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Phase diagrams of the extended Bose-Hubbard model in one dimension by Monte-Carlo simulation
with the help of a stochastic-series expansion
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In this paper, we study phase diagrams of the extended Bose-Hubbard model (EBHM) in one dimension by
means of the quantum Monte-Carlo (QMC) simulation using the stochastic-series expansion (SSE). In the EBHM,
there exists a nearest-neighbor repulsion as well as the on-site repulsion. In the SSE-QMC simulation, the highest
particle number at each site, nc, is also a controllable parameter, and we found that the phase diagrams depend
on the value of nc. It is shown that in addition to the Mott insulator, superfluid, density wave, the phase so-called
Haldane insulator, and supersolid appear in the phase diagrams, and their locations in the phase diagrams are
clarified.
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I. INTRODUCTION

Quantum many-body systems in one spatial dimension (1D)
have strong fluctuations compared with higher-dimensional
systems, and as a result, they sometimes have exotic quan-
tum phases and nontrivial phase diagrams that cannot be
obtained by mean-field theories. Recently, experiments on
ultracold atomic systems can produce controllable and ver-
satile strongly-correlated systems on an optical lattice [1].
There, the strong correlations mean large on-site and off-site
atomic interactions [2], a strong artificial magnetic field [3],
geometrical frustrations, e.g., on triangular and honeycomb
lattices [4], etc. In this paper, the phase diagram of an extended
Bose-Hubbard model (EBHM) on the 1D lattice is investigated
by means of one of the most reliable numerical methods,
i.e., the quantum Monte-Carlo (QMC) simulation with the
stochastic-series expansion (SSE) [5].

This model is expected to have a rich phase diagram
due to large fluctuations and nearest-neighbor interactions.
It is believed that the model has similar properties of spin
chain models, which are important models in condensed
matter physics. The previous studies [6] discussed that in
the case of the strong on-site interaction, the particle number
at each site is restricted to be less than two, and as a
result, the three body constraint, (a†)3 = 0, seems to appear
[7–10]. Under this constraint, the EBHM can be mapped to
a spin-1 XXZ-type model by using the Holstein-Primakoff
transformation [6,11]. From this relationship between the
EBHM and quantum spin model, one may expect the existence
of an interesting phase, i.e., Haldane insulator (HI), which
is similar to the Haldane phase in the quantum spin system
[12,13]. So far, a number of the numerical studies [14–16]
investigated the phase diagram of the EBHM in the canonical
ensemble incorporating the constraint (a†)3 = 0. In most of
these studies, the filling fraction is fixed to unity, although
some of them studied other low-filling cases. Furthermore,
we expect that real experimental set up may relax such a
three body constraint, then the mapping of the EBHM to
the spin-1 model is not necessarily applicable. Therefore, the
EBHM may have a richer phase diagram than the spin model.
In particular, the detailed phase diagram of the EBHM in
the grand-canonical ensemble is not completely understood
yet.

In this paper, we consider the grand-canonical ensemble
of the EBHM and study the phase diagram by the SSE-QMC
simulations. In fact, the SSE-QMC simulation is suitable for
the study on the grand-canonical ensemble as large system-size
calculation is possible due to less memory consumption
compared to other numerical methods, e.g., the exact di-
agonalization method. The obtained phase diagram exhibits
various phases with various filling fractions. For example, the
aforementioned HI appears not only at the unit filling but also
at the half filling.

The paper is organized as follows. In Sec. II, we introduce
the EBHM and explain the SSE-QMC simulation. Various
quantities to identify phases are introduced. In Sec. III,
results of the numerical study are presented. In the practical
simulation, the maximum number of particles at each site (nc)
and also the value of the next-nearest-neighbor repulsion (V )
are fixed. Phase diagrams in the [on-site repulsion]-[chemical
potential (i.e., average particle number)] are obtained. Results
show the dependence of the phase diagrams on the value of
nc. System-size dependence of the results are also carefully
examined. Section IV is devoted for discussion and conclusion.

II. EXTENDED BOSE-HUBBARD MODEL AND QUANTUM
MC SIMULATION WITH SSE

We start with the EBHM defined on a 1D lattice whose
Hamiltonian HEBH is given as

HEBH =
∑

a

[
−J (ψ̂†

aψ̂a+1 + ψ̂
†
a+1ψ̂a) + U

2
(ρ̂a − 1)ρ̂a

+V ρ̂aρ̂a+1

]
,

ρ̂a ≡ ψ̂†
aψ̂a, (1)

where ψ̂
†
a and ψ̂a are creation and annihilation operators of

boson at site a, respectively, and ρ̂a is the number operator.
The coefficient J represents the hopping strength, U is
the on-site interaction, and V (> 0) is the nearest-neighbor
(NN) repulsive interaction generated by, e.g., a dipole-dipole
interaction in gases loaded on the optical lattice [17,18].
In the cold atomic gas system, the above on-site repulsion
U (> 0) represents the sum of s-wave scattering interaction Us
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and on-site dipole-dipole interaction Ud ; U = Us + Ud . The
s-wave scattering amplitude Us is highly controllable by the
Feshbach resonance [19]. In practical experiments, the ratio
V/U is highly controllable by using the combination of the
Feshbach resonance and selection of spices of loaded atoms
[2,20].

The global phase diagram of the EBHM in Eq. (1) is
important, and we shall clarify the low-filling phase diagram
of the EBHM by means of the most reliable numerical
method, i.e., the SSE-QMC simulation [5]. In the SSE-QMC
simulation, the partition function is expanded as

ZEBH = Tr(e−β(HEBH−μN))

=
∞∑

n=0

1

n!
Tr(−β(HEBH − μN ))n, (2)

where β = 1/(kBT ), kB is the Boltzmann constant, T is the
temperature, μ is the chemical potential, and N = ∑

a ρ̂a .
As we are interested in the ground-state phase diagram, we
take β → large. In the evaluation of ZEBH in Eq. (2), the
particle-number eigenstates

∏
a |ρa〉, ψ̂

†
aψ̂a|ρa〉 = ρa|ρa〉, are

employed as a basis of quantum states. Then, the Hamiltonian
HEBH is divided into the diagonal part (the U and V terms)
and off-diagonal part (the J term), and Eq. (2) is re-expanded
in powers of these parts. Weight of each term in the expansion
is determined by the MC methods. The trace in Eq. (2)
can be calculated by putting intermediate states between
the Suzuki-Trotter decomposed Hamiltonians. Here, Monte-
Carlo sampling is applied for each decomposed Hamiltonian
operator. In the sampling, the loop algorithm [5] allows us to
create closed loops of transition states along imaginary time
(temperature) direction.

In this paper, we consider the case of low fillings and
restrict the Hilbert space {|ρa〉} to ρa = 0, . . . ,nc in evaluating
ZEBH in Eq. (2), where nc is the largest particle number at
each site. In the practical calculation, we first concentrate
on the case nc = 2 and 3, and later on we show results
in the case of higher nc. In Refs. [14–16], the EBHM was
studied mostly by the density-matrix renormalization group
(DMRG). There, the average particle number per site was
fixed to unity, i.e., ρ = 1

L

∑
a〈ρa〉 = 1, where L is the system

size, and the phase diagram in the (U–V ) plane was obtained.
In the present study, on the other hand, we employ the
grand-canonical ensemble and vary the chemical potential,
i.e., the average particle density, to obtain the phase diagrams,
although we focus on the low-filling region like 0 < ρ < 3
at first. As far as we know, the phase diagram of the EBHM
in the grand-canonical ensemble is a new result. By studying
the EBHM in the grand-canonical ensemble, we found that the
model has different phase diagrams depending on the value of
nc. For the case of the unit filling ρ = 1 and nc = 2, the phase
diagram of the EBHM was obtained by the DMRG methods
[21]. As we explain later on, the obtained phase diagrams by
the SSE-QMC simulation in the present study are in good
agreement with the phase diagram obtained in Ref. [21].

In the practical calculation, we put h̄ = 1, J = 1 (as the
unit of energy), and β = 200, which corresponds to a very
low temperature case [5] and employ the periodic boundary
condition. We calculated the average particle density and also

order parameters as varying the chemical potential μ for fixed
values of U and V .

Before going into the study on the EBHM, we investigated
the phase diagram of the standard Bose Hubbard model without
the NN repulsion, i.e., the V = 0 case. The results support the
accuracy of our numerical code because the well-established
phase diagram of the Bose-Hubbard model was reproduced
quite accurately.

To distinguish the phases, we measure various order
parameters. The superfluid (SF) order parameter ρs is related
to the winding number of the boson world lines and defined as
[22,23]

ρs = 1

2βL
〈(N+ − N−)2〉, (3)

where N+(N−) is the total number of the hopping term
in the positive (negative) direction that appears in the MC
simulation. In the practical calculation of ρs in Eq. (3), we
take the average of all 1D spatial configurations appearing in
the 2D plain of the 1D space and the expansion step of the
completed loop. For the 1D EBHM at large fillings, detailed
path-integral MC simulations were performed in Ref. [24], and
the Mott insulator (MI)↔ SF phase transition is observed as a
Kosterlitz-Thouless transition.

Other order parameters that identify the density wave (DW)
and the HI are the following,

GDW(�) = (−1)�〈δρa+�δρa〉, (4)

Gstring(�) = 〈δρa+�e
iπ

∑
a�k<a+� δρk δρa〉, (5)

where δρa ≡ ρa − ρ. GDW(�) is a DW correlation function to
detect the DW phase. On the other hand Gstring(�) is a string-
order correlation function, which can identify the HI phase.
(The definition of this correlation function is slightly different
from that used in the previous studies in Refs. [14–16], i.e., in
the definition δρa = ρa − ρ, we do not fix the average density
ρ to unity as we employ the grand-canonical ensemble.) A
finite value of lim�→∞GDW(�) shows the existence of the DW,
which is expected to form for large V . Finally, a finite value
of lim�→∞Gstring(�) and the vanishing DW order mean that
the corresponding state is the HI. This order is similar to the
Haldane order in the antiferromagnetic (AF) spin chain, and a
typical configuration in the HI is shown in Ref. [11]. On the
other hand, the nonvanishing DW order always accompanies
a finite string order.

III. NUMERICAL RESULTS

A. Phase diagrams for nc = 2 and 3

We first show the results of the V = 2.0 case with the
system size L = 32. Obtained phase diagrams are shown in
Fig. 1 for the nc = 2 and nc = 3 cases. There are four phases;
the MI with ρ = 1(nc = 2) and ρ = 1.5(nc = 3), SF, DW, and
the HI. For the nc = 2 case, the DW has the | . . . ,2,0,2,0, . . .〉
configuration and the HI forms in a relatively large-U region, in
which a holon exists between every two doublons as indicated
by the finite Gstring(�) [11]. It should be remarked that the nc =
2 EBHM is closely related to the spin-1 quantum Heisenberg
spin chain [11,13]. The HI corresponds to the Haldane phase in
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FIG. 1. Phase diagram of the EBHM obtained by the SSE-QMC
simulations for V = 2.0 and nc = 2 (nc = 3) in the upper (lower)
plane. There are SF (superfluid), MIs (Mott insulators), DWs (density
waves), and HI (Haldane insulator). In the case of nc = 2 and at unit
filling ρ = 1, a direct transition from the MI to HI does not take place,
instead, there is the tiny SF region. z is the number of the NN sites
and in the present case z = 2.

the spin system. On the other hand for the case nc = 3, the DW
with ρ = 1.5 appears and the | . . . ,3,0,3,0, . . .〉 configuration
is realized there, whereas the HI does not form. We have not
found the DW with ρ = 1 in the (U/J − μ/J ) plane in the
present grand-canonical ensemble calculation, although we
searched it in the low μ/J region.

Typical behaviors of the order parameters are shown in
Fig. 2. We also calculated the order parameters for the system
sizes L = 40 and 48 and verified that the phase boundaries
are stable. In the MI and DW phases, the SF density is very
low. On the other hand, there exists a small but finite SF in
the HI. Later on, we shall show that the finite SF in the HI is
a finite-size effect. [More detailed analysis of the finite-size
effect will be given after showing the results of V = 4.0.]

As Fig. 2(c) shows, the string order Gstring(�) exhibits
curious fluctuations in the SF that might stem from the
relatively large density fluctuations, and these fluctuations have
small but finite spatial correlations. This unexpected behavior
of Gstring(�) becomes clearer in the case of V = 4.0 that we
shall study shortly. We shall discuss the small but somewhat
periodic regions with a finite Gstring(�) after showing the phase
diagrams of the V = 4.0 case.

Next we show the phase diagram for V = 3.0 in Fig. 3.
Features of the phase diagrams are almost the same as that in
the case of V = 2.0, but the region of the HI is getting smaller
compared to the case of V = 2.0. Furthermore in the phase
diagram of V = 3.0 with nc = 2, in the vicinity of the DW,
there exists a state that we call quasisupersolid (qSS). We shall
discuss this state shortly.
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FIG. 2. Various order parameters for nc = 2 and V = 2.0 as a
function of μ/zJ . (a) Results for U/zJ = 0.0. (b) U/zJ = 4.0.
(c) U/zJ = 1.0.

Finally we show the phase diagram of the V = 4.0 case
in Fig. 4. In the case of nc = 2, there exists a small HI
between the MI and DW for ρ = 1. Behavior of the order
parameters used to obtain the phase diagram for V = 4.0 with
nc = 2 are shown in Fig. 5. On the other hand for nc = 3,
the phase diagram is rather complicated, i.e., the supersolid
(SS) forms between two DWs with ρ = 1 and ρ = 1.5. In
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FIG. 3. Phase diagram of the EBHM obtained by the SSE-QMC
simulations for V = 3.0 and nc = 2 (nc = 3) in the upper (lower)
plane. There are SF, MIs, DWs, and HI as in the case of V = 2.0.
In addition in the case nc = 2, there appears a phase that we call
quasisupersolid (qSS). For details, see Fig. 8. As in the case of V =
2.0 and nc = 2, the tiny SF region exists between the MI and HI at
unit filling ρ = 1.
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FIG. 4. Phase diagram of the EBHM obtained by the SSE-QMC
simulations for V = 4.0 and nc = 2(nc = 3) in the upper (lower)
plane. There are SF, MIs, DWs, and HI. qSS stands for the
quasisupersolid with a finite SF. The phase diagram of nc = 3 is
rather complicated compared to the case of nc = 2. In addition to the
ρ = 1 HI, there exists the ρ = 1

2 HI, which is discussed in Sec. IV.

the SS, a DW-like inhomogeneous state is realized, and the
average particle number is fractional 1 < ρ < 1.5. Particles
(holes) move rather freely on the base of the ρ = 1 (ρ = 1.5)
DW and as a result, the SF appears. Interestingly enough, the
phase diagram also indicates the existence of the ρ = 1

2 HI as
the order parameters in Fig. 6 show. We shall discuss this HI
in Sec. IV.

The calculations of the string order in Figs. 5(c), 6(e), and
6(f) exhibit rather curious behavior. It has a nonvanishing
value in specific parameter regions of μ/zJ , which have a
shelllike structure. Figure 7 is a blow up of Fig. 6(f). We show
the density as a function of the chemical potential and find the
step-wise behavior of the density synchronizing with the string
order. This result exhibits that a state with a finite string order
forms in the system with an even number of particles although
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FIG. 5. Typical correlation functions in the nc = 2 and V = 4.0
phase diagram in Fig. 4. (a)–(c) correspond to the lines indicated in
Fig. 4, respectively. The system size is L = 32. In calculating the
order parameters Eqs. (4) and (5), we used � = L/2. SF (superfluid),
MI (Mott insulator), DW (density wave), and HI (Haldane insulator).

in some regions no reduction of the SF is observed. This might
be a finite-size effect. See later discussion of the “finite-size
scaling” analysis of the SF. For example in the system with
34 particles, typical configurations are produced from those of
the ρ = 1 HI by adding one doublon (ρa = 2) to the system
or replacing a singleton (ρa = 1) with a triplon (ρa = 3).

Let us briefly comment on the phase that we call qSS, which
exists in the phase diagrams for nc = 2 in Figs. 3 and 4. As
the chemical potential decreases, the particle density decreases
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FIG. 6. Typical correlation functions along the line (d)–(f) in the
V = 4.0 phase diagram in Fig. 4. The system size is L = 32. In
calculating the order parameters Eqs. (3)–(5), we used � = L/2. SF
(superfluid), MI (Mott insulator), DW (density wave), HI (Haldane
insulator), and SS (supersolid). From the results in (e) and (f), we
conclude the existence of the HIs at ρ = 1

2 (μ/J � 1.5) and ρ =
1 (μ/J � 4.7).
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μ/zJ in the adjacent region of the ρ = 1 HI. L = 32. The numbers
refer to total particle number in the system. Density ρ exhibits a
step-wise behavior synchronizing with the string order. The result
indicates that a state with a finite string order forms in the system
with an even number of particle.

from the ρ = 1 DW. As a result of depletion of particles, the
DW is divided into a few parts by “domain walls”, A typical
configuration of the qSS obtained by the SSE-QMC simulation
is shown in Fig. 8. A pair of holes plays a role of a “domain
wall”. The SSE-QMC simulation shows that the GDW has
negative values. As the system is getting large, pairs of holes
(domain walls) are mobile, and as a result this state has a
finite SF as seen in Fig. 8. In the large system size limit with
keeping the density of particle constant, it is expected that the
DW order parameter tends to vanish while a small but finite
SF remains due to the mobility of domain walls. This is the
reason why we call that phase qSS.

We examined the system-size dependence of the HI and
MI phase boundaries in Figs. 1, 3, and 4. Figure 9 shows
that the phase boundaries obtained by the present SSE-QMC
simulation do not have a large system size dependence. In
the very vicinity of the tip of the HI phase, we found that
the string order gradually loses a step-wise behavior, and
simultaneously the very low SF density starts to appear. From
these behaviors of the order parameters, a clear phase boundary
was not obtained in the present simulation in the very vicinity
of the tips of the MI and HI.

We also studied the system-size dependence of the HI with
ρ = 1, which is observed in Fig. 6(f). We plot Gstring(L/2)
as a function of 1/L in Fig. 10, as a “finite-size scaling”
analysis. It is interesting and also important to see a “finite-size
scaling” of the SF and DW. See Fig. 10. From these results,
it is expected that the finite SF and DW in the ρ = 1 HI is
a system-size effect. It should be remarked here that while
the stochastic Green-function QMC simulation in Ref. [15]
exhibits a strong system size dependence of the string order in
the HI, the present SSE-QMC simulation does not have such a
strong dependence in the string order. The difference may stem
from the fact that while the Green-function QMC is applied to
the canonical-ensemble system, our SSE QMC is applied to
the grand-canonical ensemble.

The phase diagrams in Figs. 1, 3, and 4 should be compared
with the results of the previous works in which the average
density is fixed, i.e., the canonical ensemble. In Refs. [14,21],
by means of the DMRG, the (U − V ) phase diagram for the
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FIG. 8. (Upper panel) Order parameters for the qSS in Fig. 3
with L = 32. As the chemical potential decreases, the particle density
decreases and extra holes and single occupied sites are generated in
the ρ = 1 DW existing for μ/zJ > 1.6. Then the DW is divided
into smaller DWs, and the order parameter of the DW has negative
values. (Middle panel) A typical configuration generated by the
MC simulation. (Bottom panel) Order parameters for L = 48. Walls
dividing DW into smaller ones move under the MC simulations in
large system size. As a result, the state has a finite SF density. This is
the reason why we call this state qSS.

ρ = 1 was obtained. For the case of nc = 2, our results are in
good agreement with those in Refs. [14,21]. However, the SF
exists between the ρ = 1 MI and HI as in Figs. 1 and 3, whereas
the SF does not exist there in the phase diagram obtained in
Refs. [14,21]. The phase diagram of V = 4.0 with nc = 3 in
Fig. 3 is in good agreement with that obtained by DMRG in
Refs. [14–16] for ρ = 1, that is, the phase transitions from the
MI, SF, HI, and DW take place as the value of U/J decreases.
The other parts of the phase diagrams and the calculations of
the order parameters in Figs. 1–6 are new results.

B. Phase diagrams for V = 2.0 with nc = 4, 5, and 6

In the previous subsection, we studied the case nc = 2
and 3 and obtained the phase diagrams by calculating various
order parameters. In this section, we consider the system with
higher nc. By a simple application of the Holstein-Primakoff
transformation for the EBHM with the highest-particle number
at each site nc, the EBHM is mapped into a spin s = nc/2
model. This transformation connecting two models naively
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FIG. 9. System-size dependence of the phase boundaries in the
case of nc = 2. Simulations of the system sizes L = 32 and L = 48
exhibit almost the same phase boundaries for all phase transitions.
This indicates that the system size L = 32 reaches a scaling region
of the thermodynamic limit. We have also verified other cases and
obtained a similar system-size dependence.

implies that the HI phase appears in the case of an integer
s, i.e., an even integer nc [25]. Strictly speaking, however,
the EBHM is not mapped to the simple Heisenberg-type spin
model, but to a spin-s model with complicated interactions
[26]. Thus, the ground-state phase diagram conjectured by the
simple correspondence between the boson and spin models is
not necessarily correct. Moreover, the one-dimensional system
has strong quantum fluctuations. Thus, the truncation number
of the particle in the SSE, nc, may be an important ingredient
to determine the ground-state phase diagram. To this end,
we perform the SSE-QMC simulation with higher nc in this
subsection.

The obtained phase diagrams in the (U/J − μ/J ) plain are
shown in Fig. 11. The MIs with the density ρ = 1 and 2 exist in
the phase diagram as in the previous low nc case. Their location
does not change substantially from the case of nc = 3 (and
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FIG. 10. The string order (upper panel), SF (middle panel), and
DW (bottom panel) in the ρ = 1 HI as a function of 1/L. Gstring(L/2)
has a very weak system-size dependence, whereas ρs and DW tend
to vanish for L → ∞.

nc = 2). This result is plausible, as the density fluctuations
are small in the MIs. On the other hand for the DW state,
ones with the higher average density appear in the nc = 4,
5, and 6 cases, i.e., ρ = 2.0, 2.5, and 3, respectively. In the
ρ = 2.0, ρ = 2.5, and ρ = 3 DWs, the state | . . . ,4,0,4,0, . . .〉,
| . . . ,5,0,5,0, . . .〉, and | . . . ,6,0,6,0, . . .〉 form. As seen in
Fig. 11, the SS also forms between the DW and SF. However,
we could not find a HI similarly to the case of nc = 3. For
higher nc, particle number at each site can fluctuate rather
freely compared with the case of lower nc, and as a result,
the state with particle number from zero to nc appears at each
site even in the vicinity of the DW. This may be the reason
for the nonexistence of the HI. The above numerical results
also indicate that even though the system parameters are set
around unit filling, the EBHM in the grand-canonical ensemble
cannot be directly connected to the spin-1 model because the
HI phase does not exist. As a future work, to clarify the above
problem, other numerical methods, e.g., the DMRG, exact
diagonalization should be applied to the EBHM of higher nc.
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FIG. 11. Phase diagrams for V = 2.0, nc = 4, 5, and 6. Higher-
filling MI and DW appear with the SS. This result shows the nc

dependence of the phase diagram.

IV. DISCUSSION AND CONCLUSION

In this work, we studied the phase diagrams of the EBHM
with the NN repulsion by means of the SSE-QMC simulations.
We considered the grand-canonical ensemble of the system at
low fillings and found that the model has a very rich phase
diagram. In the present study, the highest particle number
at each site, nc, is a controllable parameter as well as the
parameters in the Hamiltonian and the filling factor. Then, we
obtained the phase diagrams for the systems without fixing
the filling factor. This is in strong contrast with the previous
studies, in which the EBHM was investigated in the canonical
ensemble with specific fillings and also with a small highest
particle number such as nc = 2 and 3. In this sense, we have
obtained the global and detailed phase diagrams compared to
those of the previous works.

In the SSE-QMC simulation, the measurement of the order
parameters clarifies phase boundaries and clearly exhibits
physical properties of each phase, and the phase diagrams
have very small system-size dependence. Most of the results
are in good agreement with the previous works, which study
the EBMH in the canonical ensemble at the unit filling. Besides

the MI, SF, and DW states, there exist the HI and SS. We also
found rather strong nc dependence of the phase diagram. This
result seems important for the experimental set up to observe
the phases in the 1D EBHM, in particular, the HI.

We used the string order parameter Gstring(L/2), defined as
in Eq. (5), for searching HIs at various filling factors. For the
system of integer fillings, this quantity is often employed and
it has a real value, whereas for noninteger fillings, Gstring(L/2)
can be a complex number. However, our numerical study
reveals that it is always real. One may wonder what a finite
value of Gstring(L/2) physically means for fractional fillings.
For the case of the half filling ρ = 1/2, the numerically
observed positive value of Gstring(L/2) indicates that certain
specific configurations of the boson are realized there. It is also
interesting and important to examine the “finite-size scaling”
of Gstring(L/2), ρs, and GDW(L/2) for the ρ = 1/2 state. The
results are shown in Fig. 12. It is obvious that the SF density
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FIG. 12. String order (upper panel), SF (middle panel), and DW
(bottom panel) in the ρ = 1/2 HI-DW state. SF density tends to
vanish for large L. On the other hand, both the string and DW orders
have a finite value for large L. However, the string order is larger than
the DW order, and this behavior indicates that an unexpected state
exists for ρ = 1/2, i.e., the HI-DW state.
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FIG. 13. Typical configurations of the ρ = 1/2 HI-DW obtained
by the SSE-QMC simulation. In the DW-like background, a local
excess of particle is compensated by a pair of holes. Distance between
them can be considerably large as the MC simulation indicates. The
DW is weakened by these fluctuations.

ρs tends to vanish for large L. Gstring(L/2) and GDW(L/2)
both keep a finite value for large L, whereas numerically
Gstring(L/2) ∼ 2 × GDW(L/2). This strong enhancement of
the string order compared with the DW order indicates that the
ρ = 1/2 state is not the genuine DW nor the genuine HI, and
we dare to call it ρ = 1/2 HI-DW. [As Figs. 5(a) and 6(d) show,
Gstring(L/2) � GDW(L/2) in the DW.] Snapshots obtained in
the SSE-QMC simulations are shown in Fig. 13. In the DW-like
background, a local excess of particle is compensated by a
pair of holes, and the DW is weakened by these fluctuations

as distances between a particle pair and a hole pair can be
considerably large. The HI-DW may connect with the ρ = 1/2
DW via a phase transition or a crossover as the NN repulsion
V increases.

We have recognized that Gstring(L/2) always has a non-
negative real value at other fractional fillings. This seems to
indicate that certain chosen configurations are realized in the
states with Gstring(L/2) > 0. This problem is under study.

In recent papers, we pointed out that some parameter
regions of the EBHM are regarded as a candidate for the
quantum simulator of a gauge-Higgs model on a lattice [24].
This observation is quite important as the dynamical properties
of the lattice gauge theory is a very difficult problem and the
quantum simulation using ultracold atomic gases can study the
time evolution of the system. It is also important to see how
exotic states of the EBHM, e.g., the HI, are understood from
the gauge-theoretical point of view.

Therefore, let us consider a gauge-theoretical picture of the
HI phase that exits in the EBHM with small particle density. As
we explained in the previous works [24], the density fluctuation
δρa plays a role of an electric field in the gauge theory. Finite
Gstring(�) means that holons and doublons can move rather
freely in the sea of the average particle density but their spatial
order is such as (. . . ,holon, doublon, holon, doublon, . . .),
where distances between a holon and adjacent doublons (and
a doublon and adjacent holons) are arbitrary. In the gauge
theoretical language, doublon and holon correspond to Higgs
particle and antiparticle, respectively. The finite string order
lim�→∞Gstring(�) 
= 0 means that particle and antiparticle
can separate for a large distance, but the above mentioned
restriction on the mutual configuration must be satisfied. From
the above observation, one can say that the HI state is a new
state of the gauge theory.
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