transition width of the symmetric case (see the main text for details).

B C G I

left right left right left right left right

U/� 6.5 4.6 8.5 7.3
�/� 0.4 0.34 0.425 0.39
α 2.82 1.53 4.27 3.26
γ 1.22 0.47 2.21 1.50
δ̃εexp 0.23 0.43 0.87 0.96 0.06 0.06 0.15 0.2
a 5.7 1# 1# 1# 11.8 11.8 6.6 4.0
βA

NRG 0.479 # 0.202 0.202 0.347 0.317
alin 5.8 1# 11.4 11.4 6.4 4.0

the 0-π transition controlled by the superconducting phase
difference ϕ. Parameters of the single impurity Anderson
model pertinent to the sample have been extracted from typical
Coulomb diamonds appearing in the stability diagram and are
summarized in Table I. The authors have successfully fitted
the 0-π phase transition curve ϕC(ε) on both sides of three
Coulomb diamonds (called B, G, and I) with an arc-cosine
dependence

ϕC = arccos

{
−2

ε − εt

δε

}
(9)

linear in energy. Here, δε is the full width and εt is the
position of the center of the transition curve. This suggests
an interesting universality, which, however, was not followed
by the diamond C where formula (9) had to be replaced
by ϕC ∼ arccos (c + ε̃2) [25]. This was reportedly because
the transition took place close to ε̃ = 0 and because it was
“incomplete,” i.e., observed only above some finite critical ϕC

as in our Fig. 1.
It should be mentioned that the arc-cosine functional form

is necessary from the upper of Eq. (5b); it is the energy
dependence (linear or quadratic) which is nontrivial. To
understand the energy-dependence behavior we first plot in
Fig. 3 a generic phase diagram in the �/� − U/� plane for
ϕ = 0, symmetric coupling to the leads, and at half-filling
(ε = −U/2; ε̃ = 0). There are three regions: π phase where
the ground state is a spin doublet and 0 phase with the BCS
and Kondo singlet ground state regions [44,45]. As can be
seen the phase boundary calculated via NRG (black bullets)
approaches in the Kondo region (small �) the analytical
curve [48] �C ≈ 1.37 TK (red line in Fig. 3), which was
discussed in detail in Ref. [32]. On the other hand, we recently
showed [44,45] that the phase boundary in the BCS region
and close to the half-filling can be very well approximated
by a simple generalized atomic limit (GAL) formula χC =

195114-4
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FIG. 4. Dependence of critical χC on ε̃ calculated using NRG
(dots) and fitted by the parabola Eq. (10). (a) For �/� = 1 the
least-square fit error stayed below 0.2% for all plotted values of
U/� (indicated by the numbers next to the curves). (b) Case �/� =
0.256 had the biggest least-square fit error from all discussed cases;
however, it was still below 1.2% for all plotted values of U/�. (c)
Curves for all diamonds from Table I. As an example we marked
the point χ (ϕC = π ) used in Eqs. (12) and (13) for the right side of
the diamond I. Its position was obtained using the measured value
of δ̃εexp.

(U/2�)2[1/(1 + �/�)2 − ε̃2] shown as the blue line in Fig. 3
(with χC = 1 and ε̃ = 0). We also depict as orange squares the
experimental values of the � and U parameters normalized by
total � for diamonds B, C, G, and I discussed here (notice that
their placement in the phase diagram is only approximate as
the phase transitions in those diamonds do not happen at the
assumed half-filling).

Interestingly, all the considered diamonds lie in the interme-
diate region where neither of the above two analytical formulas
work (see the orange squares in Fig. 3). Nevertheless, we have
discovered by exhaustive analysis of the NRG data that in
compliance with GAL the critical χC(ε̃) can be for sufficiently
high �/� nearly perfectly fitted with a parabola

χC(ε̃) = γ − αε̃2, (10)

although the coefficients α and γ differ from the GAL values.
The examples of fits for different �/� and U/� are shown
in Fig. 4. We have found out that the least-square-fitting
errors [49] are below 0.5% for both �/� = 1 [panel (a)]
as well as for �/� ∼ 0.3 [panel (c) corresponding to the
experimental data from Fig. 3]. Even for the lowest considered
ratio �/� = 0.256 (motivated by diamond A in Ref. [25] not
further discussed in here) was the difference from a parabola
below 1.2%. However, the parabolic dependence breaks down
for still smaller values of �/� (we have observed its clear
breakdown already for �/� = 0.1; not shown) and it is
definitely not valid in the strong Kondo regime. Yet, the above

tests show that Eq. (10) can be safely used for analysis of all
considered diamonds.

This simple observation explains both above experimental
findings. After inserting Eq. (10) into Eq. (5b), which leads to

ϕC = arccos

[
(a + 1)2

2a

(
γ − αε̃2 − a2 + 1

(a + 1)2

)]
, (11)

one can immediately see that the seemingly anomalous transi-
tion for the diamond C with the quadratic energy dependence
[see Fig. 4(c)] is actually quite generic. On the other hand, the
allegedly universal linear energy dependence of χC shown in
Fig. 1(c) and Fig. 4 is in fact a limit of parabolas with large
coefficients α.

Parabolic character of the phase transition curve can be
used to easily obtain the asymmetry of the experimental setups
either by fitting the experimental data with Eq. (11) or just by
using a simple formula obtained from Eq. (3b) (with the chosen
solution a > 1)

a = 1 + √
χ (ϕC = π )

1 − √
χ (ϕC = π )

, (12)

where χ (ϕC = π ) can be read off from the theoretical curves
using the normalized width of the transition δ̃εexp ≡ 2δεexp/U

measured in the experiment as illustrated in Fig. 4(c). Alter-
natively, for complete transitions when ϕC covers the whole 0
to π range [corresponding to large enough U cases in Figs. 1
and 4; B, G, and I diamonds in the experiment, see Fig. 4(c)]
one can directly calculate χC(ϕC = π ) from Eq. (10) as

χ (ϕC = π ) = 1 − 2
√

α(γ − 1)δ̃εexp − αδ̃ε
2
exp. (13)

The big advantage of determining the asymmetry a from
formulas (12) and (13) is that the transition width δε is a robust
quantity [25,45] and that coefficients α and γ can be easily
extracted from a few points (actually in the ideal case from
just two) of the phase boundary calculated for the symmetrical
coupling using, e.g., NRG [50].

In their experiment, Delagrange et al. [25] have determined
the transition widths on both sides of the diamonds B, C, G,
and I. For the right side of diamond I the asymmetry a = 4 was
found via quantum Monte Carlo (QMC) simulations [24]; for
B, C, G, and the left side of I it remained unknown. We have
applied Eq. (12) to find the asymmetry of each diamond from
the measured δ̃εexp and coefficients γ and α obtained by fitting
the symmetric-coupling phase boundaries χC(ε) calculated via
NRG shown in Fig. 4(c) (dots) with formula (10) (solid lines).
The results are summarized in Table I. Analysis of the right side
of diamond I [red lines in Figs. 1 and 4(c)] with the measured
transition width δ̃εexp = 0.20 has given the asymmetry a = 4,
which agrees with the value obtained earlier via QMC [24].
The values of a obtained for the diamond G and left sides
of diamonds I and B point to even bigger asymmetries.
On the other hand the normalized transition width δ̃εexp

measured on the right side of diamond B suggests a symmetric
junction. The measured value (δ̃εexp = 0.43) is actually even
wider than the width calculated for the symmetric coupling
(δ̃ε = 0.39), but the difference is within the 10% experimental
uncertainty. For the diamonds B, I, and G, where the phase
transition curves are close to linear, we also present the results
(alin) of an alternative fitting procedure based on linearization,
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which was motivated by Eq. (9). This linearization procedure,
which might be the only alternative in the strong Kondo
regime, is discussed in detail in Appendix B. The asymmetries
obtained by both methods are in good agreement.

Unfortunately, the analysis of the remaining diamond C

is still problematic. Unlike in other diamonds, the phase
transition for diamond C is incomplete, i.e., it only exists above
some finite critical value of ϕC [Fig. 4(c)] as was also clearly
observed in the experiment. The measured values (δ̃εexp = 0.87
and 0.96) are significantly bigger than the calculated width of
the symmetric case (δ̃ε = 0.6). One can perhaps assume that
the large difference could happen as a combination of the 10%
uncertainties in the estimation of the diamond’s parameters and
the error in the fitted transition width. In any case, the big value
of δ̃εexp hints at a symmetric or nearly symmetric junction.

IV. CONCLUSIONS

We have unveiled the thus far unnoticed simple, yet
very powerful correspondence between the characteristics
of a single-level quantum dot coupled symmetrically or
asymmetrically to two phase-biased superconducting leads
and potentially to further normal lead(s). We have found that,
counterintuitively, the symmetric setup is the most general
one and its knowledge allows full description of the equivalent
asymmetric system for any value of the asymmetry of the
coupling. This discovery makes it possible to utilize known
results for symmetric setups in general asymmetric cases
via trivial analytical relations. Moreover, it also provides an
efficient tool for estimating the coupling asymmetry from the
experimental data, which is otherwise a demanding task.

We have demonstrated the potential of this method by its
application to recent experimental data in combination with a
phenomenological analysis of the structure of phase-transition
curves. We have discovered by exhaustive NRG calculations
that the phase boundaries in a wide range of parameters
(away from strong Kondo regime) are described by a simple
quadratic functional dependence whose two parameters can
be obtained with a moderate computational effort and utilized
in a trivial analytical evaluation of the coupling asymmetry
from the measured phase-transition width. In case of the single
previously existing theoretical asymmetry prediction obtained
by direct quantum Monte Carlo simulations for the given
experiment, our result is in perfect agreement at a fractional
computational cost.
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APPENDIX A: DERIVATION OF THE
SYMMETRIC-ASYMMETRIC RELATION FOR THE

JOSEPHSON CURRENT

The main aim of Appendix A is to show a direct derivation
of the symmetric-asymmetric relation for the Josephson
current. Not only should this serve as an illustration of the

procedure but also as a guide for the derivation of other
quantities which depend not only on the Green function but
also explicitly on ϕα’s.

Starting with the interacting Green function Ĝ(iωn), the
Josephson current flowing into lead α can be expressed as a
sum over Matsubara frequencies [45]

Jα = 4kBT
∑
ωn

�α�√
�2 + ω2

n

Im[G(iωn)e−iϕα ], (A1)

where T denotes the temperature and G(iωn) is the off-
diagonal element of Ĝ(iωn). As this expression explicitly
depends on ϕα , we will have to handle the correspondence
between the symmetric and asymmetric case as having two
parameters, the phase difference ϕ = ϕL − ϕR and shift δ =
(ϕL + ϕR)/2. As shown in the main text, these are connected
by the transformation

ϕS = 2 arccos
√

χ (ϕA),

δS = δA + �(ϕA),
(A2)

with χ (ϕA) = 1 − 4a
(a+1)2 sin2 ϕA

2 , and �(ϕA) =
arctan [( a−1

a+1 ) tan ϕA

2 ], and asymmetry a ≡ �L/�R . We
equivalently express the parameters ϕS

L, ϕS
R directly, obtaining

ϕS
L = 1

2

(
ϕA

L + ϕA
R

) + �(ϕA) + arccos
√

χ (ϕA),

ϕS
R = 1

2

(
ϕA

L + ϕA
R

) + �(ϕA) − arccos
√

χ (ϕA).
(A3)

With this choice of symmetric-asymmetric relation the Green
function (and in particular it’s off diagonal element) is
preserved, so that G(ϕA

L ,ϕA
R ) ≡ G(ϕS

L,ϕS
R). To compute the

current we first denote

I = 2kBT
∑
ωn

��√
�2 + ω2

n

Im[G(iωn)],

R = 2kBT
∑
ωn

��√
�2 + ω2

n

Re[G(iωn)].

(A4)

Then Eq. (A1) gives in the symmetric case

J S
α = I cos ϕS

α − R sin ϕS
α . (A5)

Here we have used � = 2�α and evaluated the imaginary part
of G(iωn)e−iϕα . From the current conservation law J = JL =
−JR and Eq. (A5) we get two equations (α = L,R) for I and
R with J as the parameter, leading to

I = − J S

sin ϕS

(
sin ϕS

R + sin ϕS
L

)
,

R = − J S

sin ϕS

(
cos ϕS

R + cos ϕS
L

)
.

By using �L = a
a+1� in Eq. (A1), the expression for the

current incoming to the left lead for the asymmetric case reads

JA = JA
L = 2a

a + 1
2kBT

∑
ωn

��√
�2 + ω2

n

Im
[
G(iωn)e−iϕA

L

]
.

(A6)
Now we do the important step to express JA in terms of the
corresponding J S . Since the quantitiesR, I are invariant under
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the transformation (A3), we can insert them into (A6). After
simple rearrangement we obtain

JA = − 2a

a + 1

J S(ϕS)

sin ϕs

{
sin

(
ϕS

L − ϕA
L

) + sin
(
ϕS

R − ϕA
L

)}
.

(A7)
Using the relations (A3) to eliminate ϕS

L,R yields the gauge
invariant form

JA(ϕA) = − J S 2a

a + 1

1

sin(2 arccos
√

χ)

×
{

sin

(
� − ϕA

2
+ arccos

√
χ

)
+ sin

(
� − ϕA

2
− arccos

√
χ

)}
. (A8)

This is simplified with use of the formula sin α + sin β =
2 sin α+β

2 cos α−β

2 in the numerator, and sin 2α = 2 sin α cos α,
sin arccos α = √

1 − α2 in the denominator.

JA(ϕA) = −J S 2a

a + 1

sin
(
� − ϕA

2

)
sin(arccos

√
χ)

= −J S 2a

a + 1

sin � cos ϕA

2 − sin ϕA

2 cos �√
1 − χ

. (A9)

Next, to get rid of �, we compute

cos � = 1√
1 + (

a−1
a+1

)2
tan2 ϕA

2

= cos ϕA

2√
χ

,

sin � =
(

a−1
a+1

)
tan ϕA

2√
1 + (

a−1
a+1

)2
tan2 ϕA

2

=
(

a−1
a+1

)
sin ϕA

2√
χ

.

(A10)

After inserting these relations, Eq. (A9) becomes

JA
L = − 2a

a+1

(
a−1
a+1 − 1

)
sin ϕA

2 cos ϕA

2√
χ

√
1 − χ

J S. (A11)

Since the numerator yields (χ − 1) cot ϕA

2 (for ϕA �= 0), the
relation between the Josephson current in the symmetric and
asymmetric case is simplified to

JA(ϕA) =
√

(1 − χ )

χ
cot

ϕA

2
J S(2 arccos

√
χ ), (A12)

or, explicitly in ϕ

JA(ϕ) = cos ϕ

2√
(a+1)2

4a
− sin2 ϕ

2

× J S

(
2 arccos

√
1 − 4a

(a + 1)2
sin2

ϕ

2

)
, (A13)

which is Eq. (7).

APPENDIX B: LINEARIZATION AND ALTERNATIVE
FITTING PROCEDURE

In this Appendix B we present an alternative analysis of
the experiment based on linear approximation, which was

motivated by the successful use of Eq. (9) by Delagrange et al.
[25] in most of the measured cases (diamonds B, G, and I). We
show that, even though the parabolic fit discussed in the main
text is more general, the simpler linear approximation may
give good enough results. Moreover, the linear approximation
might be relevant in the fully developed Kondo regime.

Applying Eq. (5b) to the phase boundary clearly shows that
ϕC(ε) has an exactly arc-cosine shape assumed in Eq. (9) if and
only if χC(ε) is linear in ε. Indeed, from NRG data we observe
that for big enough U/� the phase boundary approaches a
straight line, see Figs. 1(c) and 4. Moreover, when asymmetry
is involved, only the values of χC close to 1 [blue area in
Fig. 1(c)] are used. This means that for large asymmetry the
linear approximation becomes relevant for a wider range of
parameters.

We therefore assume χC(ε̃) ≈ κ − ε̃/β. Inserting it into
Eq. (5b) gives [cf. Eq. (11)]

ϕC = arccos

[
− (a + 1)2

2a

(
ε̃

β
+ a2 + 1

(a + 1)2 − κ

)]
. (B1)

Comparison with Eq. (9) leads to

δ̃ε = 4a

(a + 1)2
β(ε,U,�,�), (B2)

where we have explicitly stated the dependence of the slope β

on given model parameters. For the ideal case of a perfectly
linear dependence [or large enough U , see Fig. 1(c)], Eq. (B2)
separates the asymmetry dependence of the transition width
from a universal (i.e., asymmetry-independent) slope β (which
also equals the transition width in the symmetric case). For
experimentally relevant intermediate U ’s (red curve in Fig. 1)
the curve slightly bends and linear regression restricted to the
appropriate range of χC is more precise and is used in the next
paragraphs to analyze the experimental data.

We have applied Eq. (B2) to find the asymmetry of dia-
monds B, G, and I from the measured transition width δ̃εexp and
the theoretical slope βNRG obtained by performing a linear fit of
phase-boundary curves χC(ε̃) calculated via NRG. To account

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.2  0.4  0.6  0.8  1

ε~

χC

βS
NRG

βA
NRG

FIG. 5. Illustration of the fitting procedure used to obtain the
asymmetry. The numerically determined ε̃(χC) dependence (bullets)
is approximated by a linear fit in the symmetric (blue solid line) and
asymmetric (red dashed line) case. The negative slopes are denoted
βS

NRG and βA
NRG, respectively. The fitting range for the asymmetric

case is marked by the vertical dotted line. In case of perfect linearity
the lines would merge, but for a realistic curve on the verge of the
Kondo regime they differ slightly.
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for their weak nonlinearities, we restrict the fitting range of χC

only to values [(a − 1)2/(a + 1)2,1] relevant for the asymmet-
ric case (blue area in Fig. 1). The range (influencing the slope
βNRG) and the asymmetry a were determined self-consistently
as values matching most closely the experimentally measured
transition widths. Figure 5 features the ε̃(χC) dependence (bul-
lets) calculated by NRG for the diamond B in the experiment
of Delagrange et al. [25]. We have chosen the diamond B as
an illustration, because in this case the linear approximation
used to determine the asymmetry is the least accurate [see
Fig. 4(c)].

We performed two linear fits. The negative slope denoted
as βA

NRG (red dashed line) was obtained using the restricted

interval (marked by the vertical dashed line) as discussed in the
main text. For comparison, we also include the fit in the whole
range [0,1] of χC with the negative slope denoted βS

NRG (blue
solid line). For a realistic phase-boundary curve the two slopes
are close but not completely identical. The values of the βA

NRG
used to determine the asymmetry are tabulated in Table I in the
main text, while corresponding values of βS

NRG for diamonds
B, G, and I, respectively, are 0.388, 0.190, and 0.291. These
values are equal to the transition width of a symmetric (a = 1)
junction. The estimated standard error of the fit of all slopes
was less than 2%. Results for the asymmetry are also included
in Table I in the main text and are in good agreement with
values obtained by the quadratic approximation.
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