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In a bilayer system consisting of a composite-fermion (CF) Fermi sea in each layer, the tunnel current is
exponentially suppressed at zero bias, followed by a strong peak at a finite-bias voltage V.. This behavior,
which is qualitatively different from that observed for the electron Fermi sea, provides fundamental insight into
the strongly correlated non-Fermi-liquid nature of the CF Fermi sea and, in particular, offers a window into the
short-distance high-energy physics of this highly nontrivial state. We identify the exciton responsible for
the peak current and provide a quantitative account of the value of V,,,,. The excitonic attraction is shown
to be quantitatively significant, and its variation accounts for the increase of V.« with the application of an
in-plane magnetic field. We also estimate the critical Zeeman energy where transition occurs from a fully
spin-polarized composite-fermion Fermi sea to a partially spin-polarized one, carefully incorporating corrections
due to finite width and Landau level mixing, and find it to be in satisfactory agreement with the Zeeman energy
where a qualitative change has been observed for the onset bias voltage [J. P. Eisenstein et al., Phys. Rev. B 94,
125409 (2016)]. For fractional quantum Hall states, we predict a substantial discontinuous jump in V,.x when
the system undergoes a transition from a fully spin-polarized state to a spin singlet or a partially spin-polarized

state.

DOI: 10.1103/PhysRevB.95.195105

I. INTRODUCTION

Much attention on bilayer systems in a high magnetic
field has focused on the emergence of an excitonic superfluid
at total filling factor vy = 1 [1-9], where the electrons in
one layer become strongly correlated with the holes of the
other layer to produce an excitonic superfluid that exhibits
remarkable phenomena. We will be concerned in this paper
with the situation when the distance between the two layers
is sufficiently large to preclude excitonic superfluidity, but
small enough that tunnel transport is feasible. In this regime,
each layer presumably consists of a Fermi sea of composite
fermions [10-12]. Experimental studies of the tunnel transport
during the last two decades [13-18] have revealed many
interesting features. (i) The tunnel current is exponentially
suppressed at zero bias. (ii) The tunnel current exhibits a
strong maximum at a certain bias voltage denoted Viux. (iii)
Vmax increases under the application of an additional parallel
magnetic field. (iv) Viax does not exhibit a qualitative change
when the spin polarization of the composite-fermion (CF)
Fermi sea [11] decreases from its maximal value. (v) The onset
of the tunnel transport is sensitive to the spin polarization
of the CF Fermi sea, and shifts to lower bias voltages as
the spin polarization of the CF Fermi sea decreases. While
tunnel transport has been experimentally studied in most detail
when each layer is in the compressible % state, many of the
above-mentioned features are not particularly sensitive to the
filling factor [14,15,17]. (vi) A double-peaked structure is

observed at v = % and nearby filling factors in the range

;—‘ <v < % [17]; in contrast, a single peak is observed at v = %
and vicinity, although there is evidence for a split peak at
v~ 2 [14].

These experimental observations, which are dramatically

different from those at zero magnetic field, provide a unique
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experimental window into the strongly correlated nature of
the CF Fermi sea and fractional quantum Hall (FQH) states.
In particular, the interlayer tunneling experiments in general
involve high-energy excitations of the FQH state, and thus
probe physics beyond what is accessible through many other
measured quantities, e.g., transport gaps, which relate only to
low-energy excitations. The problem of interlayer tunneling in
the FQH regime has been theoretically addressed by numerical
diagonalization [19,20], using a Chern-Simons theory [21],
and also by treating the state either classically [22,23] or as
a Wigner crystal [24]. While these studies capture certain
features of the phenomenology, the physical nature of the
excitation responsible for the peak current has not been
clarified, and a detailed quantitative comparison between
theory and experimental data has been lacking. We report on
progress in this direction and address many, though not all,
of the phenomenological observations listed in the preceding
paragraph.

Tunneling of an electron from one layer to another is
essentially a spectroscopic probe of the interlayer exciton,
whose energy E.x consists of three parts: the energy required
to add an electron to a FQH state; the energy required to create
a hole in a FQH state; and the interlayer interaction energy
between the electron and hole excitations. We write E., as

Eex = (Ee - Egs) + (Eh - Egs) + Een, (1)
where Eg is the ground-state energy of electrons in one
layer, E. (Ey) is the energy of the state with one electron
added to (removed from) the ground state, and E.y is the
attractive interaction between the tunneled electron and the
hole left behind. Of course, an electron or a hole can be added
into a continuum of excited states, producing excitons with a
continuum of exciton energies.

©2017 American Physical Society
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FIG. 1. The symbols show, for three densities p, the experimental
bias voltage V. that produces the peak tunnel current, taken from
Eisenstein et al. [18], which studies a system of two quantum wells
of width w = 18 nm separated by d = 28 nm (center to center). The
solid lines and dashed lines depict the theoretical energies of the
hard exciton and soft exciton, respectively. The total magnetic field
is given by By = v/ Bf + B2, where the normal component B is
equal to the leftmost depicted value. The theory contains no adjustable
parameters. Further details are given in the main text.

The tunnel transport probes high-energy physics of the FQH
state or the CF Fermi sea because the low-energy spectrum
does not contain any object with the quantum numbers of an
electron or a hole. In this sense, bilayer tunneling provides
information distinct from the activation gap deduced from the
temperature dependence of the resistance, which corresponds
to the lowest-energy charged excitations.

We consider below two types of excitons. The first is that in
which an electron (hole) is added to the state by application of a
lowest-Landau-level (LLL) projected local creation (annihila-
tion) operator. We label this exciton a “hard exciton” because
its electron and hole components occupy the smallest wave
packets that can be created in the LLL within the background
of the correlated CF state. This is the object with the largest tun-
neling amplitude, and thus should correspond to the maximum
current. We determine all three contributions to the exciton
energy in a microscopic calculation. The attractive interaction
between the exciton makes a substantial correction to the total
energy, reducing it by a factor of ~2 for typical experimental
parameters. An elegant way of singling out the contribution of
the excitonic attraction energy E.}, which depends in a com-
plicated manner on both the density profiles of the electron and
the hole and the interlayer separation, is through the application
of a parallel magnetic field. Such a field provides a momentum
boost to the tunneled electron, producing an interlayer exciton
for which the electron and the hole are laterally displaced
(by an amount that depends on the magnitude of the parallel
magnetic field), thus reducing the magnitude of the excitonic
attraction. The measurement of the interlayer exciton energy
under the influence of a parallel magnetic field is equivalent to
measuring its energy-wave vector dispersion.

The primary result of the comparison between theoretical
calculations and the experiments of Ref. [18] is shown in
Fig. 1 (details given below). The comparison shows that
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the energy of the hard exciton does indeed nicely correlate
with the interlayer chemical potential difference eV, that
produces the maximum current, and also accurately captures
the observed dependence on the parallel magnetic field.

Itis indeed possible to add an electron and a hole into lower-
energy states, which take advantage of the correlations of the
background FQH state. As an illustration, we consider another
exciton, called the “soft” exciton, made of a soft electron and
a soft hole. The soft electron is the lowest-energy state that has
the quantum numbers of an electron, represented as a bound
complex of (2n £ 1) fractionally charged CF quasiparticles for
the n/(2n £ 1) FQH state. Similarly, a soft hole is represented
as abound complex of (2n £ 1) CF quasiholes. The internal CF
structure of the soft electron or soft hole is determined uniquely
within the CF theory. In Fig. 1, we also show the energy of the
soft exciton as a function of density and By,. Because the soft
exciton is of a very large size, its energy is largely insensitive
to the parallel magnetic field. The comparison with experiment
in Fig. 1 shows that the soft exciton is not relevant to the peak
current. We do not see any signature of the soft exciton in the
experimental data, which we attribute to the smallness of the
tunneling matrix element for this rather complex object.

We also revisit the issue of the spin polarization of the
CF Fermi sea, specifically, the determination of the critical
Zeeman energy above which the CF Fermi sea is fully
spin polarized. This is motivated by the recent experiment
of Eisenstein er al. [18] where they find a change in the
behavior of the onset tunneling gap as a function of the
parallel magnetic field, which they interpret as transition into
a fully spin-polarized state. An earlier calculation by Park and
Jain [27] had estimated the critical Zeeman energy for the CF
Fermi sea but did not take into account corrections due to finite
quantum well width and Landau level (LL) mixing. Using a
fixed phase diffusion Monte Carlo method, we incorporate
both of these corrections and find, as shown in Fig. 2 (details
given below), that the theoretical critical Zeeman energy is
reduced by roughly a factor of 2, bringing theory into better
agreement with the experiment of Eisenstein ef al. [18].

Finally, we predict that the exciton energy has a substantial
dependence on the spin polarization of the state. For example,
as seen in Fig. 9, our calculations show that the energy of the
exciton jumps up by a factor of ~2 at v = % when the system
goes from a fully polarized state into a spin-singlet state. This
increase can be attributed to the fact that for the spin-singlet
state the electron and the hole are more spatially localized than
for the fully spin-polarized state (because the Pauli repulsion
is less effective in the spin-singlet state), thus enhancing E.
and Ey. The bilayer tunneling experiments may thus provide
a new method for studying spin-polarization phase transitions
in FQH effect.

We provide in this paper a quantitative account of the
observations (i)—(iv) listed in the leading paragraph of this
paper. We are not able to obtain a quantitative understanding
of the small gap that marks the onset of transport in the I-V
plot, nor of its dependence on the spin polarization of the state,
although we do make speculations for the underlying physics.
We also do not understand the origin of peak splitting at and
near v = %

The plan of the paper is as follows. In Sec. II, we define the
hard and the soft excitons and discuss their relevance to the
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FIG. 2. The critical Zeeman energy oSt = ES™/(e?/€l) above
which the v = % CF Fermi sea is fully spin polarized. The energies
are quoted in units of e?/el where € is the dielectric function of
the host semiconductor and !/ = /lic/eB, is the magnetic length.
The red dashed line is the variational Monte Carlo (VMC) result
for a zero-width system with no LL mixing; the dashed black line
includes corrections due to finite width but not LL mixing; and
the solid blue line depicts diffusion Monte Carlo (DMC) result
that includes corrections due to both LL mixing and finite width.
The latter two results are obtained for a quantum well of width
18 nm. The experimental data are taken from Eisenstein et al. [18]
(magenta stars), Finck et al. [25] (magenta diamonds), and Giudici
etal. [26] (magenta square). All results are for aquantum well of width
w = 18 nm. The lower axis shows the electron density, whereas the
LL mixing parameter k = (e*/el)/(fiw.) is shown on top, assuming
parameters appropriate for GaAs.

tunnel current. In Sec. III, we show theoretically calculated
values and compare with experiment. In Sec. IV, we calculate
the critical Zeeman energy beyond which the CF Fermi sea
becomes fully spin polarized and compare it to experiments.
The paper is concluded in Sec. V.

II. TUNNELING AND INTERLAYER EXCITONS
A. Interlayer tunnel current

We consider the tunneling Hamiltonian
Hiamnel ~ W1 (0)¥5(0) + Hee., &)

where Wg(r) is the LLL-projected electron annihilation oper-
ator on the right layer and \I/I(r) is a LLL-projected electron
creation operator on the left layer. We have assumed that
tunneling from a given point occurs to a point directly across,
which has the highest tunneling amplitude. (In the presence
of an additional in-plane magnetic field, tunneling occurs
to a laterally displaced point, as discussed in more detail
below.) We have also assumed that the system is translationally
invariant, and therefore the tunnel amplitude does not depend
on the position. The use of the LLL-projected operators is
appropriate when the energies of interest are small compared
to the cyclotron energy, so the higher LLs are not relevant.
Following the standard many-body methods [28,29], the tunnel
current at voltage V is given by

1V) ~ > |(we | ] ) Fr0)Wo) '8 (EZ, — V)., (3)

PHYSICAL REVIEW B 95, 195105 (2017)

where W is the bilayer ground state. The sum is over all
interlayer exciton eigenstates W, labeled by «, which involve
atransfer of an electron from one layer to the other. The exciton
energy EY, is defined relative to the bilayer ground-state energy
and includes intralayer as well as interlayer interaction. We
also set the temperature to zero, which is a good approximation
given that the temperatures in the relevant experiments are
much smaller than the energies of interest.

If one assumes that the interlayer interaction is negligible,
then the above expression can be cast into a perhaps more
familiar form

eV
I(V)~ / dE A7 (E)AR(E — V), (@)
0

where the spectral functions for each individual layer are de-
finedas A~(E) = Y, (m|¥1(0)|0)|*8(E — E,,) and A<(E) =
Zn<n|\ll(0)|0)|28(E + E,), where |n) are the eigenstates of
the single-layer system with N — 1 particles, |m) are the
eigenstates of the single-layer system with N + 1 particles,
and E, and E,, are their energies measured with respect to the
ground-state energy of the N particle system. Equation (3) is
more useful when the attractive energy between the electron
and the hole in the two layers produced due to tunneling is not
negligible (as is seen to be the case below).

From Eq. (3), it is clear that at a voltage V, the interlayer
excitonic states which have E.x = eV and a nonzero overlap
with \TJZ(O)\IIR(O)I\IJO) contribute to the tunnel current. For
a Landau Fermi liquid, the interacting ground state is not
explicitly known and the calculation of the relevant matrix
elements and exciton energies proceeds through the standard
perturbative treatment of the interaction. Such a perturbative
treatment may be performed for the FQH effect as well
within the Chern-Simons formulation, but that formulation is
valid only for low-energy long-wavelength physics whereas,
as seen below, the interlayer tunneling probes short-distance
high-energy behavior. Fortunately, the explicit knowledge of
accurate wave functions for the ground states of various
incompressible states and the CF Fermi sea allows us to make
progress. While an evaluation of the full line shape of the I-V
curve is a complicated task within our approach, we are able to
identify the exciton responsible for the peak current and give
a quantitative account of the phenomenology associated with
1t.

Below, we consider two specific (interlayer) excitons. The
so-called “hard” exciton, defined below, is identified with
the peak current. The “soft” exciton represents a low-energy
exciton in which the electron and the hole are represented as
complexes of excited composite fermion particles or holes.

In what follows below, we shall assume the system is in
a regime where the ground state does not involve interlayer
correlations. In other words, we assume that the FQH/CF
Fermi sea state in each layer is unaffected by the presence
of the other layer. (See Refs. [7,30] for bilayer FQH states
that involve interlayer correlations.) We will also concentrate
on incompressible FQH states because these are easier to deal
with theoretically than the % CF Fermi sea, and approach the
CF Fermi sea along the sequence v = n/(2n + 1). Our analysis
of the CF Fermi sea is aided by our finding below that E is
not particularly sensitive to the filling factor.
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The evaluation of Eq. (3) by the standard perturbative
methods of many-particle theory is not feasible, as the physics
of the FQH state is nonperturbative. Fortunately, we have an
excellent quantitative understanding of the various FQH states
as well as the % state through the CF theory, which will allow
us to perform detailed microscopic calculations.

B. Hard exciton

We define the interlayer exciton \TJz(O)\IIR(O)WO) as the

“hard” exciton. It consists of two parts. The operator \PZ(O)
creates in the left layer an electron which is uncorrelated with
the background state except for Pauli exclusion. This is the
smallest size object in the background of the given ground
state that has the quantum numbers of an electron. Hence, the
adjective “hard.” In the disk geometry, the wave function of
the hard electron at the origin is given by

Wi (r = 0)|Wo) ~ cj| W), )
where c(T) creates an electron in the state with angular
momentum zero. A hard hole is similarly given by cy|Wy).

If the hard exciton \TJZ(O)\PR(O)NJO) were an eigenstate,
then the tunnel coupling in Eq. (3) would be the largest for
the hard exciton. In general, one may expect largest matrix
elements for tunneling into eigenstates with energy close to
the hard exciton. We therefore find it natural to identify the
energy of the hard exciton with the voltage V;,.x at the peak
current. This identification is supported below by a detailed,
quantitative comparison between theory and experiment.

We shall use for our calculations the spherical geome-
try [31] where electrons are confined to move on the surface
of a sphere with radius R. A magnetic monopole of strength
Q is located at the center, producing a total flux of 2Q¢g and
a radial magnetic field B = 2Q¢y/4m R?. The Hamiltonian is

1 .
H=s 2,: [~iiV; +eAT) +V(R),  (6)

where the vector potential is A = —Z‘;R% cotA¢ in the Haldane
gauge. The single-particle eigenstates of this Hamiltonian
are described by the monopole harmonics Y ;,, where | =
|01,10] + 1, ... is the orbital angular momentum and m =
—I,—1+1,...,] is the z component of the orbital angular
momentum. Different angular momentum shells are the LLs.
Ignoring spin, the degeneracy of each LL is equal to (2/ + 1),
increasing by 2 for each successive shell.

The electron creation operator in the spherical geometry is
given by

TR =D Y0, (Qchg,- ™)

where €2 is the position of the added electron and Y, is the
LLL single-particle wave function

YQQm(Q) = [NQ(2Q,Q — m)]l/QO—muQ+in (8)

with spinor coordinates u = cos %ei¢/2, v = sin %e”"f’/z, and
Ng = (20 + 1)/47. For simplicity, we add an electron at the
north pole of the sphere, which is denoted as Q2 = Q (u =

- . .. t
1, v = 0). Now, creation operator simplified to ./ NQCQQQ.
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Application of cz) oo to a spinless ground state [Wy) leads to
the (un-normalized) wave function for the hard electron
whrdQ, ..

SQN41) = AY 000 (Qn+1)Wo(R21, ..., 2N)],

€))

where A denotes antisymmetrization over all the coordinates.
For a spinful state, the above antisymmetrization should
operate only on the coordinates with the same spin as the added
electron. Since we start with the ground state with L = 0 and
add an electron with [ = m = Q, this hard electron state has
a total angular momentum L = |M| = Q where M is the z
component of the orbital angular momentum.

A hard hole at the north pole is created similarly by
application of the electron annihilation operator W(Q) =
JFQCQQQ. The wave function is obtained by replacing one
of the coordinates with the north pole coordinate Q:

WL Qn) = Yo, .., Q1L Q). (10)
Note that for a spinful state, the coordinate being replaced
should have the same type of spin as the hard electron as we
assume spin is conserved during tunneling. The hard-hole state
alsohas L = |M| = Q. Figure 3 shows the density profiles of
hard electrons and hard holes for different spinful states at
V= g and %

To calculate the energy of the hard exciton, we need the
ground-state wave function Wy. We will calculate various
quantities within the CF theory [10,12], which maps the
interacting electrons at filling v to noninteracting CFs (bound
states of one electron and 2p vortices) at filling v*, where
v and v* are related by v = v*/2pv* = 1). FQH effect at
v=n/(2pn £ 1) is explained as the integer quantum Hall
effect of CFs at v* = n. We will in general consider spinful
electrons, and take n = n4 + n , where n, is the number of
filled spin-up A levels (CF LLs), and n, is the number of filled
spin-down A levels. The wave function for the FQH ground
state (suppressing the spin part) is given by [10,12,32]

2
W, /2pntt) = PLLL® 4, Potn, P17 a1

Here, @, is the wave function for n-filled Landau levels of
independent fermions, ®_, = [®,]*, and P denotes LLL
projection. We label the spinful states as (n4,n)). In the
spherical geometry, a system with N particles at monopole
strength Q reduces to composite fermions at a reduced
effective monopole strength Q* = Q — p(N — 1); the wave
functions ®4,, and @4, at the right-hand side of Eq. (11)
correspond to Q*. From the standard CF theory, a relation
between Q*, n4, n and the particle numbers of each spin (N4
and N)) is derived as

Q* = (Ny —n3)/2ny = (Ny —n})/2n,. (12)

With this, we can write the wave functions
qunT(Ql ,Qz, . ’QNT) and qum(QNT-H’ . ,QN) at Q*, and
perform the LLL projection in spherical geometry [12,33,34]
for Eq. (11). We can then evaluate the Coulomb energy of a
ground state from Eq. (11) and the energies of the hard exciton
from Egs. (9) and (10) using Monte Carlo method [35].
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FIG. 3. Lower panels show the density profiles in unit of py = 1/(27¢2) as a function of the cord distance r/I for hard electrons (red lines)
and hard holes (blue lines). The results are shown for filling factors v = % and %, where we consider both the fully spin-polarized states labeled
(2,0) and (4,0), and the spin-singlet states labeled (1,1) and (2,2). The system sizes are N = 44-50. The corresponding 3D density profiles
(assuming planar geometry) of the hard hole and hard electron are shown in the top and the middle panels.

C. Soft exciton

We now ask what is the lowest-energy exciton that has

a nonzero matrix element with \Ilz(O)\iJR(O)lllJo). We can
identify this exciton within the CF theory, to the extent that
we can neglect the interlayer interaction energy of the electron
and the hole.

The lowest-energy excitations of a single-layer FQH state
are excited composite fermions or the CF holes they leave
behind. It is possible to construct a low-energy ‘“electron”
from a combination of such excited composite fermions [36].
Of relevance to the current problem is the excitation that has
the same quantum numbers as the hard electron. Specifically,
the excitation should have the same total angular momentum
L =|M|= Q as the hard electron. Because the excited
composite fermions carry a fractional local charge equal to
1/(2pn 4 1) of an electron charge, one needs to consider a
collection of 2pn 4+ 1 composite fermions in excited AL’s
to produce an excitation with the charge of an electron.
Reference [36] studied the problem of how these excited
composite fermions arrange themselves in various AL’s to
produce such an excitation, and showed that the lowest-energy
state can be identified uniquely. We call this lowest-energy
excitation a “soft” electron. For partially spin-polarized states,
the spin-up soft electron consists of 2pny + 1 spin-up and
2pn, spin-down composite fermions in the excited AL’s;
the AL occupations of composite fermions can again be
determined uniquely for the lowest-energy state. Specifically,
for p =1, a soft spin-up electron consists of (n4 + 1) and
n4 spin-up composite fermions in the lowest two unoccupied
spin-up AL’s [namely, n4th and (n4 + 1)th spin-up ALs],
and n spin-down CFs in each of the lowest two unoccupied
spin-down AL’s, with all the composite fermions occupying

the largest available m orbitals in each AL. A spin-up “soft”
hole can be similarly defined. It consists of (n4 +2) and
(ny — 1) CF holes in the top two occupied spin-up AL’s,
and (n4 + 1) and (n4 — 1) CF holes in the top two occupied
spin-down AL’s, again in the largest m orbitals. Figures 4
and 5 show some examples of the lowest-energy CF complexes
corresponding to soft electron and soft hole.

soft
electron

soft
hole

FIG. 4. Schematic picture for the soft electron and the soft hole
in terms of CF occupation for the fully spin-polarized state at v = %
The composite fermions colored with green make a soft electron,
whereas the CF holes colored in red make a soft hole. A total of
five excited CF particles or holes are needed to give a total charge
of magnitude 1. These are the lowest-energy excitations with the
quantum numbers of an electron and a hole. We have depicted a finite
system for illustration, but the structure remains the same for larger
systems.
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soft
electron

AT T

spin up spin down

FIG. 5. Schematic picture for the soft electron and the soft hole
of the spin-singlet state at v = % The composite fermions colored
with green make a soft electron, whereas the CF holes colored in red
make a soft hole. As in Fig. 4 we have a total of five excited CF
particles or holes, but three of them with spin up and two with spin

s o1
down, to produce a net spin 3

While the soft excitons are the lowest-energy excitons
which have a nonzero matrix element with the hard exciton
\TJZ(O)\IJR(O)PDO), they are much more spread out than the
hard excitons (see Figs. 3 and 6). As a result, they are
expected to have much lower tunneling amplitude, especially
for states n/(2n + 1) for large n. This has been confirmed by
explicit calculation [36] which shows that the overlaps of a
hard hole and a soft hole for v = % %, Z, and ;—‘ are ~1.0,
0.52, 0.08, 0.015, whereas the overlaps of a hard electron
and a soft electron for v = %, %, and % are ~0.3, 0.03, and
0.005 in the thermodynamic limit (all numbers are for fully
spin-polarized states). As an interesting aside, even though the

v=4/9
v=4/9 2,2
(4,0) '
v=4/9 v=4/9
02\ _ 4 02\ _ 40
0.1t (4.0 0.1 (2,2)
0 0
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FIG. 6. Density profiles for soft holes (top row) and soft electrons (middle row) for fully spin-polarized and spin-singlet states at v =
and g. These correspond to bound complexes of composite fermions, as shown in Figs. 4 and 5 for v = % The bottom panels show the lin

plots for the densities.
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energy E. + Ey, for the soft exciton is lower than that of the
hard exciton, addition of an electron-hole interaction term E._p
can reverse their ordering, because E.j is more negative for
the hard exciton than for the soft exciton. Please see the next
section for the detailed definition of E., E},, and E..

If we do not insist on angular momentum conservation
during tunneling (which is strictly valid only in the absence
of disorder), then an even lower-energy exciton becomes
available consisting of 2pn 4 1 far separated quasiparticle-
quasihole excitons. We believe it to be unlikely that the
electron tunneling term in the Hamiltonian would couple to
such excitons in a significant fashion, and therefore do not
consider them.

III. EXCITON ENERGY: CALCULATION AND
COMPARISON WITH EXPERIMENT

As noted in the Introduction, the exciton energy Ec is a
sum of three parts:

Eex = (Ee - Egs) + (Eh - Egs) + Ee-h =A+ Ee-h’ (13)

where E./Ey are the energies of the state with an additional
electron/hole, and E. is attractive interaction between them.
We have defined the “bare” gap A, namely, the exciton energy
without including the interaction between the electron and the
hole. Given the density profiles of an electron [p.(r)] and a
hole [p;,(r)] at the center of a disk, the interaction term can be
evaluated as

E.q =
‘ (r; — o) + d?

drydr,,

@0

2/5
)

v=2/5 v=2/5
0.4t (2,0) o1t (1,1)

0 0

< 0.1 < 01
= =

-0.2 -0.2

-0.3 -0.3

~0.4 -0.4
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where d is the distance between the two electron-gas layers
and € is the dielectric constant of the material.

Farallel magnetic field. The above equation is appropriate
when the electron tunnels perpendicularly across the barrier.
When a parallel magnetic field B) is added to a preexisting
perpendicular field B, the tunneling electron acquires a
“momentum boost” 7ig due to the Lorentz force associated
with By, with ¢ = ed By //i. This momentum boost causes the
electron to tunnel in a nonperpendicular direction, leading to
a lateral shift in the location of the tunneled electron. Since
the single-particle wave function in Landau gauge is centered
aty = k.22, where ¢ is the magnetic length, the shift distance
canbe calculated as s = qﬁz =d %. Therefore, the interaction
term is modified to

o e’ / pe(|(ry — s)on(lr2l)
e-h — —
€ (r; — rp)? +d?

dridr;. (15)

In Sec. IIl, we will show that this E., dependence on Bj
quantitatively explains the experimental finding that Vi
shifts to higher bias voltages with increasing parallel magnetic
field.

To evaluate the exciton energy Ex in Eq. (13), we calculate
the energies E, Ee, Ep as well as the density profiles using the
microscopic theory of composite fermion. We use the standard
LLL projection method [33,34] and evaluate various integrals
using the Monte Carlo method. We also assume that the wave
functions of the hard and soft electron and hole are not modified
significantly due to the interlayer interaction.

FQH experiments are generally performed on GaAs-
Al,Ga;_xAs heterojunctions and quantum wells. These struc-
tures have nonzero transverse width, which can lead to
quantitative changes to observables. In our numerical compu-
tation, we consider an effective two-dimensional interaction
evaluated from the transverse wave function £(z):

ety _ € HEDREDE
V&) = c /dm /de 2+ (21 — 2] (16)

where z; and z, denote the coordinates in the transverse
direction, and r = \/(xl — x2)? + (y; — y2)? is the distance on
the 2D plane. Vf(r) approaches the ideal 2D interaction e? /er
at long distances, but is softened at short distances. We obtain
&(z) by solving the 1D Schrodinger and Poisson equations
self-consistently [37] for a zero-magnetic-field system with
different geometries and charge densities. The local density
approximation [37] is used.

We also neglect the effect of the parallel magnetic field
on the transverse wave function in what follows below.
The justification is that for the experimental parameters of
interest here, the finite-width corrections are actually small,
changing the exciton energies by only a small amount (~10%),
presumably because of the relatively small quantum well width
w = 18 nm and small densities. This suggests that the changes
in the transverse wave function due to any parallel magnetic
field will not cause significant correction to the calculated
energies. There is another effect due to a parallel magnetic
field, namely, that the electron mass becomes anisotropic (e.g.,
see Ref. [38]), thereby breaking rotational symmetry. This
leads to excitations that are not exactly circularly symmetric.

PHYSICAL REVIEW B 95, 195105 (2017)

Experiments have shown that the effect of parallel magnetic
fields is relatively small for composite fermions than for
electrons [39], and theoretical calculations (e.g., see Ref. [40]
and references therein) show that the change in excitation
energies is small.

In the evaluation of the E., we neglect the effect of
LL mixing because it does not affect the excitations gaps
substantially [41-43]. In contrast, it has been found [44] that
LL mixing can cause substantial quantitative correction to the
critical Zeeman energies where transitions between differently
spin-polarized states occur. We will show below that the
Zeeman energy below which the CF Fermi sea ceases to be
fully spin polarized also is affected by LL mixing.

We also assume spin is conserved during tunneling. For a
partially polarized state such as (ny,n,) = (3,1) (v = g), we
will consider the two different cases in which the tunneling
electron belongs to the majority- and minority-spin species.

Figure 7 shows the energies Ecp and A = E. + E, — 2E
for both hard and the soft excitons for fully spin-polarized and
spin-singlet FQH states at v = %, g, and 1—63. The results are
shown for quantum well widths of w = 0, 18, 30, 40, and 50
nm and for a heterojunction (HJ) as a function of density. (The
width w = 18 nm is chosen to match the width of the quantum
well in the experiment of Ref. [18].) Figure 8 shows the same
energies for the partially polarized (3,1) state at v = %. (We
do not consider the soft exciton when the tunneling electron
is of minority spin species.) The total exciton energy E.x for
the ideal w = 0 system is shown in Fig. 9 for several spin
polarizations at v = %, g, and % as a function of d/I. (For
V= 1—63, we do not consider partially polarized states or the
soft exciton.) The results do not depend on density in this
case. Figures 10 and 11 show E for quantum wells of widths
w = 18 and 30 nm as a function of d/I for several densities
and spin polarizations at v = % and g. (The data points with
w > d are unphysical and therefore not shown.) For all cases,
the numbers shown are obtained by a careful thermodynamic
extrapolation of finite system results. For E. 1, we find that the
finite width makes a negligible correction, and therefore we
use the zero-width results.

The following facts are evident from these results.

(i) The excitonic attraction E., is substantial. This energy
is given by e?/ed for d large compared to the sizes of
the electron and hole density profiles. However, because the
interlayer separation is on the order of the electron/hole size,
the energy E.., does not have a simple dependence on e?/ed
and must be obtained from a detailed calculation that requires
the knowledge of the density profiles of the electron and the
hole participating in the exciton. Furthermore, the magnitude
of E.y is much larger for the hard exciton than for the soft
exciton, and brings the energy of the hard exciton below that
of the soft exciton for relatively small values of d.

(ii) Our calculation gives a quantitative account of the
dependence of E.x on the quantum well width and the density.
As one might expect, the energy E./(e?/€l) goes down with
increasing density and increasing width.

(iii) For the fully spin-polarized state, the energy E¢x for
a hard exciton is largely insensitive to the filling factor as we
go from % to g to %. This is evident by comparing the hard
exciton energies (E., and A) for fully spin-polarized states at
different filling factors in Fig. 7 for both the ideal zero-width
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FIG. 7. Different terms contributing to the energy of the excitons of spin-polarized and spin-singlet states at filling factors v = £,3, 333
the spin-polarized states are labeled (2,0), (4,0), (6,0) and the spin-singlet states are labeled (1,1), (2,2), (3,3). Left panels show the hard
and soft electron-hole interaction energy E. as a function of the distance d between two layers. Middle and right panels show the bare gap
A = E. + E,, — 2E,, which excludes the E. term, for different quantum well widths and heterojunction (HJ) as a function of density.
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FIG. 8. The electron-hole interaction E..,, (left panel) and bare gap A = E. + E}, — 2E, (middle and right panels) for partially polarized
states at v = g labeled by (3,1). The tunneling electron can have either the majority spin or the minority spin. The right panel shows that the
hard gap for a tunneling electron with minority spin is higher than that for an electron with majority spin.
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0.7

majority—spin 0.6
minority—spin

E /(e%e))

FIG. 9. The exciton energy Eex = E., + A as a function of d for ideal 2D systems (w = 0) for the hard exciton (solid symbols with solid
lines) and the soft exciton (empty symbols with dashed lines). Different filling factors and spin polarizations are indicated on the figures.

and finite-width systems. Such a behavior is consistent with
early experiments [17], and represents certain universality
between all states of composite fermions carrying two vortices.
We therefore conclude4 that we can compare our results of

hard excitons at v = § with the experiments performed at

V= % This is fortunate because while the % CF Fermi
sea is convenient for experiments (because the tunneling
for incompressible states is more strongly suppressed), the
incompressible states are friendlier to theoretical calculations.

(iv) The application of an in-plane magnetic field B causes
the electron and the hole to be laterally offset by an amount
that depends on the parallel and the perpendicular components
of the magnetic field. One therefore expects that the magnitude
of E., decreases, and thus E. increases with increasing Bj.

(v) In Fig. 1 we plot the energy of the hard exciton as a
function of the total magnetic field (under the application of
a parallel magnetic field) for parameters of the experiment
of Ref. [18] along with the experimentally observed V.
We consider the agreement to be excellent. In particular, the
behavior as a function of By is very accurately captured by
theory. The excellent agreement with experiments strongly
supports our assignment of Vi, with the hard interlayer
exciton.

(vi) We find that for FQH states, the energy of the hard ex-
citon increases substantially as we reduce the spin polarization
of the background incompressible state. The physical origin
of this increase is clear: for partially spin-polarized states, the
added electron does not avoid electrons of the opposite spin,

thus resulting in a larger Coulomb energy. This prediction can
in principle be experimentally tested by choosing parameters
where spin-phase transitions occur by application of a parallel
field.

(vii) As discussed in Ref. [18] and in the next section,
the CF Fermi sea is very likely not fully spin polarized in
the entire range of By shown in Fig. 12, and comparison
with our results obtained for fully spin-polarized states may
be questioned. However, even in the region where the CF
Fermi sea is not fully polarized, it is almost fully polarized. To
give a quantitative estimate, taking a model that assumes that
composite fermions are noninteracting, the fraction of reversed
spin, given by 0.5(1 — Ez/ES™), is less than 8% even at the
lowest Zeeman energies in the experiments of Ref. [18]. This
confirms that our calculation assuming a fully spin-polarized
Fermi sea remains a very good approximation.

(viii) For partially spin-polarized states we predict a split
peak in I-V plot with the two maxima corresponding to the
energies of the excitons resulting from the tunneling of a
spin-up and a spin-down electron. For the partially polarized
V= g state we find a difference of ~0.1 meV between the
energies of the spin-up and spin-down excitons (for typical
experimental parameters). This matches well with the splitting
seen by FEisenstein et al. [17] at v =2 — %. However, they

also see strong splittings at v =2 — % and 2 — %, where
we predict no splitting. We therefore refrain from assigning
the double-peak structure in terms of spin-up and spin-down

excitons.
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0.1

A
00

0.1
0

FIG. 10. The exciton energy E., for quantum wells of width w = 18 and 30 nm at different densities are shown for fully polarized and
spin-singlet states at v = % Energies are shown for both the hard exciton (solid symbols with solid lines) and the soft exciton (empty symbols

with dashed lines).
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(ix) We cannot identify any structure in experimental data
that may be attributed to the soft exciton. This is not surprising,
in view of our above discussion that the tunneling amplitude

0.4

o p=3.90(10"0cm?
o p=4.94
A p=6.33

s/l

FIG. 12. Comparison of the experimentally observed Vi.x in
unit of e?/el (symbols) with the theoretical energy of the hard
exciton (solid lines) for three densities. The experiment of Eisenstein
et al. [18] is performed at v = % in a system of two layers with

quantum well widths of w = 18 nm separated by a center-to-center
4

distance of d = 28 nm. The theoretical values are evaluated atv = §
but have been shown to be largely independent of the filling factor.
The evaluation of the exciton-interaction energy E.j includes the
effects of both the finite thickness of the quantum well and a lateral
shift of the tunneling electron due to the Lorentz force associated
with the parallel magnetic field Bj. The shift distance (x axis) is
equal to s = g¢> = d By /B, where g = ed B/ is the “momentum
boost” acquired due to By. The figure thus gives the “dispersion” of
the interlayer exciton as a function of the momentum ¢/; for large
ql the energy will saturate at A. Figure 1 shows the same results

converted to Vi,.x (mV) vs By (T).

of the soft electron, which is a strongly correlated collective
object, into a soft hole, also a strongly correlated collective
object, is negligible. In particular, Fig. 1 demonstrates that the
soft exciton is not relevant to the tunneling at Viax.

(x) We have assumed in our discussion that no interlayer
correlations are present in the ground state, i.e., the state in each
layer is not affected by the other layer. FQH states in which
interlayer coherence plays a crucial role can occur at v =
n/(2n + 1) [7,30] as well as at v = % [7] for relatively small
values of d /I (which depends on the density and the quantum
well width). The level of agreement between our theory and
experiments suggests that the interlayer correlations do not
substantially modify the state for the experimental parameters.

(xi) One may ask if lower-energy excitons can be obtained
if the electron spin is not conserved during the tunneling
process. Such processes are in principle possible because,
while the spin-orbit coupling is very small in the usual GaAs
systems, it is not zero. We show in Fig. 13 results for the hard
exciton for the fully spin-polarized % state where the added
electron has a reversed spin. We find that the energy of the
added spin-reversed hard electron is actually higher than that
of the spin-conserving hard electron, leading to an overall
increase in the exciton energy. The origin for the increase is
the same as that discussed above in the context of partially
spin-polarized states, namely, that the spin-reversed electron
does not Pauli-avoid the other electrons, thus resulting in a
higher interaction energy.

IV. SPIN-POLARIZATION TRANSITION
FOR THE CF FERMI SEA

Eisenstein et al. [18] have measured the voltage V at the
onset of tunneling as a function of an additional in-plane
magnetic field, and find that the behavior changes qualitatively
when the total magnetic field drops below some value. They
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FIG. 13. The excitonic interaction E.; (upper panel) and bare
gap A (lower panel) of the spin-reversed hard exciton for the fully
spin-polarized % (2,0) state. The bare gap A of the spin-reversed
hard exciton is higher than that for the spin-conserving hard exciton
(Fig. 7) while the interaction energies E. for the two are about the
same.

identify it with a transition in the spin polarization of the CF
Fermi sea. An earlier calculation [27] predicted a higher value
than that observed experimentally, which has motivated us to
revisit this issue.

The spin-phase transitions of the FQH states and the
CF Fermi sea have been extensively studied both exper-
imentally [45-59] and theoretically [27,44,60]. The spin
transition of the CF Fermi sea has also been studied in bilayer
systems [18,25,26]. A recent theoretical work [44] treated LL
mixing by a fixed phase diffusion Monte Carlo method, and
found that LL mixing has a relatively large correction on the
critical Zeeman energies where spin-polarization transitions
take place. We shall skip here the technical details of the
calculation, which can be found in Refs. [42,44,61], and show
here results for v = %

In Fig. 14, we show the calculated critical Zeeman energy
measured in units of e?/el, i.e., agt = ES'/(e?/el) above
which the CF Fermi sea is fully spin polarized as a function
of the quantum well width as well density, both indicated
on the figure itself. The top axis shows the parameter
K = (€2 /el)/(hw.), where hw, is the cyclotron energy. The

PHYSICAL REVIEW B 95, 195105 (2017)

FIG. 14. The critical Zeeman energy s = ES/(e?/el) above
which the v = % CF Fermi sea is fully spin polarized. The theoretical
results are obtained from an extrapolation of the results for v =
n/(2n + 1) given in Ref. [44] for an ideal 2D system (w = 0),
for quantum wells with width w =30 and 50 nm, and also for
a heterojunction (HJ). The lower axis shows the electron density,
whereas the LL mixing parameter « = (e*/el)/(fiw.) is shown on
top, assuming parameters appropriate for GaAs.

horizontal dashed line at a5™ = 0.022 is the theoretical result
for an ideal 2D system with w = 0 and no LL mixing [27].
The dashed lines include the effect of finite width but assume
absence of LL mixing; these are obtained using a variational
Monte Carlo (VMC) method. The solid line is calculated
by a fixed phase diffusion Monte Carlo (DMC) method, and
include the effect of both finite width and LL mixing. All of
these results have been obtained by an extrapolation of the
calculated agit at the fractions v = n/(2n + 1) which were
reported in Ref. [44]. All of the calculations are performed
within the CF theory.

Figure 2 displays results for a sample width of w = 18 nm,
which can be directly compared to the critical Zeeman
energies identified in the experiments of Eisenstein et al. [18]
(magenta stars), Finck et al. [25] (magenta diamonds), and
Giudici et al. [26] (magenta square). Theoretical results are
given for an ideal 2D system with zero width and no LL
mixing (horizontal dashed line), for a quantum well of width
w = 18 nm without LL mixing (black dashed line), and for
a quantum well of width w = 18 nm including LL mixing.
Inclusion of finite-width and LL mixing corrections brings
theoretical results into better agreement with the experiments
of Eisenstein et al. [18]. We do not understand the origin of
the larger discrepancy with the experiments in Refs. [25,26].

We end this section by stressing puzzling differences
between the dependencies of the onset voltage and Vi, on
the spin polarization of the CF Fermi sea. As noted above, the
experimental plot [18] of Vi« as a function of By, does not
show any signature of the spin transition of the CF Fermi sea,
presumably due to the fact, as noted above, that the CF Fermi
sea remains almost fully spin polarized in the entire parameter
regime of the experiment. In contrast, the onset voltage is very
sensitive to the spin polarization [18]. Furthermore, the onset
voltage decreases when the system becomes non-fully po-
larized, whereas, according to our calculations, Vi« increases
when FQH states become partially spin polarized. An explana-
tion of these features will require a quantitative understanding
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of the onset voltage, which we do not currently have. We
speculate that the sensitivity of the onset voltage on the spin po-
larization originates because when the CF Fermi sea is partially
polarized, the low-energy interlayer excitons can be more
effectively screened due to the availability of spin-flip exci-
tations.

V. CONCLUSIONS

We have given a microscopic account of the energy of
the interlayer exciton that dominates the tunneling in bilayer
fractional Hall systems. We find an excellent quantitative

PHYSICAL REVIEW B 95, 195105 (2017)

agreement with experimentally measured energy as well as
its dependence on a parallel magnetic field, and identify the
importance of various contributions to the energy.
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