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Pinning effects on self-heating and flux-flow instability in superconducting films near Tc

Valerij A. Shklovskij,1 Anastasiia P. Nazipova,2,1 and Oleksandr V. Dobrovolskiy3,1,*

1Physics Department, V. Karazin Kharkiv National University, 61022 Kharkiv, Ukraine
2Faculty of Science, P. J. Šafárik University in Košice, SK-04001 Košice, Slovakia
3Physikalisches Institut, Goethe University, 60438 Frankfurt am Main, Germany

(Received 24 March 2017; published 25 May 2017)

The effect of pinning on self-heating triggering the Larkin-Ovchinnikov (LO) flux-flow instability (FFI) in
superconducting thin films is theoretically investigated. The problem is considered relying upon the Bezuglyj-
Shklovskij (BS) generalization of the LO theory, accounting for a finite heat removal from the quasiparticles at
temperature T ∗ to the bath at temperature T0. The FFI critical parameters, namely the current density j ∗, the
electric field E∗, the power density P ∗, and the vortex velocity v∗ are calculated and graphically analyzed as
functions of the magnetic field and the pinning strength. With increasing pinning strength at a fixed magnetic
field value E∗ decreases, j ∗ increases, while P ∗ and T ∗ remain practically constant. Vortex pinning may hence
be the cause for eventual discrepancies between experiments on superconductors with strong pinning and the
generalized LO and BS results.

DOI: 10.1103/PhysRevB.95.184517

I. INTRODUCTION

It is well known that in superconducting films a rather strong
dc transport current in a perpendicular magnetic field B causes
a motion of Abrikosov vortices thus leading to a nonzero,
B-dependent resistivity. If vortex pinning is negligibly weak,
the flux-flow resistivity is measurable even at small transport
currents. In the flux-flow regime, the current-voltage curve
(CVC) of a film is linear with

j = σf E, (1)

where j is the current density, E is the longitudinal elec-
tric field strength, and σf = σf (B,T ) = σnHc2(T )/B is the
temperature-dependent Bardeen-Stephen [1] flux-flow con-
ductivity. Here σn is the normal metal film conductivity and
Hc2(T ) is the upper critical field.

However, Larkin and Ovchinnikov (LO) showed theo-
retically [2,3] that the flux-flow regime at T close to the
superconducting transition temperature Tc becomes unstable
at large current densities j � j ∗ which, still, are by far smaller
than the depairing current density. It is this instability current
density j ∗ which sets the real upper limit for the current a
superconductor can carry without dissipation.

In general, various mechanisms were suggested to explain
voltage jumps in the CVCs of superconductors. To name a
few, these are a thermal runaway effect due to Joule heating
[4,5], formation of localized normal domains which appear
in places of maximum current due to an inhomogeneous
current distribution [6,7], crystallization of the vortex system
[8,9], phase-slip centers or lines [10,11], and the Kunchur
hot-electron instability [12,13] observed at T � 0.5Tc and
related to thermal effects diminishing the superconducting
order parameter, thus leading to an expansion of the vortex
cores.

In the present work we will deal with the LO flux-flow
instability at T � Tc relying upon the well-accepted LO
instability scenario: The electric field arising due to the vortex
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motion accelerates quasiparticles within the vortex cores. This
process continues as long as the quasiparticles energy becomes
sufficient for their escape. If the time of the quasiparticle
energy relaxation τε and the respective diffusion length in
“dirty” films lε = √

Dτε substantially exceeds the core size
of the order of the coherence length ξ , then the excitations
can leave the core. Here D = lvF /3, where l is the electron
mean free path and vF is the Fermi velocity. The escape of the
quasiparticles from the core under the influence of the electric
field E causes the vortex core to shrink according to the LO
relation

ξ 2(v) = ξ 2(0)/[1 + (v/v∗)2], (2)

where v is the vortex velocity, ξ (0) = ξ (v = 0), and v∗ is the
critical vortex velocity. The decrease of ξ leads to a reduction
of the vortex viscosity η given by

η(v) = η(0)/[1 + (v/v∗)2], (3)

and this is why the viscous force Fv = η(v)v has a maximum
at v = v∗. A further increase of v > v∗ causes a reduction of
Fv . In turn, this leads to an even further increase of the vortex
velocity and in this way results in the instability of the vortex
motion.

Experimentally, for current-driven measurements at not too
large magnetic fields (B � 0.4Hc2) the nonlinear resistive part
of the CVC usually exhibits a jumplike voltage rise (see,
e.g., [14,15]). According to LO, these jumps emerge from the
instability in the homogeneous flux-flow at the B-independent
critical velocity

v∗ = 1.143(D/τε)1/2(1 − T/Tc)1/4, (4)

when the Lorentz force equals to the maximal viscous damping
force Fv .

The values of τε for In, Sn, and Al deduced from early
experiments [14,15] by Eq. (4) agreed in the order of
magnitude with the theoretical estimates. However, the authors
of Ref. [15] revealed an anomalous dependence of τε on the
applied magnetic field value. Another essential discrepancy
between the LO theory and experiment [15] lies in a noticeable
decrease of the instability current density j ∗ with increasing
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magnetic field, whereas in the LO theory j ∗ does not depend
on B at small fields (B � Hc2).

Later on, Bezuglyj and Shklovskij (BS) suggested [16]
that the abovementioned discrepancies between the LO theory
and experiments may have a common cause, namely the
quasiparticles overheating not only inside the vortex cores,
but also outside them. The latter ensues in experiments due
to a finite rate of heat removal from the sample. Whereas
LO supposed the temperature of phonons in the sample to
be independent of the electric field value, BS argued that
the phonon overheating is unavoidable since the rate of
heat removal from the film always remains finite. In the BS
generalization of the LO approach BS solved the linear heat
balance equation

h(T0)(T ∗ − T0) = dσ (E∗)(E∗)2 (5)

in conjunction with the CVC extremum condition

d

dE
[σf (E)E]

∣∣∣∣
E=E∗

= 0. (6)

Here h(T0) is the heat transfer coefficient from the quasi-
particles at the critical temperature T ∗ to the bath with the
temperature T0, E∗ is the critical electric field, and d is the film
thickness. Two regimes with respect to magnetic field values
have been revealed, separated by the critical (overheating) field
BT introduced by BS. Namely, when B � BT quasiparticles
overheating is negligible and v∗ is given by the LO formula (4).
For B � BT overheating becomes essential and the measured
value of v∗ becomes B dependent: At small fields it noticeably
decreases with increasing field. An excellent agreement with
the BS approach has been confirmed experimentally for both,
low-temperature [17,18] and high-Tc [4,19] superconducting
thin films.

Nevertheless, both the LO and BS approaches to explain the
nonlinear CVC behavior as caused by the flux-flow instability
(FFI) capture no pinning in the physical picture. In reality,
however, vortex pinning is omnipresent in superconducting
films, and recent experiments on nanopatterned supercon-
ductors aimed at revealing its effect on the FFI critical
parameters [20–25]. While a theoretical account for FFI at
lower temperatures (T � Tc/2) has recently been given [26]
and already allowed us to fit experimental data to the derived
analytical expressions [25], the respective generalization of the
BS approach at temperatures T � Tc has not been available so
far.

To understand qualitatively the pinning effect on the FFI
critical parameters, two limiting cases of weak and strong
pinning should be considered. In the case of weak pinning,
i.e., when the depinning current density jc is much less than
the instability current density j ∗, the linear flux-flow regime
is realized for jc � j � j ∗ and the pinning effect on FFI
should be negligibly small. In the opposite limiting case the
absence of the CVC linearity just below the instability point
may indicate that strong pinning is essential for determining
the FFI parameters. The case of strong pinning is, in particular,
interesting for the use of nanopatterned superconductors in
fluxonic applications [27,28].

The objective of this paper is to provide a theoretical
account for the pinning effect on the FFI critical parameters,

FIG. 1. Left axis: The nonlinear current-voltage curve (CVC)
E(j ) calculated for a cosine washboard pinning potential (WPP)
of Ref. [30] in the limit of low temperatures. The dashed line
corresponds to the free flux-flow regime E/ρf = j , where ρf is the
flux-flow resistivity. Right axis: The respective nonlinear function
ν(j ) calculated by Eq. (27) of Ref. [30]. Upper inset: Experimental
geometry. The transport current I is applied along the WPP channels
(grooves). The vortex dynamics across the grooves leads to the
appearance of the voltage V . Lower inset: Atomic force microscope
image of a Nb film surface with a nanogroove array milled by focused
ion beam [38] and inducing a pinning potential of the washboard type.

namely the current density j ∗, the electric field E∗, the
resistivity ρ∗, the power density P ∗, and the vortex velocity
v∗. The problem is considered within the framework of the LO
model and its BS generalization at the substrate temperature
T0 close to Tc of a nanostructured superconducting film. The
treatment of the problem is at once based on the BS approach,
because it contains the LO results in the natural limiting case
B � BT .

The paper is organized as follows. In Sec. II A the
phenomenological BS approach is extended to account for
pinning effects on the flux-flow instability parameters. To
model the pinning, the simplest form of a cosine washboard
pinning potential is used. The rigorous results of Sec. II B
are analyzed in the limit of weak pinning in Sec. II C and
presented graphically in Sec. III in a broad range of magnetic
field values and pinning strengths. A general discussion of the
obtained results concludes our presentation in Sec. IV.

II. MAIN RESULTS

A. Formulation of the problem

For simplicity, a geometry is considered when the transport
current is applied along the channels of a washboard pinning
potential (WPP), see the upper inset in Fig. 1. In this case the
nonlinear CVC of the sample can be presented as

σE = jν(j ), (7)

where E is the longitudinal electric field and j is the transport
current density. Here ν = ν(j,T ) is a nonlinear function which
can be considered as the (j,T )-dependent effective mobility
of the vortex under the action of the dimensionless driving
Lorentz force j . Since 0 < ν < 1, this function can be treated
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as the probability of vortex hopping over the titled WPP barrier
[29,30]. At T = 0, ν(j ) is a steplike function with the condition
ν(j ) = 0 for j < jc, where jc is the depinning current density.
For simplicity, only this regime for ν(j ) will be considered
in what follows. If jc = 0, then ν(j ) = 1 and the linear CVC
σE = j follows from Eq. (7) for the Bardeen-Stephen [1]
conductivity σ .

For nanostructured superconductors, where the vortex
dynamics can be described as their motion in a cosine WPP
[27–38], the nonlinear CVC of the sample can be presented as
[30]

σE =
√

j 2 − j 2
c or j =

√
j 2
c + σ 2E2, (8)

where jc is the critical (depinning) current density indicated
in Fig. 1.

Here

σ = σf (1 − T/Tc)−1/2{1 + [E/E∗
LO(T )]2}−1f (B/Hc2) (9)

obeys the LO expression for the nonlinear E-dependent flux-
flow conductivity near Tc in the dirty limit [3]. The function
f (B/Hc2) in Eq. (9), which takes into account the vortex core
overlap, was tabulated in [3]. For magnetic field values of
interest B � 0.4Hc2(T ), it amounts to f (B/Hc2) � 4.04 [16].

With E∗ = v∗(B/c), where the critical velocity v∗ is given by
Eq. (4), for E∗

LO(T ) in Eq. (9) it was shown [2] that

[E∗
LO(T )]2 = (B/c)2(D/τε)[

√
14ζ (3)/π ](1 − T/Tc)1/2.

(10)

In Eq. (10) ζ (3) = 1.202 is the Riemann zeta function of 3.
For the upper critical field near Tc applies

Hc2(T ) = (4�0/π
2h̄D)kB(Tc − T ), (11)

which is valid for superconductors with a short electron mean
free path. Here �0 = πh̄c/e0 is the magnetic flux quantum, e0

is the electron charge, and kB is the Boltzman constant.
Following the BS approach we note that the quasiparticles

temperature in Eq. (9) is independent of the electric field E. It
should be found from the heat balance equation (5), which in
the presence of pinning reads

h(T0)(T − T0) = dE

√
j 2
c + σ 2E2. (12)

For the solution of Eq. (12) in conjunction with Eq. (6) we
introduce, following Ref. [16], new dimensionless variables
e ≡ E∗/E∗

LO(T0) and t ≡ (Tc − T ∗)/(Tc − T0). In addition,
we take into account that Eq. (9) can be identically trans-
formed, using Eq. (11), to

σ (E,T ,T0)
16.16σnckB(Tc − T )

πe0DB(1 − T0/Tc)1/2[
√

(Tc − T )/(Tc − T0) + E2/E2
LO(T0)]

. (13)

Now one can show that in the presence of pinning, the BS
extremum condition given by Eq. (6) leads to the same result
as in the absence of pinning (Eq. (29) in [16])

1 + e

2t

dt

de
− e2

√
t

(
1 − e

t

dt

de

)
= 0. (14)

Note that Eq. (14) derived in the presence of pinning does not
depend on jc explicitly. From the heat balance equation (12) it
is possible to derive dt/de and eliminate it from Eq. (14). To
accomplish this, one first finds the derivative of Eq. (12) with
respect to E and evaluates it at the critical point given by Eq.
(6). The result is

dt/de = −(b/j0)
√

j 2
c + j ∗2

0 . (15)

Here b = B/BT , j ∗
0 = j0[2et/(e2 + √

t)], and as in [16],

BT = 0.298hcτεe0k
−1
B R�,

j0 = 2.91(σn/e0)(Dτε)−1/2(kBTc)(1 − T0/Tc)3/4.
(16)

The parameter R� = (σnd)−1 is the sheet resistance. Next, in
the dimensionless form Eq. (12) reads

1 − t = −(be/j0)
√

j 2
c + j ∗2

0 . (17)

Then, from Eqs. (15) and (17) follows

dt/de = −(1 − t)/e. (18)

Finally, the elimination of dt/de from Eqs. (14) and (18) yields

e2 = √
t(3t − 1)/2. (19)

It is worth noting that Eq. (19), which relates the variables e

and t , coincides with Eq. (32) in [16], that is pinning has no
influence on this relation.

Now, taking into account that j ∗
0 = j0[2et/(e2 + √

t)], it is
possible to derive from Eqs. (15), (18), and (19) an equation
for the dependence t = t(b,α), where α ≡ jc/j0,

2(1 − t)2

b2
√

t(3t − 1)
= α2 + 8t

√
t(3t − 1)

(3t + 1)2
. (20)

For α = 0 (i.e., in the absence of pinning, when jc = 0)
Eq. (20) has the solution t = t(b) obtained previously by BS
[16]:

t = [1 + b + (b2 + 8b + 4)1/2]/3(1 + 2b). (21)

That is, quasiparticles overheating is b dependent and it is
given by Eq. (21). The equation for t(b) can be rewritten as

b(t) = (1 − t)(3t + 1)/2t(3t − 1). (22)

Since t > 0 per definition, 1/3 < t(b) < 1 follows from
Eq. (22). From Eq. (22) it also follows that dt/db < 0 and t(b)
monotonically decreases with t(b = 1) � 2/3. The LO limit
ensues at t → 1 and b → 0, while the BS limit corresponds to
t → 1/3 and b → ∞.

B. Pinning effects on FFI parameters

Equation (20) is the key equation for the subsequent
analysis. When α 
= 0, the solutions of Eq. (20) yield the
dependencies t(α,b) which will be used for the calculation
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of the FFI critical parameters in the presence of a cosine WPP.
Namely, these are the critical electric field E∗, the critical
velocity v∗, the critical current density j ∗, the critical power
P ∗ = E∗j ∗, and the critical conductivity σ ∗(t) = j ∗/E∗.

In the presence of pinning, Eq. (20) yields t = t(α,b) and
t(α,b) → t(b) at α → 0. With the definition of t one obtains

T ∗(t) = T0 + (1 − t)(Tc − T0), (23)

where T ∗(t) is a linearly decreasing function of t = t(α,b) for
1/3 < t < 1.

Proceeding to the electric field, we note that since
e = E∗/E∗

LO(T0), one has E∗(t) = e(t)E∗
LO(T0). Then using

Eq. (10) one obtains E∗
LO(T0) = bE0, where

E0 = 1.143(BT /c)(D/τε)1/2(1 − T0/Tc)1/4, (24)

and the physical meaning of E0 was discussed in the BS work
(see Eq. (34) in [16]). Finally, using Eq. (19), one derives

E∗(t)/E0 = be(t) = bt1/4
√

3t − 1/
√

2. (25)

With the relation v∗ = (c/B)E∗ for the critical velocity and
Eq. (25) one obtains that v∗(t) in the presence of pinning is
given by

v∗(t) = e(t)v∗
LO. (26)

Here v∗
LO is the LO critical velocity independent of E and B. It

is given by Eq. (4) at T = T0. From Eq. (26) it is clear that the
dependence of v∗(t) on α and b is mediated by the dependence
e(t) through Eq. (19).

We proceed now to an analysis of the dependence j ∗(t).
From Eq. (9) taken at the critical point we obtain

j ∗(t) =
√

j 2
c + (σ ∗E∗)2, (27)

where, as follows from Eqs. (13), (19), and the definitions of
e and t ,

σ ∗E∗ = j02et/(e2 + √
t). (28)

Then, using Eq. (22), Eq. (27) can be transformed to

j ∗/j0 =
√

α2 + 8t3/2(3t − 1)/(3t + 1)2. (29)

Finally, comparing Eqs. (29) and (20), where also j ∗
0 =

j02et/(e2 + √
t) and j ∗

0 is equal to the right-hand side of
Eq. (28), it follows that

j ∗/j0 = (1 − t)/be. (30)

Now, having Eq. (25) for E∗(t)/E0 and Eq. (30) for j ∗(t)/j0

it is clear that

P ∗(t)/P0 = 1 − t, (31)

where

P0 = E0j0 = (h/α)(Tc − T0). (32)

In Eq. (31) P ∗ = E∗j ∗ is the critical power density dissipated
in the film, while P0 is the power density corresponding to the
temperature difference Tco = Tc − T0 > 0.

Using Eqs. (25) and (30) it is possible to calculate the
critical conductivity σ ∗(t) of the sample

σ ∗(t) = j ∗(t)/E∗(t) = σ0(1 − t)/(be)2, (33)

FIG. 2. Normalized electric field E∗/E0 versus normalized cur-
rent density j ∗/j0 at the instability point for a series of values of the
pinning strength parameter α ≡ jc/j0. For all curves, the blue spots
outline values obtained at b ≡ B/BT = 10, while the red ones mark
those at b = 0. The curve for α = 0 coincides with the BS curve
in Fig. 1 in [16]. Inset: Normalized power density P ∗/P0 versus
normalized current density j ∗/j0 at the instability point for the same
series of values of the pinning strength parameter α.

where

σ0 ≡ j0/E0 = (8.08/π )2(4,1/π )3/2σn

×N (0)kB(kBTc)
√

1 − T0/Tc/hτε, (34)

σn = N (0)De2
0, and N (0) = mpF /π2h̄3 is the density of

states. A series of E∗/E0 versus j ∗/j0 curves at the instability
point is plotted in Fig. 2 for a series of values of the pinning
strength parameter α = jc/j0.

C. Weak pinning

For convenience, we introduce the dimensionless pinning
pinning strength parameter α ≡ jc/j0, the dimensionless
magnetic field b ≡ B/BT , and denote

x(t) ≡ 2(1 − t)2

b2
√

t(3t − 1)
, y(t) ≡ 8t3/2(3t − 1)

(3t + 1)2
. (35)

In the case of weak pinning (i.e., α → 0), Eq. (20) can
be solved analytically using α → 0 as a small perturbation
parameter. Thus, in the limiting case α2 = 0 one obtains
x(t0) = y(t0), where t0 = t(b) was obtained in the BS work
[16] and it is given by Eq. (21). Accordingly, for α2 → 0 one
can write t(b,α) � t0 − ε, where ε = A(b)α2 � 1. Then it is
possible to express the functions x(t) and y(t) at t = t0 − ε in
terms of x(t0), y(t0), and ε, namely

x(t0 − ε) � x(t0)

[
1 + ε

(
2

1 − t0
+ 1

2t0
+ 3

3t0 − 1

)]
,

y(t0 − ε) � y(t0)

[
1 − ε

(
3

2t0
+ 3

3t0 − 1
− 6

3t0 + 1

)]
.

(36)
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FIG. 3. Dependence of the normalized critical electric field E∗(t)/E0 (a), critical current density j ∗(t)/j0 (b), critical power density
P ∗(t)/P0 (c), and critical temperature T ∗(t)/T0 (d) on the dimensionless pinning strength parameter α ≡ jc/j0 and the dimensionless magnetic
field b = B/BT calculated by Eqs. (25), (29), (31), and (23), respectively. The parameters BT and E0 are given by Eqs. (16) and (24). The thick
black curves at α = 0 reproduce the BS results [16] without pinning.

This leads to the following equation for A(b),

A(b) = t0(1 − t0)(9t2 − 1)

2x0(3t2
0 + 6t0 − 1)

, (37)

which can be solved in the limiting cases of weak (b → 0) and
strong (b � 1) magnetic fields. Namely, when b → 0, one
obtains t0(b → 0) � 1 − b. Then, in the main approximation
in b → 0, from Eq. (37) it follows that A(b → 0) � b/2 and

t(b → 0) � 1 − b(1 + α2/2). (38)

When b � 1, from Eq. (20) one obtains t0(b � 1) � (1 +
2/b)/3. Equation (37) yields A(b � 1) � 2/

√
3 and

t(b � 1) � (1 + 2/b)/3 − 2
√

3α2. (39)

III. GRAPHICAL ANALYSIS

The objective of this section is to graphically analyze
the dimensionless FFI critical parameters in the presence of
pinning as functions of the dimensionless pinning strength
parameter α ≡ jc/j0 and the dimensionless magnetic field
b ≡ B/BT , in a broad range of the respective parameters.

We begin our analysis with the critical electric field
E∗(t)/E0 calculated by Eq. (25) and plotted in Fig. 3(a). We

reveal that at any arbitrary value of α (0 < α < 2), E∗(t)/E0

is a monotonically increasing function of b. As the first check,
we have proven that in the limit of no pinning at α = 0 the
dependence E∗(t)/E0 coincides with the curve obtained by BS
(Fig. 2 in [16]). The dependence E∗(t)/E0 is nonlinear, while
with increasing α the nonlinearity is weakening as E∗(t)/E0

tends to become independent of b for b � 2. In addition, one
sees that, whereas E∗(t)/E0 = 0 for all α at b = 0, at larger
b values E∗(α)/E0 becomes a rapidly decreasing function of
the pinning strength.

In contrast to E∗(t)/E0 in Fig. 3(a), which monotonically
decreases with increasing α, the behavior of j ∗(t)/j0 calcu-
lated by Eq. (29) as a function of α at b = const is opposite.
Namely, j ∗(t)/j0 strongly increases with α, see Fig. 3(b). We
again check that at α = 0 the magnetic field dependence of
j ∗(t)/j0 coincides with the curve obtained by BS (see Fig.
3 in [16]), which is a monotonically decreasing function of
b. At larger values of α � 1 a part of the graph appears in
Fig. 3(b), where the critical current density is independent of
b. This part has a tendency to expand with a further increase
of α.

Figure 3(c) displays the critical power P ∗(t)/P0 calculated
by Eq. (31) as a function of α and b. The function P ∗/P0(α,b)
is strongly increasing with b for 0 < b � 2, exhibits a plateau
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at 2 � b < 10 and large α, and it is only very weakly increasing
as a function of α at a given value of b.

In Fig. 3(d) the critical temperature T ∗(t)/T0 computed
by Eq. (23) as a function of α and b at T0/Tc = 0.8 is
presented. While in the whole range of magnetic fields the
relative changes in T ∗/T0 do not exceed 16% for a fixed α

and these changes primarily ensue at 0 < b � 3, T ∗/T0 is
practically independent of α.

IV. DISCUSSION

Before a deeper discussion of the theoretical results
obtained in this work in comparison with those presented
in [2] and later in [16], we need to briefly recall the main
theoretical FFI features at temperatures near Tc in the absence
of pinning obtained initially in those works [2,16]. According
to LO [2,18], FFI for dirty films leads to the shrinkage of the
vortex cores with increasing vortex velocity up to its critical
value v∗, refer to Eqs. (2) and (3). Then, for current-driven
measurements the nonlinear resistive part of the CVC exhibits
a jumplike voltage rise at v = v∗, when the Lorentz force
equals to the greatest value of the viscous damping force for a
vortex. In experiments [14,15], however, several discrepancies
from the LO theoretical results were revealed, as already
mentioned in the Introduction. Later on, BS have shown [16]
that these discrepancies may have a common cause, namely
the overheating of phonons and quasiparticles in the film due
to the dissipation during the vortex motion. The LO results
were generalized by BS in a such way that for B � BT

the overheating of the quasiparticles is small and the LO
theory is valid, whereas for B � BT the overheating of the
quasiparticles is important and it allows one to explain the
most of the discrepancies from the LO theory discussed in
[14,15,17]. It is essential that both the LO and BS theoretical
results were obtained without accounting for vortex pinning.

In the previous sections, within the framework of the
BS approach, the influence of pinning on the FFI critical
parameters for the current flow along the WPP channels at the
substrate temperature T0 close to the critical temperature Tc of
the nanostructured superconducting film (see Fig. 1) has been
theoretically analyzed. While the FFI critical parameters in
the BS paper [16] have already been calculated as b dependent
(b ≡ B/BT ), in this paper an additional α dependence (α =
jc/j0) appears through Eq. (20), thereby introducing the
variable pinning strength. The main tasks of the theoretical
analysis was then to solve the main equation (20) with respect
to t(α,b) and to reveal the influence of pinning on the FFI
critical parameters, namely E∗, j ∗, v∗, σ ∗, and P ∗. As a
natural passage to the limit α = 0, the solutions t(α,b) have
been checked to coincide with the well-known BS results t(b).
From the graphical analysis it is clear that, at a given magnetic
field b = const, with increasing pinning strength E∗ decreases,
j ∗ increases, while P ∗ and T ∗ are practically constant.

We would like to stress that the introduction of pinning
into the BS instability problem is phenomenological. Namely,
instead of the linear CVC relation j = σ (T )E (at T = const)
with σ (T ) = σnHc2(T )/B used in [16] here a nonlinear CVC
at T = const generated by the cosine WPP and taken at T = 0
has been used. The conductivity σ (T ) in Eg. (8) is the same
as that in Eq. (1). Being aware that the cosine WPP is a very

particular form of the pinning potential, we emphasize that its
advantage is a very simple CVC given by Eq. (8). Obviously
for an arbitrary pinning potential the CVC cannot be described
by a simple analytical expression.

Theoretically, it is also possible to use the CVC derived for
the cosine WPP at T > 0 [30], but here the case T = 0 has
been considered for simplicity. Further arguments in favor
of the consideration of the CVC at T = 0 are related to
the two main features which are crucial for the considered
problem: (i) The CVC at T = 0 exhibits a nonlinear transition
from the dissipation-free regime to the regime of viscous
flux flow. (ii) The nonlinear transition at T = 0 allows for a
straightforward determination of the depinning current density
jc corresponding to the onset of the vortex motion. Such a
simple determination of jc at T > 0 is impossible without
introduction of further criteria. Obviously the CVC at T = 0
is characterized by the parameter jc which, in turn, depends
on the parameters of the WPP.

We now turn to suggestions for an experimental exami-
nation of the theoretical results obtained here. First of all,
while a sawtooth [29,39–41] and a harmonic [30–35,42,43]
potential are the most simple particular WPP forms widely
used in theoretical modeling, they are found across nu-
merous experimental systems. These systems range from
naturally occurring pinning sites in high-Tc superconductors
[44–47] to artificially created linearly extended pinning sites
in superconductor thin films [27,28,36–38,48–60], see, e.g.,
Ref. [61] for a review. Systems with naturally occurring
pinning sites are largely represented by cuprates in which
one distinguishes the intrinsic pinning induced by the layered
structure itself [44] and the planar pinning caused by uniaxial
twins [45–47]. Artificial WPPs can be induced by a periodic
thickness [48,49] or magnetization [50–53] modulation, thin
film deposition onto facetted substrates [54,55], milling
of periodically arranged nanogrooves in films by focused
ion beam [27,28,36,38,56,57], and decoration of films with
ferromagnetic nanostripes by focused electron beam induced
deposition (FEBID) [58–60].

A further feature of the CVC given by Eq. (8) is that it
is derived within the framework of a single-vortex model of
anisotropic pinning [30]. For the most direct comparison of
theory with experiment on, e.g., nanopatterned superconduc-
tors, this means that one has to tune the vortex dynamics in a
coherent regime, when the entire vortex ensemble behaves as
a vortex crystal. The background pinning due to undesired
random disorder must be weak to ensure the long-range
order correlations of the vortex lattice in the vicinity of the
depinning transition. This can be realized, e.g., in weak-
pinning amorphous Mo3Ge [23], Nb0.7Ge0.3 [13], and Al
[21] films as well as in epitaxial thin films in the clean
superconducting limit such as epitaxial Nb films on sapphire
substrates [62].

The next experimental requirement is to perform mea-
surements at so-called matching fields, when the Abrikosov
vortex lattice is commensurate with the pinning landscape.
That said, for a WPP each row of vortices shall be pinned at
the position of linearly extended pinning sites (for instance,
nanogrooves shown in the lower inset to Fig. 1) and there will
be neither vacant nanogrooves nor vortices pinned between
them. It has been shown by computer simulations [40] that at
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the fundamental matching the vortex lattice has a crystalline
structure, the effective vortex interaction is canceled and the
response of the vortex ensemble can be analyzed on the basis
of that for a single vortex. The motion of vortices in this case is
coherent, as can be seen, e.g., via ac/dc interference (Shapiro
steps) in the CVCs [31,56,57]. These interference steps arise
when the vortex hopping distance during one half ac cycle
coincides with one or a multiple of the nanostructure period.
Contrary, when B is tuned away from the matching condition,
the vortex lattice becomes jammed and the vortex motion lacks
coherence. This means that for a particular superconductor
with a given periodicity of the WPP, one should perform
measurements at a fixed matching field value instead of
probing the whole range of magnetic fields 0 < B � 0.4Bc2

where FFI is observed [16]. At the same time, also the pinning
strength parameter α is usually fixed for a given sample, with
exception of cases [21,50,51] where the pinning strength can
be tuned by a proper magnetic state of the individual element.
In this way, to systematically compare theory with experiment
in a broad range of magnetic fields and pinning intensities,
a series of samples with different nanostructure periods and
pinning strengths is required. The use of WPP landscapes
with a tunable pinning strength appears as an alternative
promising approach. This should be possible by decoration of
films with ferromagnetic nanostripes using FEBID [58–60] in
combination with post-growth processing [63,64] of samples
for switching the magnetic state of the nanostripes and thereby
changing the pinning strength.

The LO instability in superconducting films with a WPP
has not been studied experimentally so far. For this reason,
to examine our theoretical predictions, we would like to
compare the main results of our phenomenological approach
with an existing experiment [21] qualitatively. Silhanek et al.
[21] investigated the LO instability by measuring the CVCs
of a 50-nm-thick Al superconducting film deposited on top
of an array of Py square rings. Their magnetic templates
represent a flexible way to change the pinning strength by
changing the magnetic state of the rings. Individual magnetic
domains along each leg of the square rings were arranged to
form either the so-called vortex state with a weak stray field
or an onion state with a strong stray field. The experiment
was carried out at T/Tc = 0.89 in the magnetic field range
0 < B < B1 � BT ≈ 20 mT, where B1 = 1.808 mT is the
matching field corresponding to one vortex per unit cell. That
said, the experiment [21] was carried out in the low-field range,
where overheating effects are not relevant. Importantly, at a
fixed magnetic field value, the instability velocity v∗ has been
revealed to decrease with increasing pinning strength, whereas
the instability current density j ∗ (slightly) decreased as the
pinning strength increased, we refer to Fig. 5 in Ref. [21].

To augment their experimental observations, Silhanek
et al. [21] performed computer simulations relying upon the
time-dependent Ginzburg-Landau equation. Their simulation
results reported in Fig. 2 in Ref. [21] support both, the
experimental observations of Ref. [21] and our theoretical
predictions, as clearly seen in Fig. 4, where v∗(α) and j ∗(α)
are marked by thick black lines at b = 0.1 ≈ B/BT with B

being in the vicinity of their matching field B1. In this way,
even though the available experiment [21] was performed for
a superconducting film with a different pinning potential, the

FIG. 4. Dependence of the normalized instability velocity v∗/v0

(a) and the instability current density j ∗/j0 (b) on the dimensionless
pinning strength parameter α ≡ jc/j0 and the dimensionless magnetic
field b = B/BT calculated by Eqs. (25) and (29), respectively, in the
low-field range. The parameters BT and E0 are given by Eqs. (16)
and (24) while v0 ≡ cE0/BT . The thick black lines correspond to
b = 0.1 for a comparison with the most closely related experiment of
Silhanek et al. [21], as detailed in the text.

main predictions of our phenomenological theory, namely a
reduction of the instability velocity v∗ and an increase of the
instability current density j ∗ with increasing pinning strength
qualitatively agree with the results of both electrical resistance
measurements and computer simulations [21]. A systematic
comparison of the experimental dependencies v∗(α,b) and
j ∗(α,b) measured near Tc with Eqs. (25) and (29) should
include a broader range of the parameters α and b.

Finally, the introduction of pinning into the FFI problem
in the opposite limiting case T � Tc should be commented.
At T � Tc FFI is caused not by the standard LO scenario
assuming a vortex shrinkage due to quasiparticles escaping
from the vortex cores, but rather by the Kunchur hot-electron
mechanism [12]: At T � Tc, when the electron-electron
scattering time is shorter than the electron-phonon scattering
time, τee < τeph, the distribution function remains thermal-like
and the electronic system exhibits a temperature rise with
respect to the lattice. In consequence of this, additional
quasiparticles are created thus leading to a diminishing of the

184517-7



SHKLOVSKIJ, NAZIPOVA, AND DOBROVOLSKIY PHYSICAL REVIEW B 95, 184517 (2017)

superconducting order parameter . This results in an vortex
expansion and a reduction of the viscous drag because of a
softening of gradients of the vortex profile. All experimental
observables were calculated in Ref. [12] as functions of the
magnetic field value, by numerical integration of the heat
balance equation. The experimental results for YBCO were
successfully fitted to the predicted B dependencies and the
j (E) curves in the absence of pinning without any adjustable
parameters [12,65].

The effect of pinning on the hot-electron FFI parameters
has recently been analyzed theoretically in Ref. [26]. There,
as in this work, the pinning is introduced phenomenologically
by using the nonlinear conductivity generated by the WPP
instead of the Bardeen-Stephen flux-flow conductivity in the
CVC. A simpler heat balance equation for electrons in low-Tc

superconducting films has been solved in Ref. [26] in the
two-fluid approach, without numerical integration of the heat
balance equation. A theoretical analysis has revealed [26] that
the B behavior of E∗, j ∗, and ρ∗ is monotonic, whereas
the B dependence of v∗ is quite different as dv∗/dB may
change its sign twice, as sometimes observed in experiments
[20–22,66–68]. The generalized theory [26] of the hot-electron
FFI has recently allowed us to fit a nonmonotonic magnetic-
field dependence of the instability velocity in Nb thin films with
different pinning strengths [25]. A systematic experimental
study of pinning effects on the LO instability in Nb films with
nanogrooves is currently under way and will be reported in a
forthcoming publication.

V. CONCLUSION

To sum up, the effect of pinning on self-heating triggering
the LO flux-flow instability in superconducting thin films has

been investigated theoretically. The problem was considered
on the basis of the Bezuglyj-Shklovskij generalization of the
LO theory, with an account for a finite heat removal from the
quasiparticles at temperature T ∗ to the bath at temperature
T0. The instability critical parameters, namely the current
density j ∗, the electric field E∗, the power density P ∗, and
the vortex velocity v∗ have been calculated and graphically
analyzed as functions of the magnetic field value and the
pinning strength. With increasing pinning strength at a fixed
magnetic field value E∗ has been found to decrease, j ∗ to
increase, while P ∗ and T ∗ remain practically constant. An
account for vortex pinning has substantially supplemented the
well-established FFI physical picture. Vortex pinning may be
the cause for eventual discrepancies between experiments on
superconductors with strong pinning and the LO results includ-
ing their subsequent refinements. The theoretical predictions
for a decrease of the instability critical velocity and an increase
of the instability current qualitatively agree with the results of
electrical resistance measurements and computer simulations
[21]. For a quantitative comparison of theory with experiment
a series of samples with different nanostructure periods and
pinning strengths is required to systematically investigate the
flux-flow instability in a broad range of magnetic fields and
pinning intensities.
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