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We have developed a generalized electronic phase separation model of high-temperature cuprate supercon-
ductors that links the two distinct energy scales of the superconducting (SC) and pseudogap (PG) phases via a
charge-density-wave (CDW) state. We show that simulated electronic-density modulations resembling the charge
order modulations detected in cuprates intertwine the SC and charge orders by localizing charge and providing
the energy scale for a spatially periodic SC attractive potential. Bulk superconductivity is achieved with the
inclusion of Josephson coupling between nanoscale domains of intertwined fluctuating CDW and SC orders, and
local SC phase fluctuations give rise to the Fermi arcs along the nodal directions of the SC gap. We demonstrate
the validity of the model by reproducing the hole-doping dependence of the PG onset temperature T ∗, and the
SC transition temperature Tc of YBa2Cu3Oy and Bi2−yPbySr2−zLazCuO6+δ . The results show that the periodicity
of the CDW order is controlled by the PG energy scale, and the hole-doping dependence of the SC energy gap is
controlled by the charge ordering.
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I. INTRODUCTION

Experiments using different methods have established the
occurrence of short-range, incommensurate static charge-
density-wave (CDW) correlations in a variety of high-
temperature superconducting (SC) cuprates [1–18]. With the
exception of La-based cuprates in which CDW order is
accompanied by spin order, the charge order (CO) observed
in different cuprate families appears to be similar. In zero
magnetic field, the CDW order is essentially two dimensional.
The wave vector of the CDW order is parallel to the Cu-O bond
directions along the a and b axes, and decreases in magnitude
with increased charge doping. While much of the experimental
data cannot distinguish between checkerboard (bidirectional)
or alternating stripe (unidirectional) CO, resonant x-ray
scattering (RXS) experiments on underdoped YBa2Cu3O7

(Y123) [7] and an analysis of scanning tunneling microscopy
(STM) data for Bi2Sr2CaCu2O8+δ [19] indicate that the
inter-unit-cell character is one of segregated or overlapping
unidirectional charge-ordered stripes. Furthermore, it has been
found that the CDW order possesses a d-wave intra-unit-cell
symmetry with the modulated charge primarily on the O-2p

orbitals linking the Cu atoms [8–10]. Since the SC order
parameter also has d-wave symmetry, this local charge or
bond order symmetry supports theoretical proposals that
suggest the charge and SC order parameters are intimately
intertwined. Some attribute the d-wave CO symmetry to
quasiparticle scattering by antiferromagnetic (AF) fluctuations
near a metallic quantum critical point, which also gives rise
to the d-wave superconductivity [20–22]. Alternatively, it has
been proposed that CDW order in cuprates is a consequence
of a pair-density wave (PDW) phase, in which the SC order
parameter is periodically modulated in space due to the Cooper
pairs having finite momentum [23–26].
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The aim of our work is to establish a quantitative link
between the inter-unit-cell dependence of the CO resolved by
RXS and imaged in real space by STM, and the energy gaps of
the pseudogap (PG) and SC phases. Our model is based on an
intrinsic propensity for mesoscale electronic phase separation
below an onset temperature TPS that follows the hole-doping
dependence of the PG temperature T ∗. This picture is similar
to that previously advocated by Fradkin and Kivelson [27].
We presume the onset of fluctuating CDW order domains
at T ∗, where STM measurements on Bi2Sr2CaCu2O8+δ have
detected the emergence of charge stripes that extend into the
overdoped regime [28]. The short-range static CO that has
been observed by x rays at a lower temperature TCO � T ∗
is assumed to be confined to local regions where fluctuating
CDW order has become pinned by disorder. Contrary to
this assumption, we note that in HgBa2CuO4+δ (Hg1201)
CDW order observed by x-ray scattering vanishes already
well below optimal doping [18]. This seems to be due to
the presence of pairs of interstitial oxygens within the same
unit cell specific to Hg1201. Although not captured by our
model, it is also important to recognize that the PG region
marks the onset of an intra-unit-cell magnetic order [29,30],
a true phase transition that modifies ultrasonic waves [31],
an increase in antiferromagnetic correlations [32] and global
inversion-symmetry breaking [33].

Another important ingredient of our model is the experi-
mental observation that the CDW periodicity is independent
of temperature, leading us to surmise that the CDW periodicity
is set by the onset of the PG at T ∗. This implies that the CDW
order is a consequence of the PG formation. At low doping
(p � 0.12) where TCO decreases with decreasing doping,
CDW order is potentially suppressed by a slowing down of
spin fluctuations and a tendency toward static SDW order.
Compatible with experimental signatures of pairing or SC
correlations persisting above Tc [34–40], our model shows
that CDW order in the PG regime may induce SC domains that
grow and connect to establish bulk superconductivity at Tc.
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FIG. 1. Contour plots of the electronic density p(r) calculated on a square lattice of 100 × 100 unit cells, with average charge densities of
p = 0.12 in (a) and p = 0.16 in (d). The charge order wavelengths are λCO = 3.15a0 (a) and λCO = 3.49a0 in (d), corresponding to the charge
order wave vectors determined by momentum-resolved x-ray probes [4,5,7]. (b), (e) Corresponding spatial dependence of the free-energy
potential VGL(r). The periodicity of the potential manifests in the periodic modulations of the charge density. (c), (f) Results of calculations of
the d-wave pairing potential �d (r) displayed for a single domain over a 28 × 28 unit cell area (in meV unit). The spatial average value of the
pair potential 〈�d (r)〉 is 25.5 meV at p = 0.12 in (c), and 43.8 meV at p = 0.16 in (f).

II. SIMULATION OF THE CHARGE-ORDERED STATE

Our approach is to first simulate spatial modulations of the
electronic structure resembling experimentally resolved inter-
unit-cell CO modulations, using the time-dependent Cahn-
Hilliard (CH) differential equation [41]. Besides generating
the desired CDW order, the CH approach yields the associated
free-energy modulations, which we assume scales with a
periodic attractive potential in the subsequent SC calculations.
The starting point is the introduction of a time-dependent
conserved order parameter associated with the local electronic
density, u(r,t) = [p(r,t) − p]/p, where p is the average
charge density and p(r,t) is the charge density at a position r
in the plane. The Ginzburg-Landau (GL) free-energy density
of the system is of the form

f (u) = 1
2ε|∇u|2 + VGL(u,T ), (1)

where VGL(u,T ) = −α[TPS − T ]u2/2 + B2u4/4 + . . . is a
double-well potential that characterizes the electronic phase
separation below TPS. The parameters α and B are constants,
and ε controls the spatial separation of the charge-segregated
patches. The CH equation obtained from the continuity
equation for the local free-energy current density J = −M∇μ

(where M is the charge mobility and μ = ∂f/∂μ is the
chemical potential) is given by Eq. (A1). Demonstrative
solutions of this equation (i.e., charge order simulations) are
displayed in Appendix A. For each time step the CH equation
is solved for u(r,t), and p(r,t) is obtained. We adjust the

parameters of the free energy such that when the periodicity
of p(r,t) matches that of the experimentally observed CDW
order, the calculation is stopped and the solution is taken to
be the spatially dependent static electronic density p(r). Since
the method described here does not generate an intra-unit-cell
CO symmetry, it is applicable to systems that have SC pairing
and CO symmetries other than d-wave.

Figure 1(a) shows a simulation of alternating planar
domains of 90◦-rotated charge stripes with an intra-domain
periodicity compatible with RXS data for detwinned Y123
at p = 0.12 [8]. Within each domain the CO wavelength is
λCO = 3.15a0, where the in-plane lattice constant is a0 =
3.85 Å. The CO wavelength in Y123 measured by various
x-ray methods increases with increased hole doping [4,5,42].
We have used such data to generate similar CO striped patterns
for Y123 at p = 0.16 [Fig. 1(d)] and p = 0.09.

STM differential conductance maps for optimally doped
(Tc = 35 K) and underdoped (Tc = 32 K and Tc = 25 K)
Bi2−yPbySr2−zLazCuO6+δ [(Pb, La)-Bi2201] samples [11,12]
exhibit checkerboard patterns (indicative of the simulta-
neous presence of both CDW domains) with 6.2 ± 0.2a0,
5.1 ± 0.2a0, and 4.5 ± 0.2a0 unit cell (a0 = 3.83 Å) peri-
odicity, respectively. The increase in the CO wavelength
with increased hole doping agrees well with x-ray scattering
and STM measurements on Bi2201 without cation substitu-
tions [4]. We have used the following formula from Ref. [43] to
calculate the average number of holes per Cu for the (Pb, La)-
Bi2201 samples in Ref. [11]: Tc/T max

c = 1 − 250(p − 0.16)2,
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FIG. 2. Contour plots of the electronic density p(r) calculated on a square lattice of 100 × 100 unit cells, assuming average charge densities
of p = 0.126 in (a) and p = 0.16 in (d). The charge order wavelengths are λCO = 4.5a0 in a and λCO = 6.2a0 in (d), matching the checkerboard
wavelength of the STM conductance maps of underdoped (Tc = 25 K; p = 0.126) and optimally doped (Pb, La)-Bi2201 in Ref. [11]. (b), (e),
Corresponding spatial dependence of the free-energy potential VGL(r). (c), (f), Results of calculations of the d-wave pairing potential �d (r)
displayed over a 36 × 36 unit cell area (in meV unit). The spatial average value of the pair potential 〈�d (r)〉 is 9.2 meV at p = 0.126 in (c),
and 15.8 meV at p = 0.16 in (f).

where T max
c = 35 K. This calculation yields p = 0.126 and

p = 0.141 for the two underdoped samples. Figures 2(a)
and 2(d) display CO checkerboard patterns simulated by the
CH equation that resemble the STM differential conductance
maps for (Pb, La)-Bi2201 at p = 0.126 and p = 0.16.

The CO periodicity is manifest in the spatial dependence of
the free-energy potential VGL(r), shown in Figs. 1(b) and 1(e),
and Figs. 2(b) and 2(e). The central assumption in our model is
that by confining charge, a fluctuating CDW periodic potential
that scales with VGL(r) mediates the attractive two-body SC
interaction. In particular, we assume the fluctuating periodic
potential has the same periodicity as the static CO detected
experimentally and has a time-averaged potential well depth
that is proportional to the depth of the static periodic potential.
In what follows, we make the approximation that 〈VGL(r)〉 is
the pairing potential, where 〈VGL(r)〉 is the spatial average of
VGL(r) over a 100 × 100 unit cell area.

III. SUPERCONDUCTING CALCULATIONS IN THE
CHARGE-ORDERED STATE

Next we use the free-energy simulations and experimentally
determined input parameters for the optimally doped com-
pounds to deduce the SC energy gap �SC, the pseudogap �PG,
Tc, and T ∗ for the underdoped samples. To derive the local SC
gap we solved the Bogoliubov-deGennes (BdG) equations via
self-consistent calculations based on a Hubbard Hamiltonian
[Eq. (B1)]. The calculations were performed for a sublattice

about the center of the simulated charge density maps, using
periodic boundary conditions and governed by self-consistent
conditions for a spatially varying d-wave pairing potential
�d (r) and hole density p(r) [Eqs. (B4) and (B5)]. We find
that the spatial average 〈�d (r)〉 decreases with a reduction
of p (below p = 0.16), but increases with decreasing λCO.
The latter behavior is because as the two holes are forced
closer together by the narrower confining potential the binding
energy of the two-body interaction increases. The comparison
between the charge simulations p(r) [Figs. 1(a), 1(d), 2(a)
and 2(d)] and the respective pairing potential �d (r) [Figs.
1(c), 1(f), 2(c) and 2(f)] indicate that in our approach the pair
amplitude has the same modulation as the charge order.

The values of 〈VGL(r)〉 at optimal doping were multiplied by
a scaling factor, such that the calculations [Figs. 1(f) and 2(f)]
generate an average value of the pairing potential 〈�d (r)〉 for
p = 0.16 that is close to the experimentally estimated value of
the low-temperature SC gap �SC. To calculate 〈�d (r)〉 for the
underdoped samples (Tables I and II), this same scaling factor
was subsequently applied to the respective values of 〈VGL(r)〉.
For (Pb, La)-Bi2201, the value of 〈VGL(r)〉 varies little with
doping, and hence p and λCO are responsible for the hole-
doping dependence of 〈�d (r)〉. Experimental estimates of the
SC gap for the p = 0.126 and 0.141 samples are not reported,
but the calculated values of 〈�d (r)〉 for the underdoped
samples (Table II) roughly follow the trend expected if the ratio
�SC/kBTc is independent of p. In contrast to (Pb, La)-Bi2201,
the doping dependence of λCO in Y123 is weaker, and the CH
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TABLE I. Experimental data for �SC and �PG determined from
universal curves that describe Y123 and a number of other high-
Tc cuprate superconductors [44]. An experimental value for �SC at
p = 0.12 is omitted, since deviations from the universal curve are
expected for Y123 near 1/8 hole doping, where Tc plateaus. The value
of T ∗ ≈ 278 K at p = 0.09 is estimated from a linear extrapolation
of data in Ref. [50]. We tune the scaling factors explained in the text
to yield the blue and green values at optimum doping. Red values are
calculated with the same parameters.

p = 0.16 p = 0.12 p = 0.09

λCO(a0) [4,5,7] 3.49 ± 0.16 3.15 ± 0.16 3.00 ± 0.16
〈VGL(r)〉 −0.156 −0.110 −0.105
ρb(1.05Tc)(μ	 cm) [47] ≈40 ≈50 ≈70

�SC [44] (meV) 42 ± 2 – 24 ± 1
〈�d (r)〉 (meV) 43.8 25.5 23.3
Tc (K) [47,49] 93.4 66 55

92.0 68.1 55.6

�PG [44] 76 104 124
76 93.4 ± 9 103.3 ± 9

T ∗ [49] 170 232 278
170 209 ± 19 231 ± 21

simulations of charge stripes are characterized by a significant
change in 〈VGL(r)〉 with doping (Fig. 4). Consequently, the
depth of the periodic potential plays an important role in the
calculation of the doping dependence of 〈�d (r)〉 for Y123. The
calculated values of 〈�d (r)〉 at p = 0.09 and 0.16 agree well
with an empirical relation for �SC(p) that describes a number
of high-Tc cuprate superconductors [44]. The calculated result
at p = 0.12 falls below this universal curve, which is consistent
with the well-known plateau of Tc(p) for Y123 near 1/8 hole
doping.

TABLE II. Experimental data for �SC and �PG from STM with
the indicated Tc values [11]. The hole doping p was determined
from the Tc versus p relationship obtained by x-ray absorption
experiments on (Pb, La)-Bi2201 and La-doped Bi2201 [43]. The
in-plane resistivity ρab data area for La-doped Bi2201 [46] and T ∗

data are from intrinsic tunneling measurements [48]. We tune the
scaling factor explained in the text to yield the blue and green values
at optimum doping. Red values are calculated without any extra
parameters.

p = 0.16 p = 0.12 p = 0.09

λCO(a0) [11] 6.2 ± 0.2 5.1 ± 0.2 4.5 ± 0.2
〈VGL(r)〉 −0.1022 −0.1018 −0.1021
ρb(1.05Tc)(μ	 cm) [46] 18.3 24.8 28.3

�SC [11] (meV) 15 – –
〈�d (r)〉 (meV) 15.8 13.2 9.2
Tc (K) [11] 35 32 25

35.2 32.5 24.7

�PG [12] 30 ± 12 45 ± 15 68 ± 20
30 44.3 54.2

T ∗ [48] 241 355 446
241 327.9 427.4

An estimate of Tc is obtained by self-consistently solving
the BdG equations with a temperature-dependent GL potential

V (T ,p) = V (0,p)[1 − T/TPS(p)]2, (2)

where we take V (0,p) ≈ 〈VGL(r,p)〉 and the temperature
TPS(p) below which phase separation occurs to be equal to
T ∗(p) in the calculations. Because of the BdG approach and
the above equation, the value of 〈�d (r,T )〉 decreases with
increasing temperature, but it remains finite in many regions of
the system for a significant range of temperature above Tc. This
is consistent with the body of experimental results on cuprates
mentioned earlier that are suggestive of persisting SC correla-
tions above Tc [34–40]. Typical 〈�d (r,T )〉 ≡ 〈�d (p,T )〉 plots
of three different Y123 compounds are shown in Fig. 8.

Next we assume that bulk superconductivity is achieved via
Josephson coupling between different closely spaced patches
of intertwined CO and SC pairing. We assume there is SC
phase coherence within the patches, and that there are many
such closely spaced SC domains slightly above Tc(p) forming
junctions with an average tunnel resistance that is proportional
to the normal-state resistance immediately above Tc(p). As
explained previously [45], for a d-wave superconductor in
single-crystal form it is sufficient to use the following relation
for the average Josephson coupling energy:

〈EJ(p,T )〉 = πh̄〈�d (r,T )〉
2e2Rn(p)

tanh

[ 〈�d (r,T )〉
2kBT

]
, (3)

where 〈�d (r,T )〉 = ∑N
i 〈�d (ri,p,T )〉/N is the pairing po-

tential. The quantity Rn(p) is proportional to the normal
state in-plane resistivity ρab(p,T � Tc). In what follows we
assume Rn(p) for the optimally doped compounds, and in
the case of (Pb, La)-Bi2201 use experimental values of the
in-plane resistivity ratio ρab(p)/ρab(p = 0.16) to calculate
Rn(p) for the underdoped samples. Since the relationship
between Tc/T max

c and the hole concentration p for (Pb,
La)-Bi2201 is the same as for La-doped Bi2201 [43], we
have used available resistivity data for La-doped Bi2201 [46]
in our calculations shown in Table II. For orthorhombic
Y123, we instead used experimental values of the b-axis
resistivity ratio ρb(p)/ρb(p = 0.16) from Ref. [47] to estimate
Rn(p)/Rn(p = 0.16).

As the temperature is lowered below T ∗, thermal fluctua-
tions diminish and long-range phase coherence between the
individual SC domains is established when kBT ≈ 〈EJ(p,T )〉.
The temperature T at which this occurs defines the bulk critical
temperature Tc. Figures 3(a) and 3(b) show the temperature
dependence of 〈EJ(p,T )〉 for both compounds at the different
dopings. The intersection of the 〈EJ(p,T )〉 curves with the
kBT line yields values of Tc in good agreement with the actual
values for Y123 and (Pb, La)-Bi2201 (Fig. 4 and Tables I
and II).

IV. PSEUDOGAP

Next, we use the free-energy simulations to make a simple
estimate of the PG, under the assumption that the PG appears
due to mesoscale phase separation [27] that creates small
domains of CO wavelength below TPS ≈ T ∗. For Bi2201 we
consider a single-particle state bound to a two-dimensional
(2D) square box of depth 〈VGL(r)〉 and sides of length λCO.
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FIG. 3. Calculated values of the superconducting transition tem-
perature. (a), (b) The temperature dependence of the average Joseph-
son coupling energy 〈EJ(p,T )〉 (divided by Boltzmann constant kB)
for Y123 at p = 0.09,0.12, and 0.16 in (a), and (Pb, La)-Bi2201 at
p = 0.126,0.141, and 0.16 in (b). The values of Tc correspond to the
intersections of the dashed straight line 〈EJ(p,T )〉/kB = T with the
〈EJ(p,T )〉/kB curves and are marked by the arrows.

For Y123 we consider a single-particle state bound to a
stripelike 2D rectangular box of depth 〈VGL(r)〉, width λCO,
and length equivalent to the CDW correlation length, which
is much longer than λCO [4,5,7]. We assume in both cases
that the PG is proportional to the numerical solution of the
corresponding 2D Schrödinger equation for the ground-state
binding energy. The proportionality factor is estimated using
experimental values of the pseudogap �PG for Y123 and (Pb,
La)-Bi2201 at p = 0.16 (Tables I and II), and the values of �PG

are calculated for the underdoped samples using the respective
values of 〈VGL(r)〉 and λCO. To further assess the accuracy of
the results for the underdoped samples, we convert �PG to T ∗
using the experimental ratios T ∗/�PG = 170 K/76 meV and
T ∗/�PG = 241 K/ 30 meV for optimally doped Y123 and (Pb,
La)-Bi2201, respectively. As shown in Fig. 4 and Table II, the
calculated values of T ∗ for (Pb, La)-Bi2201 at p = 0.126

FIG. 4. Comparison of experimental and calculated values of
Tc and T ∗ versus hole doping. Also shown is the experimentally
determined doping dependence of the charge order wavelength
λCO for both compounds, as well as the doping dependence of
the calculated absolute value of the spatial average of the free-
energy potential |〈VGL(r)〉|. For display purposes |〈VGL(r)〉| is shown
multiplied by a factor of 25.

and 0.141 agree well with measurements of the PG onset
temperature for La-doped Bi2201 [48]. Reasonable agreement
is also obtained between the calculated and experimental [49]
values of T ∗ for Y123 at p = 0.09 and 0.12 (Fig. 4 and
Table I). As mentioned in the introduction we presume the
onset of CO domains at T ∗ > TCO(p), as suggested by some
experiments [3,7,9,28].

V. COMPARISON OF CALCULATED AND
EXPERIMENTAL PARAMETERS

Tables I and II contain values of experimental parameters
(denoted by black text) used in the calculations for each
compound, and the calculated parameters (denoted by red
text). For each cuprate family the calculated values at p = 0.16
(which are denoted by blue and green text) were multiplied by
a scaling factor to match experimental values as follows:

(i) The proportionality constant between 〈VGL(r)〉 and the
attractive pairing potential V of Eq. (B4) was adjusted to yield
a calculated value of 〈�d (r)〉, which approximately equals
the experimental value of the SC gap �SC at p = 0.16. This
proportionality constant, once determined, was subsequently
used for all other values of p.

(ii) The scaling factor between the normal resistance
Rn in Eq. (3) and the resistivity ρb(1.05T c) just above Tc

was adjusted until the calculated value of Tc at p = 0.16
approximately equaled the experimental value. This same
scaling factor was used for all other values of p.

(iii) The ground-state binding energy of a single particle
in a 2D square (rectangular) box was multiplied by a
proportionality factor so as to equal the PG of (Pb, La)-Bi2201
(Y123) at p = 0.16. Again, this same proportionality constant
was used for the calculations at other dopings.
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VI. FERMI-ARC FORMATION

Next we show that the phase separation approach con-
sidered above is able to reproduce the ungapped portion
of the Fermi surface (Fermi arcs) that is known to occur
near the nodal region just above Tc [51–53]. We start
by recalling that Figs. 1(c), 1(f), 2(c), and 2(f) show do-
mains of SC order parameter modulations. To each domain
we assign a label j and a complex SC order parame-
ter �d (k,T ) exp(i�j ), where �d (k,T ) = �0(T )[cos(kxa0) −
cos(kya0)] = �0(T ) cos(2φ), φ is the azimuthal angle mea-
sured from the x direction in the CuO2 plane and �0(T ) is the
wave function amplitude in the j th domain at temperature T .
The d-wave symmetry implies larger supercurrents flowing
in the CuO2 plane along the antinodal directions parallel
to the Cu-O bonds, and vanishing values along the nodal
directions φ = ±π/4 and ±π/4. The local intrinsic SC phase
�j and the superfluid density nj ∝ �d (rj ,T )2 are canonically
conjugate variables [54], leading to large fluctuations of the
phase �j along the nodal directions, where nj and �nj

vanish. This is due to the quantum uncertainty principle and
we may write ��j (φ) ∝ 1/ cos(2φ) to indicate the azimuthal
dependence of the phase uncertainty, which has its maximum
and minimum values along the nodal and antinodal directions,
respectively. Furthermore, ��j has a clear dependence on the
Josephson coupling. In particular, as shown in the previous
section, at T < Tc all �j are locked together leading to
long-range SC order, but at T > Tc phase decoupling occurs
because 〈EJ(p,T )〉 < kBT and concomitantly ��j increases
with T up to the temperature at which 〈EJ(p,T )〉 vanishes.
In particular, ��j increases monotonically from near zero
at Tc to very large values near T ∗. Furthermore, ��j has
a large anisotropy when combined with the quantum effects
discussed above. The two distinct contributions are separable,
such that ��j (p,T ,φ) = ��j (p,T )��j (φ). We drop the
index j because ��j (φ) is the same for all domains, and
assume 〈EJ(p,T )〉 is the same for all j . These considerations
imply that just above Tc the electrons ejected by angle-
resolved photoemission spectroscopy (ARPES) from different
domains come from regions where the SC order parameter has
essentially the same �j along the antinodal directions, and
��j (φ) ≈ 0. On the other hand, such phase coherence is lost
near the nodal directions where ��j (φ) ≈ π is maximum.
Consequently, the average SC amplitude measured by ARPES
may be written as follows [55]

〈�d (p,T ,φ)〉

= | cos(2φ)|
��j (p,T ,φ)

∫ ��j (p,T ,φ)

0
〈�(p,T )〉 cos(�)d�

= 〈�(p,T )〉| cos(2φ)| 1

��j (p,T ,φ)
sin[��j (p,T ,φ)].

(4)

This expression contains the two distinct contributions that
weaken phase coherence—one from quantum oscillations
that depends only on the azimuthal angle φ and one from
thermal oscillations that competes with the average Josephson
coupling, leading to ��j (p,T ,φ) = ��j (p,T )��j (φ) for
all j . We take ��(φ) ∼ 1/ cos2(2φ), which satisfies the
expected inverse cosine dependence and the square makes it

symmetric and always positive around the nodal directions
(φ = ±π/4 and ±π/4). We infer the functional form of
��(p,T ) noting that for T < Tc, all �j are locked together
leading to long-range order and ��j ∼ 0. On the other hand,
for T � Tc all � decouple because 〈EJ(p,T )〉 < kBT and
�� > 0. Above Tc, 〈EJ(p,T )〉 decreases with increasing T

and vanishes near T ∗. Concomitantly �� increases. Thus,
there are three distinct temperature-dependent regimes:

(i) T � Tc: Since �� ∼ 0, Eq. (4) is easy to solve
and we obtain the bare expression 〈�d (r,T ,φ)〉 =
〈�d (p,T )〉| cos(2φ)|.

(ii) T > T ∗: 〈�(p,T )〉 ∼ 0 and it is clear that there is no
gap.

(iii) Tc < T : Taking into account the effect of 〈EJ(p,T )〉
we assume ��(p,T ) = A[1 − 〈EJ(p,T )〉/kBTc(p) where A

is a constant. This expression vanishes at Tc and increases
monotonically with p, as expected from ARPES experiments
[51,52]. Thus, accounting for the quantum (∼1/ cos2(2φ))
and the thermal contributions (T > Tc), ��(p,T ,φ) =
[A/ cos2(2φ)][1 − 〈EJ(p,T )〉/kBTc(p) and we obtain the
value of A by comparing with the onset of the measured [51]
gapless region for a given sample. To reproduce the measured
gapless regions we also assume in Eq. (4) that 〈�d (p,T ,φ)〉
∼ 0 whenever ��(p,T ,φ) � π , due to destructive phase
interference from electrons ejected from different domains.

To obtain the constant A we use the ARPES measure-
ments [51] at T = 102 K for the Bi2212 compound with
Tc = 92 K, which shows a gapless region between 28◦ � φ �
62◦. Equating ��(p ∼ 0.15,T = 102K,φ = 28◦,62◦) = π ,
yields 〈�d (p,T ,φ)〉 ∼ 0 and this is possible if we take A =
2.84π . Note that φ is measured from the (π,π ) to (0,π )
direction of the Brillouin zone according to Refs. [51] and [52].
With ��(p,T ,φ) determined, we may apply the derived
equation to any sample. In particular, we apply this expression
to the other two Bi2212 compounds measured in Ref. [51].

FIG. 5. Josephson coupling energy phase diagram and schematic
Fermi surface. The variation of the average Josephson coupling
energy with doping and temperature for Bi2212 (from Ref. [45]).
Above the onset of 〈EJ〉/kB = 0 K there is no SC gap. The
corresponding gapless Fermi surface is depicted at the right of the
phase diagram. In the region of the phase diagram where T � Tc,
the average SC gap may be finite. However, combined thermal and
quantum phase fluctuations may cause destructive interference in the
ARPES data along the nodal directions, leading to the gapless Fermi
arcs shown in the left of the figure.
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FIG. 6. The envelope of the SC amplitude 〈�d (p,T ,φ)〉 accord-
ing to Eq. (4). The arrows show the limits of the gapless region as
determined from ARPES experiments on Bi2212 at T = Tc(p) + 10
K for three dopings [51].

Some values of 〈EJ(p,T )〉 above Tc used in the calculations
are plotted in Fig. 5. Accordingly, we obtain for the Tc = 86
K compound a gapless region at 23.8◦ � φ � 66.2◦, which
compares well with the experimental gapless range 25◦ �
φ � 65◦. For the underdoped Tc = 75 K Bi2212 sample at
T = 85 K, we obtain 36.5◦ � φ � 53.5◦, which is also in good
agreement with the experimental result [51]. We summarize
the Fermi-arc calculations for the three samples in Fig. 6,
where the results of the envelope phase factor of 〈�d (p,T ,φ)〉

R = | cos(2φ)|
��(p,T ,φ)

× sin[��j (p,T ,φ)] (5)

from Eq. (4) are in good agreement with the experiments [51].
The arrows mark the experimentally determined onset of the
gapless regions for each sample, as described above.

VII. SUMMARY AND CONCLUSIONS

Our theory infers a fundamental link between the period-
icity of the CDW order and the PG and SC energy scales
of high-temperature cuprate superconductors, and shows that
within this framework it is possible to account for the onset
temperatures Tc and T ∗ of two different cuprate families.
We stress that the only quantitative assumptions made in
our calculations for underdoped Y123 and (Pb, La)-Bi2201
pertain to unknown proportionality constants, which we have
determined by scaling calculated free-energy parameters to
achieve values of the PG and SC gap that agree with
experimental values at one particular doping. Our model is
general in the sense that it can be applied to other cuprate
families, provided the doping dependence of the CDW order
is known.

Our approach generates a local free-energy potential having
a spatial periodicity that matches that of the experimentally
observed short-range static CDW order. Our calculations in the
framework of BdG theory yield different SC amplitudes in dis-
tinct charge-ordered domains that generally vanish only above
Tc. Our approach is consistent with experiments [9,11,36,38]
that measure a finite SC amplitude above Tc, and promotes
the scenario whereby the SC resistive transition marks the

onset of global phase coherence between SC domains. In
our model Fermi arcs appear above Tc because there are
large phase fluctuations along the nodal directions where the
superfluid density vanishes. The increase of the arcs’ size with
p is reproduced because the dependence of 〈EJ(p,T )〉 on the
temperature changes rapidly with doping.

Finally, we address the experimental observations indicat-
ing a competition between superconductivity and CO. While
x-ray experiments show a decrease of the CDW diffraction
intensity and correlation length below Tc [1,2,4,5,8], these
measurements seem to be detecting static charge correlations.
Static CDW order competes with superconductivity by reduc-
ing the number of charge carriers available for pairing. On the
other hand, our theory requires that dynamic CO is also present
to induce a fluctuating hole-pair potential that scales with
VGL. While there is some evidence for CDW fluctuations from
optical pump-probe [56] and low-energy, momentum-resolved
electron energy-loss spectroscopy [50] experiments, there is
currently insufficient experimental information to assess the
pervasiveness or significance of fluctuating CO in cuprates.
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APPENDIX A: CHARGE ORDER SIMULATIONS

To describe the growth and development of spatial charge
inhomogeneity in the CuO2 planes we applied a theory of
phase-ordering dynamics, whereby the system evolves through
domain coarsening when quenched from a homogeneous into
a broken-symmetry phase. The time-dependent CH approach
provides a simple way to determine the time evolution of the
CO process [41]. The CH equation can be written in the form
of the following continuity equation for the local free-energy
current density J = −M∇2((∂f/∂u) [57]

∂u

∂t
= −∇.J = −M∇2

[
ε2∇2u + ∂VGL

∂u

]
, (A1)

where M is the charge mobility that sets the phase separation
time scale. The order parameter varies between u(r,t) ∼ 0 for
the homogeneous system above the phase separation onset
temperature TPS, and u(r,t → ∞) = ±1 for the extreme case
of complete phase separation. We solved the CH equation by
a stable and fast finite difference scheme with free boundary
conditions [55]. The spatial dependence of the charge density
obtained by numerically solving the CH equation evolves
with time t = nδt , where n is the number of time steps δt .
When the order parameter is conserved, as in phase separation,
the charges can only exchange locally rather than over large
distances. This leads to diffusive transport of the order
parameter. Consequently, at early times or small n, we obtain
charge modulations with periodicities of only a few lattice
constants. Using different parameters and initial conditions
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FIG. 7. Two-dimensional CH simulations of u(r,t) for α = B = 1, ε = 0.012 and time steps (a) n = 900, (b) n = 1500, and (c) n = 9000.
These plots are continuation of the time evolution of Fig. 2(a) with n = 700.

we are able to reproduce the experimentally determined CO
patterns in cuprates. Although these simulations are not the
stable solutions of the CH equation (as is clear from the time
evolution of the simulations shown in Fig. 7), the aim here is
to generate periodic charge modulations with experimentally
determined wavelengths that can be subsequently used to
calculate the SC gap and PG in our phase separation model.
For convergence the time step δt and spatial step h ≈ 1/N for
a square lattice of N2 sites must be such that δt � h2/9 [55].
For the calculations here we used δt � h2/10 and h = 1/100.

In the main paper we present detailed CO, Tc and T ∗
calculations for six compounds. Three of the Bi2201 and three
of the Y123 families. In the following, we give the values of
some parameters used in the CH simulations.

(Pb, La)-Bi2201: Simulations with α = B = 1, time
steps of n = 700,900,1300 and ε = 0.012,0.014,0.0175 yield
checkerboard CO patterns with the desired wavelengths λCO

for (Pb, La)-Bi2201 (at p = 0.126,0.141 and 0.16) near 4.5a0,
5.1a0, and 6.2a0, respectively. The fewer time steps required
to simulate the CO patterns of the underdoped samples is
indicative of a reduced charge mobility, and is consistent with
an increase of the normal-state resistivity. At later times (i.e.,
greater n) the periodic electronic structure evolves into an
irregular patchlike system of segregated low- and high-charge
density regions. In addition, the length scale of the system
increases with the phase separated regions forming larger
domains. This latter situation was considered previously [45].
Figure 7 shows CH simulations of u(r,t) at times beyond
where checkerboard CO with λCO = 4.5a0 is observed in (Pb,
La)-Bi2201 at p = 0.126.

Y123: Simulations with α = 1, B = 5, ε = 0.0053,
0.0055, 0.0058, and time steps n = 35,38,42 yield charge
stripe patterns with the desired wave vectors Q = 0.333,0.317,
and 0.287 reciprocal-lattice units (λCO = 1/Q) estimated from
Refs. [4,5,7] for Y123 at p = 0.09,0.12 and 0.16, respectively.
Note that the values of n are much shorter than needed to
simulate the checkerboard CO patterns of (Pb, La)-Bi2201.
Because of the fewer time steps, the simulations for Y123 are
somewhat less sharp.

APPENDIX B: COMBINED BOGOLIUBOV-DEGENNES
(BDG) AND CAHN-HILLIARD (CH) CALCULATIONS

We performed self-consistent calculations with the BdG
theory [58,59] for each of the CH simulated charge density

maps [Figs. 1(a) and 1(d), and Figs. 2(a) and 2(d)]. To calculate
the SC pairing amplitude we assumed the attractive interac-
tion potential V scales with 〈VGL(r)〉. The SC calculations
begin with the extended Hubbard Hamiltonian [58,59]. To
describe the charge carrier’s dynamics in the CuO2 planes
of the HTSC we consider this Hamiltonian in a square
lattice

H = −
∑
{ij}σ

tij c
†
iσ cjσ +

∑
iσ

μiniσ

+U
∑

i

ni↑ni↓ − V

2

∑
〈ij〉σσ ′

niσ njσ ′ , (B1)

where c
†
iσ (ciσ ) is the usual fermionic creation (annihilation)

operator at site i, the spin σ is up ↑ or down ↓. niσ = c
†
iσ ciσ

is the number operator, and tij is the hopping between
sites i and j . U is the magnitude of the on-site repulsion,
and V is the magnitude of the nearest-neighbor attractive
interaction. μi is the local chemical potential derived in the
self-consistent process through which the local charge density
is calculated by the CH equation and is maintained fixed.
For (Pb, La)-Bi2201 we used nearest-neighbor hopping t =
0.15eV, next-nearest-neighbor hopping t2 = −0.27t , and third
nearest-neighbor hopping t3 = 0.19t derived from ARPES
dispersion relations [60]. For Y123, we used the ARPES
results t = 0.15meV, t2 = −0.50t , and t3 = 0.16t [61]. The
BdG mean-field equations are [59]

(
K �d (r)

�∗
d (r) −K∗

)(
un(r)

vn(r)

)
= En

(
un(r)

vn(r)

)
(B2)

with

Kun(r) = −
∑

R

tr,r+Run(r + R) + μ(r)un(r)

�dun(r) =
∑

R

�d (r)un(r + R), (B3)

and similar equations for vn(r), where r+R is the position
of the nearest-neighbor sites, and μ(r) ≡ μi is the local
chemical potential. These equations are solved numerically
for eigenvalues En(� 0) self-consistently with the spatially
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varying d-wave pairing potential [58]

�d (r) = −V

2

∑
n

[un(r)v∗
n(r + R)

+ v∗
n(r)un(r + R)] tanh

En

2kBT
, (B4)

where V = V (T ,p) was defined in Eq. (2). The results of
〈�d (r,T )〉 are plotted in Fig. 8 for the three compounds of
the Y123 system. Concomitantly, the spatially varying hole
density of charge carriers is given by

p(r) = 1 − 2
∑

n

[|un(r)|2fn + |vn(r)|2(1 − fn)], (B5)

where fn = [exp(En/kBT + 1]−1 is the Fermi occupation
function. It is important to emphasize that the spatially
inhomogeneous distribution of charge generated by the CH
equation for different dopings was kept fixed while the local
chemical potential μ(r) was self-consistently determined in the

FIG. 8. Example of calculated 〈�d (p,T )〉 used to obtain Tc: The
average SC amplitudes for Y123 from BdG Eq. (B4) used in the
calculations of 〈EJ(p,T )〉 [see Eq. (3)]. The low-temperature limits
of 〈�d (p,T = 0)〉 are also listed in Table I.

convergence process. This procedure incorporates the charge
inhomogeneity in the calculations in a natural way.
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and N. Gedik, Fluctuating charge-density waves in a cuprate
superconductor, Nature Mater. 12, 387 (2013).

[57] A. J. Bray, Theory of phase-ordering kinetics, Adv. Phys. 43,
357 (1994).

[58] E. V. L. D. Mello and E. S. Caixeiro, Effects of phase separation
in the cuprate superconductors, Phys. Rev. B 70, 224517
(2004).

[59] E. V. L. de Mello, R. B. Kasal, and C. A. C. Passos, Electronic
phase separation transition as the origin of the superconductivity
and pseudogap phase of cuprates, J. Phys.: Condens. Matter 21,
235701 (2009).

[60] M. R. Norman, M. Randeria, H. Ding, and J. C. Cam-
puzano, Phenomenological models for the gap anisotropy of
Bi2Sr2CaCu2O8 as measured by angle-resolved photoemission
spectroscopy, Phys. Rev. B 52, 615 (1995).

[61] M. C. Schabel, C.-H. Park, A. Matsuura, Z.-X. Shen, D. A. Bonn,
R. Liang, and W. N. Hardy, Angle-resolved photoemission on
untwinned YBa2Cu3O6.95. I. Electronic structure and dispersion
relations of surface and bulk bands, Phys. Rev. B 57, 6090
(1998).

184520-11

https://doi.org/10.1103/PhysRevB.67.104512
https://doi.org/10.1103/PhysRevB.67.104512
https://doi.org/10.1103/PhysRevB.67.104512
https://doi.org/10.1103/PhysRevB.67.104512
https://doi.org/10.1103/PhysRevLett.86.4907
https://doi.org/10.1103/PhysRevLett.86.4907
https://doi.org/10.1103/PhysRevLett.86.4907
https://doi.org/10.1103/PhysRevLett.86.4907
https://doi.org/10.1103/PhysRevLett.90.147005
https://doi.org/10.1103/PhysRevLett.90.147005
https://doi.org/10.1103/PhysRevLett.90.147005
https://doi.org/10.1103/PhysRevLett.90.147005
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
https://doi.org/10.1038/nature08716
http://arxiv.org/abs/arXiv:1509.04230v2
https://doi.org/10.1038/nature06219
https://doi.org/10.1038/nature06219
https://doi.org/10.1038/nature06219
https://doi.org/10.1038/nature06219
https://doi.org/10.1143/JPSJ.81.011006
https://doi.org/10.1143/JPSJ.81.011006
https://doi.org/10.1143/JPSJ.81.011006
https://doi.org/10.1143/JPSJ.81.011006
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1209/0295-5075/99/37003
https://doi.org/10.1209/0295-5075/99/37003
https://doi.org/10.1209/0295-5075/99/37003
https://doi.org/10.1209/0295-5075/99/37003
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1038/nmat3571
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1080/00018739400101505
https://doi.org/10.1103/PhysRevB.70.224517
https://doi.org/10.1103/PhysRevB.70.224517
https://doi.org/10.1103/PhysRevB.70.224517
https://doi.org/10.1103/PhysRevB.70.224517
https://doi.org/10.1088/0953-8984/21/23/235701
https://doi.org/10.1088/0953-8984/21/23/235701
https://doi.org/10.1088/0953-8984/21/23/235701
https://doi.org/10.1088/0953-8984/21/23/235701
https://doi.org/10.1103/PhysRevB.52.615
https://doi.org/10.1103/PhysRevB.52.615
https://doi.org/10.1103/PhysRevB.52.615
https://doi.org/10.1103/PhysRevB.52.615
https://doi.org/10.1103/PhysRevB.57.6090
https://doi.org/10.1103/PhysRevB.57.6090
https://doi.org/10.1103/PhysRevB.57.6090
https://doi.org/10.1103/PhysRevB.57.6090



